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ABSTRACT

Many applications from autonomous vehicles to surveillance
can benefit from real-time 3D stereo vision. In the present
work we describe a 3D stereo vision design and its imple-
mentation that exploits effectively the resources of a Xilinx
Virtex-5 FPGA. The post place-and-route design achieved a
processing rate of 87 frames per sec (fps) for 1920 × 1200
resolution. The hardware prototype system was tested and
validated for several data sets with resolutions up to 400 ×
320 and we achieved a processing rate of 1570 fps.

1 Introduction
The purpose of stereo vision algorithms is to construct an
accurate depth map out of two or more images of the same
scene, taken under a slightly different angle/position. In a
set of two images one of them has the role of the refer-
ence image while the other is the non-reference one. The
basic problem of finding pairs of pixels, one in the reference
image and the other in the non-reference image, that corre-
spond to the same point in space, is known as the correspon-
dence problem and has been studied for many decades [1].
The difference in coordinates of the corresponding pixels (or
similar features in the two stereo images) is the disparity.
Based on the disparity between corresponding pixels and on
stereo camera parameters such as the distance between the
two cameras and their focal length, one can extract the depth
of the related point in space by triangulation. This problem
has been widely researched by the computer vision commu-
nity and appears not only in stereo vision but in other image
processing topics as well such as optical flow calculation [2].

The algorithm we study falls into the broad local cate-
gory producing dense stereo maps. An extensive taxonomy
of dense stereo vision algorithms is available in [3], and an
online constantly renewed comparison can be found in [4],
containing mainly software implementations. In general, the
algorithm searches for pixel matches in an area around the
reference pixel in the non-reference frame. This entails a
heavy processing task as for each pixel the 2D search space
should be exhaustively explored. To reduce the search space
the epipolar line constraint is applied to reduce the 2D area
search space to a 1D line. In the present work we assume
that images are rectified prior to processing. Our contribu-
tions are:

• the way the design of each stage is facilitated by the FPGA
structure and its primitive resources;

• a placed-and-routed design allowing real-time processing
up to 87 fps for full HD 1920×1200 frames in a medium-
end FPGA;
• a design modification which improved by 1.6x the system

performance.

The paper is organized as follows: Section 2 discusses
previous work focusing mainly on hardware-related studies.
Section 3 describes the algorithm and its individual steps.
Section 4 analyses the benefits of mapping the algorithm to
an FPGA. An in-depth discussion of our system is given in
Section 5. Section 6 has the system performance, and Sec-
tion 7 discusses future research.

2 Relevant Research

There is ongoing effort by the research community to sup-
port real-time processing of 3D stereo vision, in which a
rate of 30 fps is desirable for the human eye. Table 1 con-
solidates representative implementations in different tech-
nologies, with information on the maximum resolution and
processing rate.

Table 1. Implementation of 3D Stereo Vision in different
technologies.

Ref Resolution Disparity fps Technology Year
[5] 160× 120 32 30 DSP 1997
[6] 320× 240 20 150 Spartan-3 2007
[7] 320× 240 16 75 Virtex-II 2010
[8] 320× 240 16 574 GPU 2010
[9] 640× 480 128 30 4 Stratix S80 2006

[10] 640× 480 64 230 Virtex-4 2010
[11] 1920× 1080 300 30 Spartan-6 2011

The work in [5] was one of the earliest ones to combine
the development of cost calculation with the Laplacian of
Gaussian in a DSP. More recently, several works developed
different algorithms in fully functional FPGA-based systems
ranging from relatively simple [6, 7] to more complex ones
[9, 10, 11]. The authors of [10, 11] have designed full stereo
vision systems incorporating the rectification preprocessing
step. Finally, the authors in [8] provided designs of an algo-
rithm based on census transform in three different technolo-
gies, i.e. CPU, GPU and DSP; the maximum performance
was obtained with the GPU.



3 The Algorithm
In general, a local algorithm matches pixels in the image pair
corresponding to the same point on the scene, by computing
matching costs between a pixel in the reference frame and
a set of pixels in the target frame and selecting the match
with the minimum cost. This is known as the Winner-Take-
All (WTA) strategy according to which the algorithm selects
the match with the global minimum cost in the search space.
Essentially, this process is equivalent to computing a 3D cost
matrix (called Disparity Search Image or DSI, shown in Fig-
ure 1) of sizeW×H×Dmax, - where W the frame width, H
the frame height andDmax the size of the search space - and
selecting the index of the minimum in the Dmax dimension.
To improve the results, usually a cost aggregation step that
acts on the DSI is interjected between the cost computing
and match selecting steps. Post-processing steps can further
refine the resulting disparity map.

Fig. 1. Disparity Search Image (DSI) volume.

Our algorithm consists of the cost computation step im-
plemented by the Absolute Difference (AD) census combi-
nation matching cost, a simple fixed window aggregation
scheme, a left/right consistency check and a scan-line belief
propagation solution as a post processing step.

The AD measure is defined as the absolute difference be-
tween two pixels, CAD = |p1 − p2|, while census [12] is
a window based cost that assigns a bit-string to a pixel and
is defined as the sum of the Hamming distance between the
bit-strings of two pixels. Let Wc be the size of the cen-
sus window. A pixel’s bit-string is of size W 2

c − 1 and is
constructed by assigning 1 if pi > pc or 0 otherwise, for
pi ∈ Window, and pc the central pixel of the window. The
two costs are fused by a truncated normalized sum:

C(pR, pT ) = max(
CAD(pR, pT )

CMax
AD

+
CCensus(pR, pT )

CMax
Census

, λtrunc) (1)

where λtrunc is the truncation value given as parameter.
This matching cost encompasses image local light structure
(census) as well as information about the light itself (AD),
and produces better results than its parts alone, as was shown
in [13]. At object borders, the aggregation window neces-
sarily includes costs belonging to two or more objects in the
scene, whereas ideally we would like to aggregate only costs
of one object. For this reason, truncating the costs to a max-
imum value helps at least limiting the effect of any outliers
in each aggregation window [3].

Fig. 2. Example of 3x3 fixed window aggregation of DSI
costs.

After initializing the DSI volume with AD-Census costs,
we perform a simple fixed window aggregation on the W ×
H slices of the DSI, illustrated in Figure 2. This is based on
the assumption that neighbouring pixels (i.e. pixels belong-
ing in the same window) most likely share the same disparity
(depth) as well. Although this does not stand for object bor-
ders and slanted surfaces, it produces good results. On the
other hand, one should select carefully the size of the ag-
gregation window Wa, as large windows tend to lead to an
edge fattening effect in object borders while small aggrega-
tion windows lead to loss of accuracy in the inside area of
an object itself, which results in a noisy output.

Finally, we perform a left/right consistency check (LRC
check) which repeats the match selection step but with the
opposite frame as reference and compares the new disparity
image with the original one. This process allows to detect
mismatches due to occlusions (areas of the scene that ap-
pear only in one frame). Using the mismatches detected, our
scan-line belief propagation solution propagates local confi-
dent matches along the scan-line, by accumulating matches
that passed the LRC check in a queue (called confident queue
due to that it stores only disparities that passed the LRC
check), and propagating them to local matches classified as
occlusions in a neighborhood queue.

We analyzed the influence of the algorithm’s parameters
on the quality metric of percentage of good matches, over
six (6) datasets of Middlebury’s 2005 database [4]. We have
settled on a Wc = 9 × 9 sized census window, a Wa =
5 × 5 sized aggregation window and a Dmax = 64 dis-
parity search range; these values offer a good trade-off be-
tween overall quality and computational requirements. We
followed a similar procedure to determine all the other sec-
ondary parameters as well, such as the confident neighbor-
hood queue size and the neighbrhood queue size of the scan-
line belief propagation module, and the LR check threshold
of the LR consistency check module [8].

4 FPGA-based Architecture
The algorithm can be mapped on an FPGA very efficiently
due to its intrinsic parallelism. For instance, the census
transform requiresW 2

c −1 comparisons per pixel to compute
the bit-string. Aggregation also requires W 2

a additions per
cost. For each pixel we must evaluate 64 possible matches
by selecting the minimum cost. These operations can be
done in parallel. The buffer architecture requires memo-
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Fig. 3. Algorithm stages and critical components that fit well into FPGA regular structures.

ries to be placed close to each other, as they shift data be-
tween them in a very regular way. FPGA memory primi-
tives (BRAMs) are located in such a way they facilitate this
operation. Figure 3 shows the critical components for the
different steps of the algorithm. Our system shares the pixel
clock of the cameras and processes the incoming pixels in a
streaming fashion as long as the camera clock does not sur-
pass the system’s maximum frequency. This way we avoid
building a full frame buffer but instead keep only the part of
the image that the algorithm is currently working on.

5 Design and Implementation

The system in Figure 4 receives two 8-bit pixel values per
clock period, each one for the corresponding image in the
stereo pair. A window buffer is constructed for each data
flow in two steps. Lines Buffer stores Wc − 1 scan-lines
of the image, each in a BRAM, conceptually transforming
the single pixel input of our system to a Wc sized column
vector. Window Buffer acts as a Wc sized buffer for this
vector, essentially turning it into a W 2

c matrix.
This matrix is subsequently fed into Census Bitstring Gen-

erator of Figure 4, which performs W 2
c − 1 comparisons

per clock, producing the census bit-string. Central pixels /
Bit-strings FIFO stores 64 non-reference census bit-strings
and window central pixels, which along with the reference
bit-string and central pixel are driven to 64 Compute Cost
modules. This component performs the XOR/summing that
is required to produce the Hamming distance for the census
part of the cost, along with the absolute difference for the
AD part and the necessary normalization and addition of the

two. The maximum census cost value is 80 as there are 81
pixels in the window excluding the central pixel from cal-
culations. Likewise, the maximum AD cost value is 255 as
each pixel is 8 bits wide. As the two have different ranges,
we scale the census part from the 0-80 range to a 0-255
range, by turning it into an 8-bit value. To produce the fi-
nal AD-Census cost we add the two parts together, resulting
in a 9-bit cost to account for overflow. Truncating this cost to
6-bit produces a slight improvement in quality as discussed
in Section 3, and also reduces buffering requirements in the
aggregation step.

For the aggregation stage, 22 line buffers (Aggregation
Lines Buffer in Figure 4) are used for 64 streams of 6-bit
costs, each lines buffer allocated to 3 streams. BRAM prim-
itives are configured as multiples of 18K independent mem-
ories, so we maximize memory utilization by packing three
costs per BRAM, accepting a maximum depth of 1024 per
line. Like the Lines Buffers at the input, they conceptually
transform the stream of data to Wa sized vertical vectors.
Each vector is summed separately in the Vertical Sum com-
ponents and driven to delay adders (Horizontal Sum), which
output X(t) +X(t− 1)+ ...+X(t− 4). At the end of this
procedure we have 64 aggregated costs.

Following the aggregation of costs, the LRC component
illustrated in Figure 5, filters out mismatches caused by oc-
clusions; its operation is illustrated in Figure 6. The archi-
tecture of LRC is based on the observation that by com-
puting the right-to-left disparity at reference pixel p(x, y),
we have already computed the costs needed to extract the
left-to-right disparity at non-reference pixel p′(x, y). The



Fig. 4. Datapath of the cost computation(left side) and aggregation(right side).

Fig. 5. Datapaths of the left/right consistency check(left side) and scan-line belief propagation(right side).

LRC buffer is a delay in the form of a ladder that outputs
the appropriate left-to-right costs needed to extract the non-
reference disparity. The WTA modules select the match with
the best (lowest) cost using comparator trees. The refer-
ence disparity is delayed in order to allow enough time for
the non-reference disparities space to build up in NonRef-

erence Disparities Buffer and then it is used to index said
buffer. Finally, a threshold in the absolute difference be-
tween DispRL(x, y) and DispLR(x, y) indicates the false
matches detected.

The datapath for the scan-line belief propagation algo-
rithm is shown in Figure 5. The function of this component



Fig. 6. Top row has pixels of the Right image, whereas bot-
tom row has pixels of the Left image. The grey pixel in
the center of the Right image has a search space in the Left
image shown with the broad grey area. To determine the va-
lidity of DispRL(x, y), we need all left-to-right disparities
in the broad grey area, thus we need right-to-left costs up to
x + Dmax. The same stands for the diagonal shaded pixel
in the center of the Left image.

is based on two queues: the Confident Neighborhood Queue
and the Neighborhood Queue. As implied by its name, the
Confident Neighborhood Queue places quality constraints
on its contents, meaning that only disparities passing the LR
consistency check are written in it. Furthermore, at each
cycle it calculates the average of the confident disparities,
as this value will ultimately be propagated to non confident
ones in the neighborhood queue. This average is calculated
by a constant multiplier, using fixed point arithmetic and
rounding to reduce any number representation errors. On
the other hand, the Neighborhood Queue simply keeps track
of local disparities and their LR status. When the Propagate
signal is asserted (active when a new confident disparity is
calculated and stored in the New Confident Disparity regis-
ter), the NewDisp is written to all records with a false LRC
flag. NewDisp is selected to be Previous Confident Dispar-
ity when this value is smaller than New Confident Dispar-
ity, else it is assigned New Confident Disparity, effectively
propagating confident background depths.

6 Performance Evaluation and Resource Utilization
Our system can process one pixel pair per clock period, af-
ter an initial latency. The most computationally intensive
part of the main stage of the algorithm lies in the XOR/sum
module of the AD census which computes the XOR/sum
of 64 80-bit strings at the same time. A similar situation
stands for the WTA module, which performs 64 11-bit com-
parisons simultaneously. We cope with both bottlenecks
through fully pipelined adder/comparator trees in order to
increase the throughput. After the initial implementation we
added extra pipeline stages to further enhance performance.
Below we present the differences between the initial design
and the second design. The performance of the system im-
plemented in a Xilinx Virtex-5 FPGA is shown in Table 2. It
should be noted that Wc, Wa and Dmax are parameters re-
lated with tasks carried out in parallel, so, they do not affect
system performance but only resource utilization. Table 3
has the utilization of the hardware resources along with the
resources per algorithm stage.

We conducted several experiments by varying the param-
eters in each stage so as to assess system performance in

terms of scalability and increase in resource utilization. Ta-
bles 4, 5, 6 have the experimental results on the FPGA. It is
obvious that the clock of the design is not affected. At the
same time we observe that once a parameter increases, the
amount of resources needed for a resource category might
increase drastically while another category will not be af-
fected at all, i.e. in Table 5 as the Wc increases, the amount
of flip-flops and LUTs increases as opposed to the amount
of BRAMs which remains unchanged.

Input Ground truth

SW output HW output

Fig. 7. Top row has Moebius input dataset (400x320) from
Middlebury database and the ideal (ground truth) result.
Bottow row has algorithm’s output from SW and HW im-
plementations.

Figure 7 has the set of images we used to test our proto-
type. We entered stereo images and we compared the soft-
ware and the FPGA output over the ground truth. The SW
version aimed to support the validation phase; we developed
it in Matlab prior to the FPGA design. The values of the
pixels in the output of the FPGA processing were subtracted
from the values of the pixels in the output of the SW, pixel-
per-pixel so as to create an array holding their differences.
We obtained that SW and HW produced similar results. The
error lines are attributed to a slightly different selection pol-
icy in the WTA process of the LRC stage. In particular,
when it comes to compare two equal cost values, our SW se-
lects one cost value randomly, while our HW selects always
the first one. This variation occurs early in the algorithmic
flow, thus it is not only propagated but it is also amplified
in the belief propagation module where local estimates of
correct disparities are spread to incorrectly matched pixels
along the scan-line. Finally, the errors at the borders that
occur in both SW and HW outputs as compared with the
ground truth, are due to the unavoidable occlusions at the
image borders.



Table 2. Design clock and processing rates in Virtex XC5VLX110T FPGA for various resolutions.
100x83 384x320 644x533 1024x853 1600x1333 1920x1200

Unoptimized design (131MHz) 15,783fps 1,066fps 384fps 150fps 61fps 56fps
Optimized design (201MHz) 24,216fps 1,635fps 589fps 230fps 94fps 87fps

Table 3. Resource utilization in Virtex XC5VLX110T FPGA for Dmax = 64, Wc = 9, Wa = 5.
LUTs (%) Flip-Flops (%) BRAMs (%)

Available 69,120 69,120 148
Total consumed 37,986 out of 69,120 (55%) 41,792 out of 69,120 (60%) 59 out of 148 (40%)
AD Census 25,135 out of 37,986 (66%) 29,167 out of 41,792 (70%) 8 out of 59 (14%)
Aggregation 6,547 out of 37,986 (17%) 7,312 out of 41,792 (17%) 51 out of 59 (86%)
Left/Right Check 4,638 out of 37,986 (12%) 4,734 out of 41,792 (11%) 0 out of 59 (0%)
Scanline Belief Propagation 543 out of 37,986 (1.5%) 634 out of 41,792 (1.5%) 0 out of 59 (0%)

Table 4. Resource utilization and performance depending
on Dmax, when Wc = 9 and Wa = 5.
Dmax LUTs(%) Flip-Flops(%) BRAMs(%) Max Clock
16 10,284(14%) 12,531(18%) 30(20%) 201.207MHz
32 19,148(27%) 22,687(32%) 30(20%) 201.045MHz
64 37,986(54%) 41,792(60%) 59(39%) 201.518MHz

Table 5. Resource utilization and performance depending
on Wc, when Dmax = 64 and Wa = 5.
Wc LUTs(%) Flip-Flops(%) BRAMs(%) Max Clock
5 21,637(31%) 21,866(31%) 59(39%) 201.086MHz
7 29,813(43%) 31,840(46%) 59(39%) 201.113MHz
9 37,986(54%) 41,792(60%) 59(39%) 201.518MHz

Table 6. Resource utilization and performance depending
on Wa, when Dmax = 64 and Wc = 9.
Wa LUTs(%) Flip-Flops(%) BRAMs(%) Max Clock
1 (off) 28,505(41%) 33,047(47%) 9(6%) 201.005MHz
3 34,618(50%) 38,660(55%) 31(20%) 201.167MHz
5 37,986(54%) 41,792(60%) 59(39%) 201.518MHz

7 Conclusions and Future Work
This paper presents the hardware architecture of a real-time
stereo vision algorithm utilizing the strengths of an FPGA
platform at the maximum. We plan to study more advanced
aggregation schemes as they are the key for better quality
disparity maps for local methods, and incorporate the recti-
fication step.
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