
FASTER: Facilitating Analysis and Synthesis Technologies
for Effective Reconfiguration

D. Pnevmatikatos1, T. Becker5, A. Brokalakis8, K. Bruneel3, G. Gaydadjiev4, W. Luk5,
K. Papadimitriou1, I. Papaefstathiou8, O. Pell6, C. Pilato2, M. Robart7, M. D. Santambrogio2,

D. Sciuto2, D. Stroobandt3, and T. Todman5

1Foundation for Research and Technology - Hellas, Greece
2Politecnico di Milano, Italy
3Ghent University, Belgium

4Chalmers University of Technology, Sweden
5Imperial College London, United Kingdom

6Maxeler Technologies, United Kingdom
7ST Microelectronics, Italy

8Synelixis, Greece

Contact Email: pnevmati@ics.forth.gr

Abstract—The FASTER project aims to ease the definition,
implementation and use of dynamically changing hardware
systems. Our motivation stems from the promise reconfigurable
systems hold for achieving better performance and extending
product functionality and lifetime via the addition of new
features that work at hardware speed. This is a clear advantage
over the more straightforward software component adaptivity.
However, designing a changing hardware system is both chal-
lenging and time consuming.

The FASTER project will facilitate the use of reconfigurable
technology by providing a complete methodology that enables
designers to easily specify, analyse, implement and verify
applications on platforms with general-purpose processors and
acceleration modules implemented in the latest reconfigurable
technology. To better adapt to different application require-
ments, the tool-chain will support both region-based and micro-
reconfiguration and provide a flexible run-time system that will
efficiently manage the reconfigurable resources. We will use
applications from the embedded, high performance computing,
and desktop domains to demonstrate the potential benefits of
the FASTER tools on metrics such as performance, power
consumption and total ownership cost.

I. INTRODUCTION

Extending product functionality and lifetime requires
constant addition of new features to satisfy the growing
customer needs and the evolving market and technology
trends. Software component adaptivity is straightforward but
in many cases it is not enough; recent products incorporate
hardware accelerators to satisfy performance and energy re-
quirements. These accelerators also need to adapt to the new
requirements. Reconfigurable logic allows the definition of
new functions to be implemented in dynamically instantiated
hardware units, combining adaptivity with hardware speed

and efficiency. However, designing a changing hardware
system is both challenging and time consuming.

The FASTER project [1] aims to provide a complete
methodology that will enable designers to easily implement
and verify applications on platforms with one or more
general-purpose processors and multiple acceleration mod-
ules implemented in the latest reconfigurable technology.
Previous research and EU projects such as hArtes [2],
Reflect [3], ACOTES [4], Andres [5], Morpheus and others
focus on the necessary tool-chain and address similar issues
as FASTER but focus more on system-level or architectural
aspects of reconfiguration. Moreover, they do not explicitly
emphasize on the design and runtime aspects of partial and
dynamic reconfiguration, or on choosing the best reconfi-
guration grain-size.

This is exactly where FASTER intends to contribute.
FASTER aims to introduce partial and dynamic reconfi-
guration from the initial design of the system all the
way to its runtime use. The FASTER tool-chain (depicted
at high-level in Figure 1) input will be based on high-
level programming languages with an initial decomposition
described using existing formalisms (such as OpenMP).
This input will be transformed to the corresponding task
graph, which in turn will be partitioned in space and time
to identify candidates for reconfiguration. FASTER will
support both region- and micro-reconfiguration (a technique
that reconfigures very small parts of the device), an ability
that opens up a new range of application opportunities for
run-time reconfiguration.

FASTER will address the issue of verifying static and dy-
namic aspects of a reconfigurable design while minimizing



Figure 1. Abstract View of FASTER Tool-Flow

run-time overheads on speed, area and power consumption,
and provide a powerful and efficient run-time system for
managing the various aspects of parallelism and adaptivity.

To demonstrate the potential benefits of the FASTER tool-
chain we will use complex applications from the embedded,
the HPC, and the desktop domains, and use metrics such
as performance, power consumption, total ownership cost,
verification effort, etc. We will also use prototype platforms
to evaluate the speed, cost, and power consumption of the
applications implemented within FASTER.

In the rest of this paper we describe the front-end analysis
and the possible granularities of reconfiguration in Sections
II and III. We discuss our approach to verification and the
run-time support in Sections IV and V. We describe the
platforms and applications we plan to use in Section VI.

II. THE FASTER FRONT-END ANALYSIS

A. Context definition

Different frameworks have been proposed to address the
concurrent development of the architecture and the appli-
cation. Ptolemy [6] is an environment for simulating and
prototyping heterogeneous systems with mechanisms for
modelling multiple abstraction levels. Daedalus [7] is a
system-level design framework, composed of several tools
that range from automatic parallelization for Kahn Process
Networks to design space exploration of both the archi-
tectural and platform levels, and to the synthesis of the
candidate platform architecture. The different components
are interfaced through XML files. FASTER adopts a sim-
ilar approach, where the different tools such as estima-
tion tools and partitioning algorithms are interfaced with
XML files, while the partitioned application is described
with OpenMP. OpenMP is a standard format for describing
parallel applications, successfully adopted also in the FP6
hArtes project [2]. Another framework for programming
heterogeneous platforms is OpenCL, an open royalty-free

standard for cross-platform, parallel programming of modern
processors found in personal computers, servers and hand-
held/embedded devices [8].

None of the existing approaches is able to automatically
turn a large application into a complete design, due to
the complexity of the problems and the size of the design
space, especially when hardware accelerators are involved
or reconfigurability is addressed. The goal of FASTER is to
overcome these limitations by obtaining a general formula-
tion, capable to deal with multiprocessor systems, supporting
different hardware implementations for the same task (also
exploiting micro-architectural optimizations) and proposing
a design flow that efficiently partitions the application, while
performing considerably more exploration on the possible
solutions for the problem.

B. The FASTER Front-End Flow

The starting point of the FASTER Front-End can be a
C application, whose initial decomposition could be de-
scribed with any of the existing formalisms (e.g. OpenMP)
potentially annotated with pragmas to specify additional
information provided by the designer. The corresponding
task graph is then derived, where every hardware task is
to be treated as a region-reconfigurable module or a micro-
reconfigurable module.

We consider both static and dynamic reconfiguration and
assume devices are partially reconfigurable, either in a
single-FPGA or a multi-FPGA system. We also perform
hardware/software partitioning to determine which tasks can
be executed in software instead. Finally, we will apply a
methodology to schedule the resulting specification on the
same reconfigurable architecture. With respect to this, one
of our goals is to further reduce the dynamic hardware
generation and reconfiguration overhead, especially by opti-
mizing the applications and improving the locality of the
parameter values that trigger a reconfiguration each time
they change. In the past, several alternative configuration
architectures were presented, such as multi-context, relo-
cation/defragmentation and pipeline reconfigurable FPGAs.
Configuration caching techniques try to keep configurations
that will be needed in the future on chip. With respect
to these techniques, our approach is compatible with these
architectures, since we can bring different uses of a config-
uration closer in time with loop transformations.

To implmement the proposed front-end the work is di-
vided in 4 tasks that can be potentially repeated in a loop to
improve the partitioning of the application by means of the
results obtained in the different phases. The methodology is
outlined in Figure 2. In particular, the work is organized as
follows:

• Task T2.1 aims to provide statistical prediction of
metrics such as reconfiguration time, area, performance,
energy efficiency and power consumption. It receives
as input the source code (the initial one or the one



WP2

C2VHDL or 
VHDL by hand

T4.1: Evaluate existing 
run-time system support 

for reconfiguration

WP4

Compile-time baseline 
scheduling and core mapping 
onto rec. regions

Optimization of app for micro-
rec. core implementation

App task profiling and 
identification of rec. coresHigh-level analysis

T3.2: Floorplanning, 
placement and routing

WP3

T2.1 T2.2

T2.4

T2.3

Figure 2. The overall presentation of the proposed flow.

after the decomposition) and the XML file containing
information about the target architecture. Then, it re-
generates the XML file containing the information
about the characterization of the analyzed elements.
In the same way, it removes obsolete implementations,
updates the existing ones or introduces new ones.

• Task T2.2 takes care of decomposing the initial ap-
plication into tasks and assigning them to the dif-
ferent components of the architecture. It receives the
initial source code and the XML file containing the
description of the target architecture. It can also receive
information about the performance of the current tasks,
if any, and feedbacks after the execution of the schedule
(e.g. how the portioning is impacting the computed
schedule). It decomposes the application or it applies
further transformations in order to improve the current
solution. Finally, it generates the different tasks in
a C-based description and the representation of the
corresponding task graph in the XML file (application
part).

• Task T2.3 receives the descriptions of the different tasks
(i.e., corresponding source code) and produces opti-
mized versions for their implementation. Accordingly,
it updates the XML file with the new implementations.

These modifications will be done in terms of changes
of parameters values using the micro-reconfiguration
technique.

• Task T2.4 determines the schedule of the tasks, along
with the mapping of hardware cores onto reconfigurable
regions. It receives the XML file of the application
and the architecture, focusing on the task assigned
to the reconfigurable area. In particular, it determines
the number and the characteristics (e.g., size) of the
reconfigurable areas, the number and the size of each
input/output point, and also takes into account the inter-
connection infrastructure of the system (e.g., bus size).
It also schedules the resulting implementation and an-
notates the characterization part with such information
to further refine the specification. Finally, it annotates
the tasks with information about the feasibility of the
implementation where the solution is specified.

Two different scenarios are shown in Figure 3. On one
hand we envision a scenario where the framework proposed
in FASTER has to take care of the HW/SW partitioning
phase without having any constraints/hints provided by the
application designer. This is depicted in Figure 3 as Scenario
A. The task graph is provided as input with the information
about the physical architecture that will be used to imple-
ment the final system. After the HW/SW partitioning phase
(T2.2), the identified HW components are processed by T2.3
to investigate the opportunity of having an enhanced version
of these elements. Finally, T2.4 will compute the baseline
schedule and the floorplanning and placement constraints,
via the definition of the UCF (User Constraint File). The
baseline schedule will be used to map each HW element
into an area defined in the UCF.

On the other hand, in Scenario B of Figure 3, we consider
the case where the application designer provides some
constraints/hints on the HW/SW partitioning of the desired
application. A hint is a suggestion that can be considered
or not by the HW/SW partitioning phase in T2.2, while a
constraint is an information that cannot be ignored. Within
this context, all the elements identified as HW components
by the application designer will be treated in this way,
without any further investigation of other possible SW
implementation by the FASTER framework.

III. REGION-BASED AND MICRO-RECONFIGURATION
SUPPORT

Both options will be supported with each one offering
certain advantages in different cases.

A. Region-based reconfiguration

Partially reconfigurable regions are determined off-line.
Their size can vary depending on the application and de-
signer needs and they can be reconfigured while the rest of
the chip is operational. We will use the vendor’s tool flow
to support the region-based reconfiguration. The research



Floorplanning and 
Placement

HW Enhancement

HW/SW Partitioning

Task Graph 
(input app)

: HW Taks

: SW Taks

GPP RR1

RR2
System

Reconfigurable AreaStatic Area

GPP RR1

RR2

Reuse

System
Reconfigurable AreaStatic Area

Scenario A
(No hint on HW task)

: HW Taks

: HW Taks

: SW Taks

GPP

System
Reconfigurable AreaStatic Area

GPP RR1

Reuse

System
Reconfigurable AreaStatic Area

Scenario B
(Hint on HW task)

: HW Taks

HW hints

RR2

RR1

RR2

I:
O:

I:
O:

I:
O:

I:
O:

I:
O:

I:
O:

I:
O:

I:
O:

Figure 3. An overview of different scenarios for the proposed flow.

challenge is the proper identification of the regions and the
support of relocatable modules at run-time, which could in-
volve additional constraints for floorplanning and placement.
The problem of floorplanning in the domain of partially
reconfigurable FPGAs has steadily attracted the interest of
the research community [9], [10]. Further, we intend to
explore the capability of creating relocatable bitstreams that
can be used in multiple locations of heterogeneous FPGA
fabric. This will allow to reduce the size of configuration
storage because only one bitstream version for each module
has to be stored.

B. Micro-reconfiguration

One or more of the aforementioned regions can also be
reconfigured on a much finer granularity (which we call
micro-reconfiguration) to implement Runtime Circuit Spe-
cialization (RCS). RCS [11], [12] is a technique to specialize
an FPGA configuration at runtime according to the values
of a set of parameters. The general idea of RCS is that
before a task is deployed on the FPGA a configuration that is
specialized for the new parameter values is generated. Since
specialized configurations are smaller and faster than their
generic counterpart, the hope is that the system implementa-
tion will be more cost efficient when using RCS. Currently,
the design tools of FPGA manufacturers only support region-
based runtime reconfiguration (where a limited number of
functionalities are timeshared on the same piece of FPGA
area).

Since mapping a hardware specification to FPGA re-
sources is an NP-complete problem [13] the specialization
process will generate sub-optimal solutions. Therefore one

can see that there will be a tradeoff between the resources
spent on the specialization process and the quality of the
specialized FPGA configuration. The more resources spent
on generating the specialized functionality, the fewer re-
sources needed to implement the specialized functionality.
This means that there is a range of Pareto-optimal im-
plementations for the specialization process. The optimal
implementation depends on the design specification. One
obvious choice would be to use the region-based reconfi-
guration tool flow. This approach works fine if the number of
configurations is small. However, in RCS the number of pa-
rameter values grows exponentially with the number of bits
needed to represent the parameter data. Hence, generating all
configurations off-line and storing them in a database rapidly
becomes infeasible for real-life applications. Therefore, the
only option is to have the specialization process generate
the partial configurations at run time, by using a (simplified)
run-time tool flow, which is slow. In the FASTER project,
we propose the use of parameterized configurations [14].
Using parameterized configurations, RCS implementations
that have similar properties to handcrafted applications can
be automatically built. The method builds on the observation
that the specialization process actually implements a multi-
valued Boolean function, which is called a Parameterized
Configuration (PC). Indeed, both the input (a parameter
value) and the output (a specialized configuration) of the
specialization process are bit vectors.

The method make use of staged compilation. During the
generic stage (Figure 4 (a)), a parameterized configuration is
constructed and represented in a closed form starting from
a parameterized HDL description. This stage is executed at



Figure 4. Staged compilation as used by RCS techniques that make use
of parameterized configurations: (a) The ofline stage of the tool flow (b)
The online stage

compile time, when the parameter values are not known.
During the specialization stage (Figure 4 (b)), a specialized
configuration is produced by evaluating the parameterized
configuration given a parameter value. This stage is exe-
cuted at run-time, after the parameter values have become
available. After producing the specialized configuration, it
is used to reconfigure the FPGA.

A parameterized HDL description is an HDL description
in which distinction is made between regular input ports
and parameter input ports. The parameter inputs will not be
inputs of the final specialized configurations. Instead, they
will be bound to a constant value during the specialization
stage.

It is important to note here that while the problem that
needs to be solved by the generic stage of our staged com-
pilation tool flow is computationally hard, the problem that
needs to be solved by the specialization stage, evaluating the
parameterized configuration, is not. This drastically reduces
the specialization time.

IV. VERIFICATION OF CHANGING SYSTEMS

This section describes our approach to verification: ensur-
ing that the optimized, reconfiguring design preserves the
behaviour of the original one. In the overall FASTER tool
flow, verification uses the mapped design as a reference to
compare with designs using reconfiguration.

Traditional approaches simulate the reference and op-
timized designs with a set of test inputs, comparing the
outputs. This approach works well, but the test inputs must
cover all aspects of the design’s behaviour. There is always
a danger that the test inputs do not cover all the cases, or
that the output is only coincidentally correct.

A. Our approach

Rather than relying on numerical or logical simulation,
our approach combines symbolic simulation with equiva-
lence checking. Symbolic simulation applies symbols rather
than numbers or logic values to the design, and the outputs
are functions of these symbolic inputs. For example, symbol-
ically simulating an adder with inputs a and b might result in

a+ b. However, for larger designs it is harder to distinguish
different but equivalent outputs (b+a instead of a+b) from
incorrect ones. The equivalence checker tests whether or not
the outputs of transformed designs are equivalent to those
of the reference design.

Source
(MaxJ)

Equivalent?Equivalent
Not equivalent,
couter-example

Equivalence
checker

Symbolic
simulator

Compiler

Interpreter

Target
(MaxJ)

Transformations

Input

Output
(from source)

Output
(from target)

Source Target

Yes No

Compile to 
simulation

Design
optimization

Symbolic 
simulation

Validation

Source Target

Source Target

Figure 5. Verification design flow.

Figure 5 shows our approach, where we compare a
reference design (the source) with a transformed design
(the target). For the FASTER project, we compare designs
implemented as Maxeler MaxJ kernels, though our approach
could apply to other kinds of hardware design descriptions,
or to software. The verification happens in four phases:

• Design optimization: the rest of the FASTER design
flow transforms a source design to a target;

• Compilation for simulation: compile the MaxJ kernel
into input for the symbolic simulator in two phases:
(a) the program is interpreted to unroll any compile-
time loops in the MaxJ design, and (b) the design is
compiled to a symbolic simulation input using a syntax-
directed compile scheme;

• Symbolic simulation: a symbolic simulator applies sym-
bolic inputs to source and target designs;

• Validation: the Yices equivalence checker [15] com-
pares the outputs of source and target designs, resulting
in either success (source and target designs match),
or failure, with a counter example showing why the
designs are not equivalent.

B. Verifying dynamic aspects of the design

The FASTER tool flow generates designs using run-time
reconfiguration, which is not supported by symbolic sim-
ulators or equivalence checkers. Rather than modify these
tools, or try to switch between multiple configurations, we
adapt the approach of Luk et. al. [16], modelling run-time
reconfiguration as virtual multiplexers, which model switch-
ing between different configurations with the same config-



urations connected by a multiplexer-demultiplexer pair. We
compile the run-time reconfigurable parts of designs to be
enclosed by multiplexer-demultiplexer pairs. We modify the
configuration controller to generate the control inputs to the
multiplexers to choose the appropriate configuration. Our
approach can apply equally to static, region-based reconfi-
guration, or micro-reconfiguration without modification.

V. RUN-TIME SYSTEM SUPPORT

The Run-Time System Manager (RTSM) is a software
component supporting the execution of application work-
loads mainly in systems controlled by an Operating System
(OS). Its scope is to undertake low-level operations so as
to offload the programmer from manually handling fine
grain operations such as scheduling, resource management,
program optimization, memory savings and power consump-
tion. RTSM can reside always in memory and is usually
implemented as a standard library. It contains subroutines
that realize functions by accessing the Operating System
(system calls). Depending on the situation, part of the RTSM
lies in the user space while another part can remain in kernel
space.

In a partially reconfigurable FPGA-based system, in order
to manage dynamically the HW tasks the RTSM needs
to be extended with specific operations [17]. Figure 6
illustrates our envisioned system model which demonstrates
the components participating in run-time system operation
[18]. The FPGA is managed as a 2D area with regard to
the HW task placement (a HW task corresponds to a HW
module). Loading of tasks is controlled by a General Purpose
Processor (GPP) while programming of FPGA configura-
tion memory is done through the ICAP configuration port.
All tasks can have both SW and HW versions available.
Typically, HW tasks are predesigned (synthesized at com-
pile time), and stored as partial bitstreams in a repository
(omitted from Figure 6 for clarity), which accords with
the restrictions of the Xilinx FPGA technology. Each task
is characterized by three parameters: task area (width and
height), reconfiguration time, and execution time. In Figure
6, four distinct components, most of them implemented
outside the reconfigurable area participate in the control of
tasks:

• Placer (P): responsible for finding the best location for
the task in the FPGA

• Scheduler (S): finds the time slot in which a task will
be loaded/starts execution

• Translator (T): resolves the task coordinates by trans-
forming a technology independent representation of the
available area into the low-level commands for the
specific FPGA

• Loader (L): communicates directly with the configura-
tion port

The system of Figure 6 is general enough to study similar
systems in the sense that architectural changes will not affect

Figure 6. System model showing the components of the run-time system

its generality in terms of operation. Hence, instead of ICAP,
external configuration ports can be employed such as the
SelectMAP or JTAG. The GPP can be a powerful host
processor (that implements Placer, Scheduler and Transla-
tor) communicating with the FPGA device through a PCI
bus (e.g. desktop computing), or, it can be an embedded
processor connected to the FPGA through a dedicated point-
to-point link. In any case, communication latency and band-
width should be evaluated and used effectively for optimal
results.

The following operations will be supported by the RTSM
to build a functional PR system. Scheduling will handle
arriving tasks (or tasks that will arrive in the future) by
placing them in proper time slots. Area allocation aims
to define the regions that will accommodate the Partially
Reconfigurable Modules (PRMs); currently in vendor’s flow
this is performed in design time, while dynamic area al-
location is in its infancy. Placement should be efficiently
supported within the boundaries of the partially reconfi-
gurable regions, so as to find exact locations of the FPGA
logic blocks under the constraint of minimizing the wire
length required for routing. While during operation HW
tasks are swapped in and out and thus the FPGA area is
allocated and deallocated, it is likely that it will suffer from
fragmentation. This can lead to a case where although the
aggregate area will be sufficient to accommodate a task, at
the same time it won’t be able to accommodate a task that
requires contiguous resources. The solution to this is offered
through relocation, an operation that allows reorganizing
the placement of the HW task. This should be performed
in time periods in which the corresponding HW tasks are
idle. A restriction applies with regard to the areas in which
this is permitted; however there exist works that managed
to relocate tasks amongst asymmetric areas and different
resources [19]. Another operation that needs to be supported
by the RTSM is configuration caching, which concerns plac-



ing the configuration data that will be needed in the future
close to the configuration memory. Different configuration
times have been observed depending on the type of memory
used for caching and the configuration controller [20]. The
RTSM will also support configuration prefetching which can
alleviate the system from the reconfiguration overhead by
configuring the logic ahead of time. Finally we consider
managing power and thermal issues. We propose to do this
dynamically, which can allow even distribution of power and
thermal phenomena across the platform [21].

VI. PLATFORMS AND APPLICATIONS

Regarding the applications that will benefit from the pro-
vided framework they cover the complete range from low-
end embedded applications to high-end high performance
computing (HPC) ones. In particular, in the HPC domain
the efficiency of FASTER will be demonstrated with the
implementation on the top of the provided framework of
a Reverse Time Migration (RTM) scheme [22]. RTS is a
computationally intensive geoscience algorithm that involves
simulating wave propagation through the earth. The objec-
tive is typically to create an image of the subsurface from
acoustic measurements performed at the surface. To create
an image of the subsurface, a low frequency acoustic source
on the surface is activated and the reflected sound waves
are recorded by (typically) tens of thousands of receivers.
We term this process a “shot”, and it is repeated many
thousands of times while the source and/or receivers are
moved to illuminate different areas of the subsurface. The
resulting dataset is dozens or hundreds of terabytes in size.
The problem of transforming this dataset into an image is
computationally intensive and can be solved with a variety
of techniques. RTM is a high end technique for generating
images of the earth and is used in complex geologies to give
detailed subsurface images.

Moving to the Desktop/Workstation domain the FASTER
framework will also be utilized in the implementation of a
CPU-intensive Global Illumination Scheme [23]. In particu-
lar, in future graphic applications (games, visualization, etc.),
it will be important to achieve photorealistic rendering in a
coherent manner, in order to greatly improve picture quality
with an ever-increasing scene complexity, with support for
real reflection, soft shadows, area light source, indirect illu-
mination, etc. This is a computationally intensive problem,
addressed by the increasing interest in real-time global
illumination approaches. The system that will be produced
by the FASTER framework should be flexible enough to
accelerate different algorithms based on ray casting (ray
tracing, path tracing, Monte Carlo ray tracing, etc.). In this
scheme a 3D scene is described mathematically using simple
primitives such as triangles, polygons, spheres, cylinders,
etc. The properties of each primitive, e.g. position, orienta-
tion, scale and optical properties, are described by the scene.
A virtual camera is placed into the scene, and an image is

rendered accordingly in casting rays simulating the reverse
path of ray of lights, from the origin of the camera through
every pixel of its virtual focal plane. The color of a pixel
is determined by the potential intersections of the primary
ray casted through it, with the 3D scene. Photorealistic
results, based on the global illumination scheme listed, can
be achieved when sufficient rays are casted, simulating with
fidelity the behavior of the light.

Moreover, the FASTER framework will be utilized in the
implementation of a highly representative embedded appli-
cation detecting possible intrusions in the network. Network
Intrusion Detection Systems (NIDS)[24] are widely adopted
as high-speed and always-on network access demand more
sophisticated packet processing and increased network se-
curity. Instead of checking only the header of incoming
packets (as for example firewalls typically do), NIDS also
scan the payload to detect suspicious contents. The latter are
described as signatures or patterns and intrusion signature
databases are made available that include known attacks.
These databases are regularly updated and an NIDS has to
be able to provide a certain degree of flexibility so that it
can incorporate the updated security information.

Concerning how these applications will exploit the novel
features of the FASTER approach, RTM can use micro-
reconfiguration to handle variations in domain size or in
the number of timesteps for example. Partial region-based
reconfiguration could be used to accommodate the change
from imaging to propagation computation, while full reconfi-
guration may be necessary only when the physical model
or other less frequent changes are necessary. Ray-tracing
on the other hand may employ different reconfiguration
methods to achieve the desire performances and flexibility.
Different levels of reconfiguration can handle the various
adaptable aspects of the application: from modification
of the parameterization, such as secondary ray depth or
pixel sampling, to more important reconfiguration of the
type of supported geometric primitives, to even the global
acceleration structure or the shading models used by the
rendering process itself. It may even be beneficial to sup-
port reconfigurable accuracy (precision) of the intersection
computations. Finally, the proposed NIDS system, may use
micro-reconfiguration in order to accommodate frequent
small changes to the detection rules (usually associated with
IP addresses), while for larger changes to the ruleset (such
as new regular expressions) region-based reconfiguration is
an optimal solution. Full reconfiguration may be employed
in cases where significant changes to the operation of the
NIDS system are required, as for example the application
of a new system policy.

Our applications target platforms from both the high
performance and embedded domain. With regard to the
former we will be using Maxeler Technologies platforms,
which combine a pool of FPGAs for dataflow computing,
conventional CPUs, networking and large storage means.



The standard compute element is the MaxNode compute
node, which integrates 12 Intel Xeon CPUs and 4 dataflow
compute engines. Each dataflow engine utilizes a large
Xilinx Virtex-6 FPGA attached to up to 48GB of DDR3
DRAM. The FPGAs are connected to the CPUs via PCI
Express. With respect to the embedded applications we will
use Xilinx platforms carrying a single Virtex-5/-6 FPGA.

VII. CONCLUSIONS

Creating a changing hardware system is a challenging
process, that requires additional effort in specification, im-
plementation and verification, as well as increased support
from the run-time system. We attempt to alleviate these over-
heads and streamline the design and implementation process
providing a new tool-chain. Our contributions will span
the analysis phase and the reconfigurable system definition,
the support for multi-grain reconfiguration, the improved
verification for the changing system, and the efficient run-
time system to handle the run-time system reconfiguration
requirements. Together, all these contributions will result in
a design environment that will be friendly to reconfiguration
and able to support multiple implementation platforms.

ACKNOWLEDGMENT

This work was supported by the European Commission
in the context of FP7 FASTER project (#287804).

REFERENCES

[1] http://www.fp7-faster.eu/.

[2] http://hartes.org/hArtes/.

[3] http://www.reflect-project.eu/.

[4] http://www.hitech-projects.com/euprojects/ACOTES/.

[5] http://andres.offis.de/.

[6] http://ptolemy.eecs.berkeley.edu/.

[7] http://daedalus.liacs.nl/.

[8] http://www.khronos.org/opencl/.

[9] A. Montone, M. D. Santambrogio, F. Redaelli, and D. Sciuto,
“Floorplacement for Partial Reconfigurable FPGA-Based Sys-
tems,” International Journal of Reconfigurable Computing,
vol. 2011, no. 2, p. 12 pages, 2011.

[10] C. Bolchini, A. Miele, and C. Sandionigi, “Automated
Resource-aware Floorplanning of Reconfigurable Areas in
Partially-Reconfigurable FPGA Systems,” in Proceedings of
the IEEE International Conference on Field Programmable
Logic and Applications (FPL), September 2011, pp. 532–538.

[11] P. W. Foulk, “Data-folding in SRAM Configurable FPGAs,”
in Proceedings of the IEEE Workshop on FPGAs for Custom
Computing Machines (FCCM), April 1993, pp. 163–171.

[12] M. J. Wirthlin and B. L. Hutchings, “Improving Functional
Density Through Run-time Constant Propagation,” in Pro-
ceedings of the ACM International Symposium on Field-
Programmable Gate Arrays (FPGA), 1997, pp. 86–92.

[13] K. Shahookar and P. Mazumder, “VLSI Cell Placement
Techniques,” Computer Survey, pp. 143–220, 1991.

[14] K. Bruneel, “Efficient Circuit Specialization for Dynamic
Reconfiguration of FPGAs,” PhD thesis, Ghent University,
2011.

[15] B. Dutertre and L. de Moura, “The YICES SMT
Solver,” Computer Science Laboratory, SRI International, 333
Ravenswood Avenue, Menlo Park, CA 94025 - USA, Tech.
Rep., 2006.

[16] W. Luk, N. Shirazi, and P. Y. K. Cheung, “Modelling and Op-
timising Run-Time Reconfigurable Systems,” in Proceedings
IEEE Symposium on FPGAs for Custom Computing Machines
(FCCM). IEEE Computer Society Press, 1996, pp. 167–176.

[17] C. Steiger, H. Walder, and M. Platzner, “Operating Systems
for Reconfigurable Embedded Platforms: Online Schedul-
ing of Real-Time Tasks,” IEEE Transactions on Computers,
vol. 53, no. 11, pp. 1393–1407, November 2004.

[18] T. Marconi, “Efficient Runtime Management of Reconfi-
gurable Hardware Resources,” PhD thesis, TU Delft, 2011.

[19] T. Becker, W. Luk, and P. Y. Cheung, “Enhancing Relocata-
bility of Partial Bitstreams for Run-Time Reconfiguration,” in
Proceedings of the IEEE Symposium on Field Programmable
Custom Computing Machines (FCCM), April 2007, pp. 35–
44.

[20] K. Papadimitriou, A. Dollas, and S. Hauck, “Performance
of Partial Reconfiguration in FPGA Systems: A Survey and
a Cost Model,” ACM Transactions on Reconfigurable Tech-
nology and Systems (TRETS), vol. 4, no. 4, pp. 36:1–36:24,
December 2011.

[21] J. Donald and M. Martonosi, “Techniques for Multicore
Thermal Management: Classification and New Exploration,”
in Proceedings of the International Symposium on Computer
Architecture (ISCA), 2006, pp. 78–88.

[22] E. Baysal, D. D. Kosloff, and J. W. C. Sherwood, “Reverse
Time Migration,” SEG-Geophysics, vol. 48, no. 11, pp. 1514–
1524, 1983.

[23] K. Myszkowski, T. Tawara, H. Akamine, and H.-P. Seidel,
“Perception-Guided Global Illumination Solution for Anima-
tion Rendering,” in Proceedings of the ACM Conference on
Computer Graphics and Interactive Techniques (SIGGRAPH),
2001, pp. 221–330.

[24] I. Sourdis, D. Pnevmatikatos, and S. Vassiliadis, “Scalable
Multi-Gigabit Pattern Matching for Packet Inspection,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 16, no. 2, pp. 156–166, February 2008.


