
Effective Reconfigurable Design: The FASTER
Approach ?

D. N. Pnevmatikatos1, T. Becker2, A. Brokalakis8, G. Gaydadjiev3, W. Luk2,
K. Papadimitriou1, I. Papaefstathiou8, D. Pau7, O. Pell6, C. Pilato4, M. D.

Santambrogio4, D. Sciuto4, and D. Stroobandt5

1 Foundation for Research & Technology - Hellas, GREECE
2 Imperial College London, UK

3 Chalmers University of Technology, SWEDEN
4 Politecnico di Milano, ITALY
5 Ghent University, BELGIUM

6 Maxeler Technologies, UK
7 STMicroelectronics, ITALY

8 Synelixis, GREECE

Abstract. While fine-grain, reconfigurable devices have been available
for years, they are mostly used in a fixed functionality, “asic-replacement”
manner. To exploit opportunities for flexible and adaptable run-time
exploitation of fine grain reconfigurable resources (as implemented cur-
rently in dynamic, partial reconfiguration), better tool support is needed.
The FASTER project aims to provide a methodology and a tool-chain
that will enable designers to efficiently implement a reconfigurable system
on a platform combining software and reconfigurable resources. Starting
from a high-level application description and a target platform, our tools
analyse the application, evaluate reconfiguration options, and implement
the designer choices on underlying vendor tools. In addition, FASTER
addresses micro-reconfiguration, verification, and the run-time manage-
ment of system resources. We use industrial applications to demonstrate
the effectiveness of the proposed framework and identify new opportuni-
ties for reconfigurable technologies.

1 Introduction

Fine-grain, reconfigurable devices have been available for years in the form of
FPGA chips. Many of these devices support the dynamic modification of their
programming while they are operating (Dynamic Reconfiguration). However,
this ability remains mostly unused as FPGA devices are mostly used in a fixed
functionality, “asic-replacement” manner. This is due to the increased complex-
ity in the design and verification of a changing system. In addition to design
requirements, the process of creating (partially) reconfigurable designs is less
widespread and the corresponding tools are less friendly to the designers.

? The FASTER project is supported by the European Commission Seventh Framework
Programme, grant agreement #287804. http://www.fp7-faster.eu/



2

Parallel, Reconfigurable 
Platform

CPU
CPU

HDL
Dynamic

static

scheduling
meta data

BitFile

+

+

Application 
(parallel specification:

tasks, threads,…)

C-code

HW Task Graph + 
Annotations

Run-time 
RC 

Scheduler

SW + 
Task 

Graph  
(depend
encies)

SW/HW 
partitioning 
& Mapping
front end

Identification
/optimization 

of RC
portions

Vendor 
FPGA 
synth. 
& PR 
tools

C 
Compiler

EXE

Platform  
Description

Requirements
(perf., power, etc)

Run-time 
SW 

Scheduler

Fig. 1: The FASTER tool-chain

We believe that in order to exploit the opportunities presented by flexible
and adaptable exploitation of fine grain reconfigurable resources, better analysis
and implementation tool-chains are needed. For example, in a Network Intrusion
Detection System, packet contents are compared against suspicious content. This
can be efficiently done in FPGAs [1]. New threat identification results in new
rules that must be added to the system. Reconfigurable logic allows the incor-
poration of new functions to the baseline hardware system, combining hardware
speed with software-like flexibility.

The FASTER project (http://www.fp7-faster.eu/) aims to provide a method-
ology and a tool-chain that will enable designers to efficiently implement a recon-
figurable system on a platform combining software and reconfigurable resources
hiding as much as possible low-level technology details from the user. Figure 1
illustrates the envisioned tool-chain. Starting from a high-level application de-
scription and a target platform, our tools analyse the application, evaluate recon-
figuration options, alter the application description to include reconfigurability,
and implement the designer choices on the underlying vendor tools. In addition,
FASTER addresses micro-reconfiguration, a technique to reprogram very small
portions of the FPGA when a set of infrequently-changing parameters define
the function of a block [2], verification, and the run-time management of sys-
tem resources. We use industrial applications to demonstrate the effectiveness
of the proposed framework and identify new opportunities for reconfigurable
technologies.

Technical progress of our work has been documented in technical papers that
can be found in http://www.fp7-faster.eu/. Practical achievements include the
integration of partial reconfiguration functionality in the Maxeler design flow [3],
and its demonstration of partial reconfiguration in a Maxeler platform using a



3

canny edge detection code, the use of micro-reconfiguration for a NIDS appli-
cation, and the application of our verification tools on a large scale application
(Reverse time migration) [4].

The paper is structured as follows: In Section 2 we discuss related efforts
within the context of EU projects and the novel aspects of our work. Section 3
presents the designs methods and how we combine them to form the tool-chain,
while Section 4 discusses the way the system is controlled at run-time. Finally
Section 5 closes the paper.

2 Related Work and Novelty

Several efforts exist towards similar directions with FASTER project such as
the concurrent development of architecture and application for heterogeneous
systems. hArtes [5] was an EU-funded project targeting automatic paralleliza-
tion and generation of heterogeneous systems. It adopted OpenMP pragmas to
specify the parallelism automatically extracted from the initial sequential specifi-
cation but they did not address any aspect related to reconfiguration or dynamic
execution. In FASTER we use the same formalism to represent the parallel ap-
plication, even if the partitioning is provided by the designer since automatic
parallelization does not fall into the project’s scope. Other EU-funded projects
such as REFLECT [6], ACOTES [7] and ANDRES [8] conducted research on the
necessary stages of a tool-chain and addressed similar issues with FASTER, but
they focused more on system-level or architectural aspects of reconfiguration.
Moreover, they did not explicitly emphasize on the design and runtime aspects
of partial and dynamic reconfiguration, or, on choosing the best reconfiguration
grain-size. Finally, the ERA project [9] adopts dynamic reconfiguration (with
low-level OS support) but it targets only a specific platform developed by the
consortium.

None of the existing approaches abstracts from the designer complex manip-
ulations needed to control effectively hardware accelerators, in particular when
these are designed as dynamically reconfigurable modules. Towards this direc-
tion, we aim at providing a general formulation, capable to deal with different
multiprocessor systems (targeting the embedded, desktop and high-performance
computing domains), supporting different hardware implementations for the
tasks and proposing a tool-chain that efficiently partitions the application, while
performing considerably more exploration on the possible solutions for the prob-
lem. In addition, it takes reconfiguration into account from the early stages of the
design process all the way to its runtime use, hiding most of the implementation
details from the user.

Other novelties of FASTER are the study of the way micro-reconfiguration is
integrated into a tool-chain and interacts with the other tools, and our verifica-
tion approach which applies equally to static, region-based, or micro-reconfigura-
tion without modification. Finally, we envision a Run-Time System Manager
(RTSM) able to support a wide range of platforms, thus we are studying the
extent to which it will be developed as a generic library.



4

3 Methods and Tool-Chain

The starting point of our front-end is a C application, whose initial decomposi-
tion is described with OpenMP pragmas, and an XML file containing the target
architecture definition (#processing elements, HW/SW tasks characterization,
their different implementations and so on). The application task graph is derived
and partitioned to determine which processing element (PE) will execute each
of the tasks. Our tool-chain performs the following processing steps:

Application profiling and identification of reconfigurable cores: This step anal-
yses the C-code, identifies tasks that could be moved to reconfigurable hardware,
and partitions the application accordingly. Based on the initial source code of
the application and the description of the target architecture, it decomposes the
application into tasks and assigns them to the different components of the archi-
tecture. It can also receive information about the achieved performance of the
current task assignment, and feedback after the identification of the schedule
(e.g. how the partitioning affects the computed schedule) to improve the solu-
tion. It also determines (i) the best reconfiguration level (none, region- or micro
reconfiguration) for each of the HW cores, and (ii) the properties of the identi-
fied tasks, such as the frequency of call functions and parameters changing, the
resources required by the implementations, and the execution performance. This
processing includes analysis of the call graph, estimation of data transfers, and
source code profiling.

High-level Analysis: This step explores various implementation options for
applications (or parts of applications) that target reconfigurable hardware and
identifies automatically opportunities for run-time reconfiguration. The explo-
ration is performed based on high-level design estimates to avoid time-consuming
iterations in the design process, and produces estimates of implementation at-
tributes such as area, computation time, and reconfiguration time; these can
be looped back to the Application profiling and identification of reconfigurable
cores step, to perform iterative design optimizations for arithmetic operations
presentation, computational precision, and parallelism in the implementation.
The High-level Analysis also provides an automatic way to suggest opportu-
nities for reconfiguration, such as partitioning of the application into several
reconfigurable components.

Optimizations for region- and micro-reconfiguration: This step receives the
descriptions of the tasks, i.e. the corresponding source code, that could benefit
from the reconfiguration and it produces new and optimized implementations for
them to be considered for the task mapping. This analysis will be performed also
through dynamic profiling of the application tasks to determine the parameters
for the micro-reconfiguration and through the identification of isomorphic sub-
graphs for supporting the data-path merging and thus reducing the number of
reconfigurations.

Compile-time scheduling and mapping onto reconfigurable regions: It receives
information about the application and the architecture from the two previous
processing steps, focusing on the tasks assigned to the reconfigurable hardware,



5

and it determines their scheduling along with the mapping of the cores onto the
reconfigurable regions. In particular, it determines the number and the charac-
teristics (e.g. size) of these regions, the number and the size of each input/output
point, and also takes into account the interconnection infrastructure of the sys-
tem (e.g. bus size). Also, it schedules the resulting implementation and annotates
the characterization part with such information to further refine the specifica-
tion. It annotates the tasks with information about the feasibility of the imple-
mentation where the solution is specified (i.e. if the reconfigurable region can
satisfy the resource requirements) and it provides feedback to the partitioning
methodology to further refine the solution.

Verification: To verify that a simple, unoptimized design (the source) imple-
ments the same behaviour as an optimized, possibly reconfiguring design (the
target), we combine symbolic simulation with equivalence checking. The source
and target designs are first compiled for a symbolic simulator, which then stim-
ulates the design with symbolic inputs, rather than the numerical or Boolean
inputs used in traditional approaches. Equivalence checking is used to check
symbolic outputs from source and target designs that may differ but still be
equivalent (for example b + a instead of a + b). If symbolic outputs from source
and target designs are equivalent for all inputs, the designs are proved equiva-
lent, otherwise, the first input with different outputs can be used to debug the
target design.

4 Run-Time System

The Run-Time System Manager (RTSM) is responsible for managing resources,
scheduling SW and HW tasks, and enforcing adaptation of the system according
to functional and non-functional parameters (e.g. temperature) for applications
developed with the FASTER tool-chain. Its basic components and functionality
were presented abstractly in [10]. The concept of its development relies on the
work initially published in [11]. Here we describe briefly its first implementa-
tion, which takes into account all known restrictions imposed by the current PR
technology.

Figure 2 illustrates how the RTSM is generated, its basic components and ac-
tions. RTSM basic functionality is specified by the baseline scheduler contained
in the XML file. The XML contains the available runtime alternatives to recon-
figure the regions, the representation of the task graph, the number of iterations
for each task, and additional information about each task which will be used for
the scheduling, e.g. power consumption, reconfiguration time, execution time.
The necessary information retrieved from the XML file is used for feeding the
RTSM structures.

5 Conclusions

The FASTER project enhances various aspects in designing modern computing
systems. The main challenge is the inclusion of reconfiguration as an explicit



6

placement (>1 PRRs)
trigger reconf (transparent)
start execution
avoid reconf (reuse)
reconf_scheduling
exec_scheduling
relocation
reservation
caching
prefetching
micro-reconfiguration
thermal-scheduling
power-scheduling

tag <exec_time>;
tag <reconf_time>;
tag <power value>;
tag <schedule>;
…

RTSMstatic input (XML)

dynamic input list of actions

status of each PE
status of each task
temperature
…

update 
structures

p
a
r
s
e

Placer
Scheduler

Loader
Translator

Fig. 2: RTSM inputs, characteristics and operations

design concept. To do this we are developing new design methods and a tool-
chain for efficient and transparent use of reconfiguration.

References

1. I. Sourdis, D. Pnevmatikatos, and S. Vassiliadis, “Scalable Multi-Gigabit Pattern
Matching for Packet Inspection,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 16, no. 2, pp. 156–166, February 2008.

2. K. Bruneel and D. Stroobandt, “Automatic Generation of Run-Time Parameter-
izable Configurations,” in IEEE International Conference on Field Programmable
Logic and Applications (FPL), August 2008, pp. 361–366.

3. R. Cattaneo, C. Pilato, M. Mastinu, O. Kadlcek, O. Pell, and M. D. Santambrogio,
“Runtime Adaptation on Dataflow HPC Platforms,” in NASA/ESA Conference on
Adaptive Hardware and Systems (AHS), June 2013.

4. T. Todman and W. Luk, “Verification of Streaming Designs by Combining Sym-
bolic Simulation and Equivalence Checking,” in IEEE International Conference on
Field Programmable Logic and Applications (FPL), August 2012.

5. http://www.hartes.org/, [Online; accessed 2012].
6. http://www.reflect-project.eu/, [Online; accessed 2012].
7. http://www.hitech-projects.com/euprojects/ACOTES/, [Online; accessed 2014].
8. http://andres.offis.de/, [Online; accessed 2014].
9. http://www.era-project.eu/, [Online; accessed 2014].

10. D. Pnevmatikatos, T. Becker, A. Brokalakis, K. Bruneel, G. Gaydadjiev, W. Luk,
K. Papadimitriou, I. Papaefstathiou, O. Pell, C. Pilato, M. Robart, M. D. Santam-
brogio, D. Sciuto, D. Stroobandt, and T. Todman, “FASTER: Facilitating Analysis
and Synthesis Technologies for Effective Reconfiguration,” in Euromicro Confer-
ence on Digital System Design (DSD), September 2012.

11. G. Durelli, C. Pilato, A. Cazzaniga, D. Sciuto, and M. D. Santambrogio, “Au-
tomatic Run-Time Manager Generation for Reconfigurable MPSoC Architec-
tures,” in IEEE International Workshop on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), July 2012.


