
Invited Paper: Acceleration of Computationally-
Intensive Kernels in the Reconfigurable Era

Kyprianos Papadimitriou1,2, Charalampos Vatsolakis2, and Dionisios Pnevmatikatos1,2

1Foundation for Research and Technology - Hellas
2Technical University of Crete

Abstract—One of the major topics that attracts constantly
the interest of research community is the acceleration of
computationally-intensive applications. Towards this direction,
different technologies are competing each other and are all
characterized by a common tendency; they evolve continuously
towards improving their products so as to serve better their
customers and attract new ones. Each company stresses the
stronger advantages of its technology to convince people from
academia and industry, and either individuals to use it. However,
none of the existing technologies monopolizes all domains yet.
This is because each one has its own benefits and drawbacks and
cannot serve well all application domains. Another reason is that
different people prefer to acquire skills in a specific technology
and avoid switching between different technologies, even though
this could benefit the application under development. Hence, from
the one side a technology itself imposes performance margins in
terms of factors such as speed, power, energy, and cost, while
on the other side stands the willingness of the user to adopt a
technology. This adoption can be affected heavily by the flexibility
and the “friendliness” (i.e. easy-to-use) of the technology.

Present paper discusses problems in using reconfigurable
technology and suggests some research directions. We delve into
the details of two systems equipped with specific reconfigurable
platforms and explore the capabilities offered to the user for
accessing this technology. We point out some problems in adopt-
ing reconfigurable technology and we study some performance
characteristics. Aim of the paper is to signify issues that could
gain the attention of the research community, and trigger
the exploration of solutions that will foster the adoption of
reconfigurable technology by a wider range of people.

I. INTRODUCTION

Several technologies exist which are continuously evolving
in order to adjust to the user and application needs. Some
of the prevalent ones are traditional microprocessors, multi-
core and many-core systems, General Purpose GPU, DSP,
ASIC and reconfigurable computing. Although each of these
technologies dominates certain area of the market, there are
cases in which all or some of them are competing each
other in serving effectively a domain, especially when this
domain is promising and profitable. Moreover, technological
advancements tend to be application-driven. Hence, once a
new application domain appears, or when the requirements of a
domain are changing, companies would consider altering their
products, either their hardware platforms or software tools.

The parameters affecting the decision of selecting a tech-
nology platform vary and are case dependent, and might not
be driven by the application. For example, some scientists
are interested mainly in execution speed regardless of factors

such as the effort and cost to develop a system, or the
energy consumption. On the opposite, there are scientists
concerned mainly about the energy consumption and cost of
the system and they do not place emphasis on execution speed.
Looking from a different aspect, a major issue is the flexibility
and friendliness of a technology that allows for shortening
the development time by even compromising performance.
From this perspective, traditional programming in software
and technologies such as microprocessors and DSP tend to be
the dominant technological solutions even in case the target
application is characterized by parallelism and pipelining. In
order for the reconfigurable technology to compete with the
other technologies, the former should be easily accessible by
the user. This is of great importance, especially when it comes
to serve people that are unaware of the details of a new
technology but they consider trying it.

We envision systems in which the user will be able to
access the hardware without controlling explicitly the FPGA,
such as knowing when and how to establish communication
between the host and the FPGA, when and what kind of data to
transmit, and when to perform reconfiguration. This can result
to a system in which the access to reconfigurable hardware
is transparent to the user; at the same time the performance
should not be compromised for transparency. Certainly, such
a system is justified for applications characterized by heavy
parallelism and pipelining. This concept allows to formulate
systems combining software with reconfigurable hardware,
which will be self-reconfigured to adjust automatically to the
user and application needs. The user will not be bothered
with tasks such as manual injection of configuration data
through the execution of reconfiguration commands, or, data
transferring to the FPGA; these functionalities will not be
exposed to the user and they will be undertaken by the host
software.

The paper is structured as follows. Initially, we identify
the problem given the current state of the reconfigurable
technology. Next, we discuss our experiences with two FPGA-
based platforms plugged on a PCI by focusing on the user’s
convenience. Finally we conclude the paper.

II. PROBLEM IDENTIFICATION

Depending on the technology, different features can be
stressed by a company to make it more attractable to the po-
tential customers. Execution speed, customization level, cost,



power and energy consumption are some of them. Another
factor is the easiness in adopting and using a technology. All
these factors can be considered as metrics constituting the per-
formance criterion. From the user perspective, the decision of
selecting a technology can differ even amongst two individuals
that target the same application. This is because the selection
criterion with the highest priority can be different for every
individual. For example, the decision can rely mainly on the
comfort of the individual and less on the application demands
and the advantages of a technology. The reason someone
chooses a technology can be irrational and contradictory, e.g.
someone who will develop an application but does not intend
to put effort in learning a technology even though it would
provide remarkable results in the specific application domain;
however, this scenario is very realistic.

Many users and developers prefer completing the develop-
ment cycle without experiencing the hassle of optimizing a
system, or passing through the learning curve for acquiring
new skills. At the same time they prefer keeping a system
at a reasonable level of performance, and not putting effort
in order to elevate performance at the highest achievable
level. The concept of integrating reconfigurable technology
for accelerating kernels in certain cases seems appealing; this
applies perfectly in the generic domain of desktop computing.
In order for this to happen, two main requirements should be
satisfied; first, reconfigurable technology should be accessed
effectively by the software host, and second, the access to the
reconfigurable hardware should remain transparent to the user.

Different people differ in the way they develop the same ap-
plication due to the different habits and style in programming.
There are experienced programmers skilled in a hardware
programming language (HDL) but the vast amount of people
prefers software-like programming. For example, there are
people programming in Fortran that do not want to switch
to a different language as they will experience a learning
curve. Also, there are people preferring to program in C, or
in a simpler language like Matlab, or even users wanting to
use scripting languages in order to get the results of their
computation. The level into which each people of the aforesaid
categories would be bothered and change its programming
habits in order to accelerate a kernel is a personal matter,
and does not fall within the scope of the present work.
Furthermore, there are simple users that need to execute heavy
tasks such as real-time video processing, 3D rendering, or
large FIR filters, not willing to program in any language.

To overcome the above issues reconfigurable hardware
should be accessed in a transparent manner by the host.
Efficient IP cores residing in an repository can be available
for configuring the FPGA when needed. The set of IP cores
that will reside in a desktop computer depend on the user
needs. For example, if the user works extensively on image
processing then the repository should house relevant IP cores.
Once a heavy task is called the corresponding IP core will be
loaded, e.g. the user clicks an option on the toolbar of an image
processing program. This way the FPGA acts as a coprocessor,
while the system adjusts itself to the changing performance

demands. At the same time, the user is not bothered controlling
the FPGA or being aware that processing has been transferred
to the FPGA.

In order to build such systems, device drivers and APIs
are needed, which allow the host computer to interface with
the FPGA platform. High-speed interfaces should connect the
host with the FPGA platforms, such as PCI, Ethernet or USB,
for serving data transfer and reconfiguration. The connection
setup needs to be efficient enough so as to avoid hampering
system performance due to high communication delays.

To enable such functionality runtime system support is
needed, which is a software component for supporting exe-
cution of application workloads in OS based systems. It will
undertake low-level operations so as to offload the programmer
from manually configuring the FPGA and controlling the data
transfers. The runtime system should reside always in memory
and can be implemented as a standard library. It contains
subroutines that realize functions by accessing the OS with
system calls.

III. THE FPGA-BASED SYSTEMS

We are studying the capabilities offered by reconfigurable
technology through experimentation with two FPGA-based
platforms equipped with a Virtex-II and a Virtex-5 respec-
tively. Both platforms were plugged on the PCI slot of a PC
running a linux operating system. In both systems we executed
the same software application. This application awaits from the
user to make a selection through a command line interface.
Three options are available: i) addition, ii) subtraction and iii)
LED toggling. These kernels have been designed as IP cores
for execution in the FPGA; the bitstreams are stored in the
HDD of the host PC. Once the user enters a choice, a user
level program triggers reconfiguration of the FPGA by loading
the corresponding bitstream; if the choice matches the kernel
already placed in the FPGA, reconfiguration is not triggered.
The reconfiguration process remains completely transparent to
the user entering the kernel choice. The user receives only the
result of kernel execution.

Both FPGA platforms are used widely by the research
community. The kernels we developed are simple but serve
well our scope of demonstrating the concept. Below we
discuss each setup separately, we include measurements of the
throughput and the latencies of certain operations, and then
we briefly report the differences of the two setups. For each
setup, we describe the system architecture in terms of hardware
and software and we provide a description of the path an I/O
request has to follow from the user application to the FPGA.

A. NetFPGA platform on PCI

The NetFPGA houses a Spartan-2 which is responsible
for PCI transactions and a Virtex-II which is available to
be programmed with a user design. It targets mainly the
network domain, but we experimented with a non-network
related application. The system configures the Virtex-II FPGA
according to the user choice using the default NetFPGA driver



and the default PCI design interface loaded into the Spartan-
2 FPGA. To reprogram the Virtex-II FPGA and transfer the
data to it from the host we used the NetFPGA API. Two are
the main modules that configure the FPGAs; the Configurable
PCI module (CPCI) loaded into the Spartan-2 device, and the
Configurable Network module (CNET) loaded into the Virtex-
II device.

The communication between the Spartan-2 and the Virtex-II
concerns the latter’s reconfiguration and the data I/O transfers.
The CPCI module drives the reprogramming signals that are
attached to the 8-bit SelectMAP configuration port of the
Virtex-II in order to control the reconfiguration process. In
particular, reconfiguration is triggered by a software program
in the host that opens a bitstream and sends quantities of 32-
bit words to a register in the CPCI module. The latter inserts
the data to a FIFO in order to address synchronization issues.
The configuration data are then read from the FIFO and sent
to the SelectMAP configuration port of the Virtex-II FPGA.

cpci_bus

FIFO

FIFO

bus_fsm calc_unit

top_module
(located in the Virtex II FPGA)

CPCI Register 
Bus

Figure 1. CNET module placed in the Virtex-II FPGA

Data transactions between the CPCI and the CNET are car-
ried out through a register I/O interface. We used the standard
cpci bus module of the CNET design for the communication
between the two FPGAs, which is shown in Figure 1. This
module contains two FIFOs and an FSM for control purposes.
The two FIFOs are used for storing temporarily the requests
and the responses, which pass through a single bidirectional
port connecting the two FPGAs. The bus fsm module is an
FSM responsible for dispatching the incoming requests and
passing the appropriate arguments to the calculation unit. The
calc unit is the only module that differs amongst the three
designs, while the interface with the bus fsm is the same for
all designs.

The interface of the software with the hardware is achieved
by a user level API combined with a kernel level driver
provided by the NetFPGA. This provides access to a virtual
register file in the CNET module. Figure 2 shows the stages
for each request starting from the user level application until
it reaches the hardware. The user application sends/receives
data to/from the device by calling the proper writeReg/readReg
functions. These functions are implemented in the user level
API and depending on the driver they may either perform a
transaction through a register operation or through a network
socket; we used the register operation. In both cases, there

User Application

readReg writeReg

readRegNet writeRegNetreadRegFile writeRegFile

IOCTL

nf2c_ioctl
(implemented 

by the netFPGA)

nf2k_reg_read

nf2k_reg_write nf2k_reg_write

nf2k_reg_read

PCI device
(PCI Signals)

Figure 2. Software components needed for the communication between
software and hardware

System
Software

CPCI
(Spartan 2)

CNET
(Virtex II)

PCI
Signals

Register
Bus

Figure 3. Overall system connection

is an IOCTL system call which is invoked in order to pass
the appropriate parameters to the kernel level. The IOCTL
system call passes the control to the device driver where
the device specific IOCTL function is implemented. Then the
driver performs the appropriate copies of the parameters from
user memory space to kernel memory space. The last step is
to perform the appropriate copy to/from the device memory
space. Figure 3 illustrates the connection between the software
and the hardware blocks of the system.

Table I has the time needed for each distinct operation.
Reconfiguration time includes the time for opening/closing the
device. A noticeable fact is that in case two sequential writes
are executed, the second write takes less time than the first
one.

B. XUPV5 platform on PCI

The same system was implemented using the XUPV5
platform which was plugged on the PCI express interface.
Transactions were carried out through register I/O. The soft-
ware components of this setup include the necessary driver
and a simple user level program. The latter sends/receives the
appropriate arguments to/from the kernel driver by issuing
the IOCTL system call. The driver is then responsible for
transmitting the data and receiving the results.

This setup does not support reconfiguration of the FPGA
through the PCI interface. Instead, reconfiguration is per-
formed through the JTAG interface using the vendor’s USB
programmer. When the system is in running state, there is
a sequence of states that need to be performed in order to



Table I
OPERATIONS FOR ACCESSING THE FPGA IN THE NETFPGA

Operation Time
Reconfiguration 3,806.0 ms
Open 37.8 us
Read 5.3 us
Write 6.75 , 1.75 us
Close 10.5 us

Table II
ACTIONS NEEDED TO RECONFIGURE THE FPGA IN THE XUPV5

Action Time (ms)
Driver Removal, Device Disable 27.1
Reconfiguration 18,513.5
PCI Rescan, PCI Device Enable, Driver Insertion 10.1

reconfigure the FPGA. First, we need to disable the PCI
express device by removing the driver and disabling the PCI
express port on which the FPGA platform is placed. At this
point the FPGA can be reconfigured. Once it is completed, we
need to rescan all the PCI express interfaces for new devices.
Finally, we need to enable the device and insert the driver to
the kernel. Table II shows the distinct actions that should take
place along with the time needed per action. These actions
should occur in the given sequence every time the FPGA is
reconfigured.

User Level Kernel level Hardware

IOCTL XPCIe_IOCTL

XPCIe_ReadReg

XPCIe_WriteReg

readl

writel

Figure 4. Route for I/O request from software to hardware

Once the device is configured, our user level application
can communicate with it. The route of a request from the user
application to the hardware and vice versa is shown in Figure
4. A user application that wishes to send data to the FPGA
opens the device and issues an IOCTL request. The IOCTL
request requires a number of parameters, such as the address
of the register the user wishes to access and the data the user
wishes to write. The data are then passed to the XPCIe IOCTL
which is a function implemented by the driver provided by
the vendor. This function calls the XPCIe ReadReg in case of
a register read or the XPCIe WriteReg in case of a register
write. These functions compute the real hardware address of
the memory mapped register and then they issue a readl or
a writel request accordingly. Finally, in case the request is a
read, the result is led back to the user application as a return
value. Table III has the time required for each operation.

In this setup we measured the throughput for transactions
through the register I/O and also for DMA. A reference
application provided by the vendor “as it is” was used to
collect throughput measurements for both device access modes

Table III
OPERATIONS FOR ACCESSING THE FPGA IN THE XUPV5

Operation Time (us)
Open 13.0
Read 15.8
Write 3.6 , 2.9
Close 3.8

Table IV
THROUGHPUT FOR THE XUPV5 FOR REGISTER I/O AND DMA ACCESSES

Operation Throughput (Mbps)
Register Read 8.8
Register Write 5.6
DMA Write 784.0
DMA Read 496.0

shown in Table IV. It should be noted that we didn’t use the
DMA access mode for our software application.

C. Analysis and Evaluation

Two functional systems have been demonstrated with an
FPGA acting as coprocessor to the host CPU. The FPGA
platforms are inexpensive and can be used in desktop comput-
ing by plugging them into the PCI slot. Two basic operations
should be supported; FPGA reconfiguration and data transfer
between the host and the FPGA. The whole process is trans-
parent to the user as the latter is not aware when the host
software initiates the injection of a bitstream to the FPGA.

From the performance aspect the two systems do not
perform well both in terms of reconfiguration time and data
transfer time. The performance barriers can be due to improper
choices by the designer or due to the available solutions pro-
vided by the vendor. Table V consolidates some characteristics
of the two systems. The rates for reconfiguration and data
transfer are not even close to the theoretical maximum. Also, in
both systems we have not used the more efficient DMA access
mode, which can offer remarkable performance as shown in
Table IV. Still, even though we used the reference application
provided by the vendor, the theoretical throughput of PCIe
with single lane width (1x), i.e. 2 Gbps, was not achieved. The
same result was obtained in [1]. Moreover, configuration either
through the SelectMAP or JTAG is not close to the theoretical
maximum. Configuration through JTAG is inherently slow [2],
and alternative solutions would offer faster reconfiguration.

The main difference between the two setups is that in the
NetFPGA the PCI interface is implemented on a different
FPGA than the one configured with the user design, while
in the XUPV5 the same FPGA holds the PCI and the user
design. Thus in the former case the Virtex-II is configured by
a dedicated FPGA controlling the signals of the SelectMAP
port through the PCI, but in the latter case Virtex-5 cannot be
programmed directly through the PCI.

In the same way the FPGAs are fully reconfigured they
can also be reconfigured in part. Each of the three simple
cores occupies less than 1% of the FPGA resources, either



Table V
CHARACTERISTICS OF NETFPGA- AND XUPV5-BASED SETUPS

Platform Characteristics NetFPGA XUPV5

Device XC2VP50 XC5VLX110T
Configuration bits 19,021,344 31,118,848
PCI characteristics PCI 32-bit@33MHz PCIe 1x@62.5MHz
Programming interface PCI Spartan-2 Platform cable USB
Reconfiguration port SMAP 8-bit@33MHz JTAG@6MHz
Reconfiguration time 3.80 sec 18.51 sec
Reconfiguration rate 4.98 Mbps 1.68 Mbps
Host/FPGA comm. Register I/O Register I/O

in the Virtex-II and the Virtex-5 device, thus it would be of
great benefit to isolate and configure only the respective core.
Also, in order to reduce the reconfiguration time, the partial
bitstreams could be cached in a memory located on the FPGA
board.

IV. DISCUSSION SUMMARY

This paper discusses the feasibility for keeping transparent
the acceleration of certain kernels to the user by injecting
automatically configuration bitstreams into the FPGA copro-
cessor. To overcome the problem of efficiency in the generic
desktop computing, different issues should be addressed that
relate with the development of efficient device drivers and
APIs. Also, the interfaces for reconfiguration and data transfer
should be studied and selected wisely. Choosing a separate
path for each of these operations, e.g. PCI for data transferring
and USB for reconfiguration through JTAG, can be an option
but the efficiency relies heavily on the device drivers and the
controllers besides the interfaces themselves.

Reconfigurable computing should exhibit its more advanced
features in order to attract people from different domains and
with varying habits. Development of efficient IP cores that also
should be ported to a wide range of FPGA platforms is needed.
Availability of efficient components for systems such as the
ones discussed above is pervasive in desktop computing. Also,
it is essential to define clearly the interfaces and their control.
Run-time system support is needed which can be developed
as a standard library lying above the host operating system.
Finally, partial reconfiguration can play an important role in
kernel acceleration [3]. Towards this direction, the develop-
ment of runtime system support for controlling the injection of
partial bitstreams and their route to the configuration memory
remains a challenging research area [4].

V. ACKNOWLEDGEMENT

This work is supported by the research project “Facilitating
Analysis and Synthesis Technologies for Effective Recon-
figuration” (FASTER, #287804), financed by the European
Commission in the context of Seventh Framework Programme.
Also, it is partly funded by the “Increasing EU citizen security
by utilising innovative intelligent signal processing systems for
euro-coin validation and metal quality testing” research project
(SAFEMETAL, #262558), implemented within the Seventh
Framework Programme and financed by Community Funds.

REFERENCES

[1] R. Bittner, “Bus Mastering PCI Express In An FPGA,” in Proceedings of
the ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays (FPGA), February 2009, pp. 273–276.

[2] H. Tan, R. F. DeMara, A. J. Thakkar, A. Ejnioui, and J. D. Sattler,
“Complexity and Performance Tradeoffs of Two Partial Reconfiguration
Interfaces on FPGAs: a Case Study,” in Proceedings of the International
Conference on Engineering of Reconfigurable Systems and Algorithms
(ERSA), 2006.

[3] D. Koch, C. Beckhoff, and J. Torresen, “How Partial Reconfiguration Can
Help HPC,” in Proceedings of the Design, Automation and Test in Europe
(DATE), March 2011.

[4] E. El-Araby, I. Gonzalez, and T. El-Ghazawi, “Exploiting Partial Run-
Time Reconfiguration for High-Performance Reconfigurable Computing,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 1, no. 4, January 2009.


