
Security Enhancements for Building Saturation-free,
Low-power NoC-based MPSoCs

Kyprianos Papadimitriou1, Polydoros Petrakis1, Miltos D. Grammatikakis1, and Marcello Coppola2

1Technological Educational Institute of Crete, GR
2STMicroelectronics, FR

Abstract—In the future almost every consumer electronics
device will be connected to an ecosystem of third-party partners
providing services such as payment, streaming content, and so
on. Present work aims to expose the foundations of a secure
environment by ensuring security on the edge devices. MPSoCs
are widely used in edge devices due to their capability to execute
multiple applications in single-chips. To achieve the targeted
security level against physical adversaries, all communications
between the MPSoC and its environment must be protected.

In an MPSoC multiple processing elements such as CPUs
send requests to different on-chip memories. Network-on-chip
has been proposed for MPSoC design, aiming at increasing
performance and reducing power compared to on-chip buses.
Tailoring the NoC to application(s) takes place usually at design-
time. The selection of NoC parameter values affects both perfor-
mance and power, while configuring them unwisely can result in
unnecessary area overhead and chip cost. In the present work
we concentrate on a commercial interconnect called STNoC from
STMicroelectronics. We keep the NoC parameters fixed, and we
explore the effects from the variation of other parameters, such as
the injection rate of the packets transmitted by the CPUs, and the
activation/deactivation of a security mechanism integrated in the
network interface of the NoC, for multiple traffic scenarios with
each one representing different amount of legal and malicious
requests, for different mappings, and for different node setups.
Experimental results, reveal the conditions under which the NoC
starts experiencing saturation phenomena.

Index Terms—MPSoC, network-on-chip, gem5, saturation,
NoC firewall.

I. INTRODUCTION

A Network-on-Chip is typically configured at design-time
by selecting the most suitable parameters, based on the re-
quirements of the application-at-hand and the conditions the
system is expected to face during operation. These specifica-
tions are provided by the customer to the NoC vendor.

We configure the STNoC with limited resources, and per-
form experimentation with large amount of traffic running
for millions of simulation cycles. In several cases this makes
the resource-limited STNoC incapable of serving the traffic,
which eventually experiences saturation phenomena leading to
enormous delays. The experiments were carried out using our
gem5-based framework enhanced with a security mechanism
placed at the network interface of NoC [1], [2]. This allowed
us to explore the implications from enabling security for
different parameters. Our contributions are:

• performance and power evaluation for different node
setups and traffic scenarios, with and without enabling

security;
• examination of the saturation-point of the on-chip net-

work for different system parameters; we do this mainly
for a small-scale node setup, and then we provide some
initial experiments for more intricate networks.

The paper is organized as follows. Section II overviews
related work on NoC performance analysis, as well as on
security mechanisms. Section III presents the framework we
employed to perform our experiments, and reports the system
parameters. Section IV has the different scenarios we deployed
to examine the effect of system parameters on performance
and power consumption. In Section V, we examine the impact
of parameter values in the delivery time of packets and the
power consumption of the network, and discuss the saturation
phenomena. Finally, Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

Considerable research has been devoted on analyzing the
performance of network-on-chips. One of the problems arising
when multiple elements share a network-on-chip is network
congestion [3]. The authors in [4] and [5] studied the latency
of messages in relation with the rate they are injected by
the nodes. The authors of [6] developed a latency model
for network-on-chip performance analysis, and in an earlier
work they presented an algorithm for adapting the routing on
a NoC according to the traffic [7]; both works demonstrate
that adjusting the NoC to the application is an important
task. The authors of [8] compared the Ring, Spidergon, and
2D Mesh NoC topologies, under uniform load and realistic
load assumptions, and showed that Spidergon is a good trade-
off between performance, scalability, small energy and area
requirements for SoCs.

Our novelty lies in that we model an STNoC instance -
its router, link and network interface - in a cycle-accurate
way in the gem5 environment, by designing a 2-stage pipeline
switch based on gem5’s garnet fixed pipeline router. We also
take into account the security mechanism as an integral part
of the system, which appears to be an interesting research
subject [9], [10]. Our results incorporate the overhead of the
NoC firewall integrated with the network interface, presented
in detail in [1], [2]. These works showed that security can
reduce the network load by preventing malicious requests
from entering the network. The present paper extends them
by discussing the way we explore the parameter selection

space. To perform exhaustive experimentation we selected
a controlled-environment, with only a few nodes, which al-
lowed us to examine all potential configurations by varying
selected parameters. Our aim is to assist the NoC architect
and researchers in making the proper design choices prior to
proceeding with the actual STNoC customization; in the near
future we will do this with the evaluation of MPSoCs with
more nodes and the design of relevant tools.

III. USE OF A VERSATILE EXPERIMENTAL FRAMEWORK

To evaluate the effect of system parameters we employed
a framework combining CPUs and shared memory, intercon-
nected with a network-on-chip topology, augmented with a
firewall placed at each network interface (NI) of the NoC
[1]. Within this framework we measure delivery times starting
from the time a packet enter the NI queue, and power
consumption at the network-layer.

A. Building-up the Framework

The framework combines ARM v7 CPU technology and
STNoC point-to-point interconnect. STNoC can be customized
according to given specifications to interconnect MPSoC com-
ponents, i.e. CPUs, memories, and peripherals [11]. From
the network point of view, each component is a node, and
information - instructions and data - is transmitted across the
network in STNoC formatted packets. At the STNoC interface,
prior to transmission, a packet is broken down in smaller units
called flits that in turn are released into the network.

To conduct experiments we described the above system in
the gem5 simulator [12], a platform widely used in computer
system architecture research, encompassing processor and
system-level microarchitecture. It is highly-configurable and
includes support for multiple ISA and diverse CPU models in-
cluding ARM, with detailed memory systems and interconnect
models. Within the gem5 environment, we created an STNoC-
like network model instance, which we time-annotated from
cycle-accurate design specifications of the STMicroelectronics
backbone architecture; it includes the STNoC router, the
network interface and a synchronous link. Also, we imple-
mented a gem5 transaction-level model of the NoC firewall
and integrated it in the network interfaces of STNoC. Then,
we time-annotated the NoC firewall model based on a cycle-
accurate design we implemented in HDL. More details on the
framework and firewall are beyond the scope of present work,
and can be found in [1], [2]. It should be noted that the firewall
adds an overhead of 5 cycles maximum in order to perform
rule checking; this overhead is taken into account within our
framework.

B. System Parameters

We explored parameters that can be customized, as we
are interested in studying the response of the system when
changing the parameter values. The link-width of the NoC in
combination with the size of the packet affects the amount of
flits into which the packet is segmented prior to transmitting it.
We kept both sizes constant, thus the amount of flits per packet

remained constant throughout our experiments. We varied the
number of nodes that are connected to the NoC, i.e. CPUs and
memories. We also have the capability to change the status of
the firewall (on/off); when it is activated it adds overhead,
but at the same time it relieves the network from malicious
content, which incurs unnecessary load. In order to evaluate
its use and examine our system’s behaviour we generated
malicious packets along with legal ones; we did the same in
[1], [2]. Finally, we varied the injection rate of the packets
generated by the CPUs.

IV. EXPERIMENTAL SCENARIOS

We experimented with different number of nodes connected
to the STNoC. Figure 1 illustrates the way the nodes are
interconnected for two cases; 4-nodes and 8-nodes. Present
work includes experiments with up to 32-nodes, however most
of them concern a 4-node setup. For each case we produced
different combinations with regard to the number of legal
(we also refer to them as safe) and malicious processes. We
even deployed scenarios in which almost all network traffic is
malicious. Although this constitutes an extreme situation it is
quite realistic; due to that a virus or malicious program can
replicate itself fast, there is no limit on the malicious traffic
that can be generated to memory. Recent DDoS attacks at
network gateways have reached bandwidths of over 300 Gbps
[13].

Fig. 1. We used different configurations to study the effect of security, and
performed experiments with up to 32-nodes. Case (a) corresponds to two
different configurations; either both CPUs or only one CPU can be active.

Table I has the parameters of the simulation framework.
We ran simulations with 1 CPU/2 Memories (actually 2 CPUs
but 1 is inactive), 2 CPUs/2 Memories, 4 CPUs/4 Memories,
8 CPUs/8 Memories, and 16 CPUs/16 Memories. We tested
different scenarios with a varying rate of safe vs. malicious
processes running in the CPUs; in Table I we represent this
as xSyM , where x is the number of safe processes and y
the number of malicious processes. The process requesting
access to memory is selected with a random policy, and it can
be either a “write” or “write-execute” request. A request is
performed to a random address, which belongs to a certain
pre-allocated rule-protected memory segment. We performed
the same experiments by enabling and then disabling the
NoC firewall. When enabled, the NoC firewall denies access
to every single request from malicious processes since all

requests are destined to memory segments that are protected
and can be used by safe processes only. Therefore, malicious
requests are rejected at the network interface, which results
in prohibiting unnecessary load from entering the NoC. On
the other hand, when the NoC firewall is disabled, malicious
requests are entering the NoC.

TABLE I
SIMULATION PARAMETERS

Parameter Type/Value
Interconnect topology Spidergon STNoC
CPU type ARM v7 Cortex A-9
Nodes setup 1CPU/2MEM; 2CPU/2MEM; 4CPU/4MEM;

8CPU/8MEM; 16CPU/16MEM
Processes per CPU
(Safe,Malicious)

all Safe; 8S1M; 4S1M; 3S1M; 2S1M; 1S2M;
1S3M; 1S4M; 1S8M

NoC link-width 8 Bytes
Message type w; wx
Packet size in Bytes 136 Bytes (header=8; body=128)
Packet size in flits 17
Status of firewall on; off
NI, Router, Link delay
(in cycles)

{1, 2, 0}

Injection rate varied from 0.01-1 cc, with a pace of 0.05

The challenging part was to setup the proper values so
as to expose the cases under which the system experiences
saturation. We selected a small link-width so as to build a
system with limited resources, which allowed for exhibiting
saturation early. The packet is relatively large, thus it is
segmented into several flits, i.e. 136÷ 8 = 17 flits per packet.
It is worth noting here that in contemporary systems packets
are segmented into as less as possible flits - even only 1 flit
per packet. On the other hand, in our case the selected values
are for sake of experimentation and served our scope well. As
we will later see it allowed us to demonstrate cases in which
limited-resource NoC-based systems run in steady-state and
with low-power (8 Bytes consumes lower power than 16 or
32 Bytes).

In our traffic scenarios, we are interested in examining
NoC behaviour for different amount of requests, safe and
malicious ones, rather than in comparing its behavior for
different percentages of malicious requests over total ones. In
fact, examining how the system is affected by setting up exper-
iments with different percentages of malicious requests over
the total ones does not fall within the scope of present study.
For example, 1S3M scenario corresponds to 75% malicious
requests within a time-window of sending 4 packets, while
1S8M scenario corresponds to 88.8% malicious requests
within a time-window of sending 9 packets. In both scenarios,
when NoC firewall is enabled, only 1 packet is released
to the NoC within their corresponding time-window. Also,
consider the 1S1M and 10S10M scenarios; these generate
the same percentage of malicious requests, i.e. 50%. Their
difference is the following: 1S1M corresponds to a time-
window of 2 packets in which safe and malicious requests
are generated in an 1-by-1 alternate sequence, i.e. 1 safe, 1

malicious, then again 1 safe and so on. 10S10M corresponds
to a time-window of 20 packets in which a chunk of 10 safe
requests is first produced, followed then by a chunk of 10
malicious requests, then again 10 safe requests, and so on.
When comparing these scenarios, the number of packets that
are eventually transmitted when the NoC firewall is enabled
will be exactly the same for a given simulation time period
- in our case 2 million clock cycles. However, their major
difference lies in the amount of safe packets arriving at the
NoC in succession. Having big chunks of safe packets in
succession rather that small ones, imposes high demands from
the side of NoC, i.e. the NoC should be able to sustain a
high serving rate. For instance, the more demanding case from
the aforementioned ones is the 10S10M scenario. In specific,
in the 16CPU/16MEM setup, there are time-windows in
which all 16 CPUs produce concurrently 10 safe requests in
a sequence; this stands for each CPU, and ideally all should
be served by the NoC. After the safe traffic, the malicious
traffic follows, which is perceived again as a big chunk of
malicious content. However, this will be stopped by the NoC
firewall. On the other hand, when the NoC firewall is disabled,
being concerned about the percentage of malicious requests
is meaningless as in all scenarios all packets are allowed to
enter the NoC, e.g. in the 10S10M scenario all 20 packets are
transmitted to the NoC, and this is repeated until completing
the simulation runtime. In conclusion, in our study it is much
more interesting to examine the system behaviour in relation
to the amount of packets that are eventually released to the
NoC. Later on, we show that this revealed cases in which
the queues across the system cannot handle effectively large
amount of traffic and the NoC becomes saturated.

By selecting different parameter values we performed ex-
periments for several configurations. In specific, from Table I,
5 different node setups, 9 different combinations of safe and
malicious requests, and 2 options for the security mechanism
(enabled/disabled), give a total of 5 × 9 × 2 = 90 different
configurations. Regarding NoC parameters, the packet size of
a write command is 136 bytes, while we configured a link-
width of 8 Bytes, hence, each packet is split up in 136÷8 = 17
flits.

Another parameter that affected the behavior of the experi-
ments was the packet injection rate, i.e. the rate at which pack-
ets are released from the application layer in each CPU. We
experimented with up to 20 different injection rates. Variations
in the injection rate - even small ones - showed that the end-
to-end delivery times of the packets are affected tremendously
due to that the NoC starts experiencing congestions. We
repeated the experiments numerous times in order to verify
such occurrences. In fact, we did this for large simulation
times, starting from a few hundred up to 2 million clock cycles.

V. EXPERIMENTAL RESULTS

In the present Section we evaluate the NoC-based system
by studying the impact of security and we illustrate the
relation between the end-to-end delivery time and power at the
network-layer. Then, we analyze exhaustively the saturation

cases for a small-scale MPSoC, and perform some initial
experiments for MPSoCs with 8 and 16 nodes.

A. Effect of Security on Network Transmission

Our framework enables measuring the end-to-end delivery
times at the network level, and the power consumption of the
routers and links. We measure two types of delay; the time a
packet is waiting in the NI queue before it is actually broken
down into flits and released to the network (called NI queue
delay), and then, after the flit leaves the NI queue, the time
spent to traverse the network until it reaches its destination.
The latter delay is referred to as network traversal delay, and
it is the time required for the flit to pass through all the routers
on its path and eventually reach the target network interface.
Table II has the results for a specific configuration when NoC
firewall is disabled or enabled. The last column shows the
impact from activating the firewall. Negative values indicate
improvement, thus in all cases activation of security affects
positively the network.

TABLE II
EFFECT OF SECURITY ON QUEUE DELAY, NETWORK DELAY AND POWER
AT THE STNOC LEVEL. SCENARIO CONCERNS A 4CPU/4MEM SETUP

WITH 1S2M REQUESTS. LINK-WIDTH OF STNOC IS 16 BYTES.

Metric without firewall with firewall +/-(%)
NI queue delay 28.0905 cycles 6.1824 cycles -77.99%
Network traversal delay 10.5503 cycles 8.3907 cycles -20.47%
Router power (total) 0.5364 Watt 0.3746 Watt -30.16%
Router clock power 0.1917 Watt 0.1917 Watt 0%
Router static power 0.1189 Watt 0.1189 Watt 0%
Router dynamic power 0.2258 Watt 0.0640 Watt -71.66%
Link power 0.0297 Watt 0.0084 Watt -71.68%

The chosen case concerns the 4CPU/4MEM node setup,
with 1 safe and 2 malicious CPU processes requesting memory
access. It is obtained that when the NoC firewall is active, both
the traversal delay and the delay in NI queues decrease. This is
due to that malicious requests are prevented from entering the
network, thus fewer packets are released, resulting in smaller
network traffic and less busy queues. Moreover, the total power
of routers decreases by 30.16%, mainly due to the drastic
decrease in the dynamic power. Finally, the use of firewall
reduces the power consumed at the network links by almost
72%.

The above analysis indicates that a security mechanism
relieves the network from unnecessary load in the presence
of malicious processes. The values in Table II are average
ones and concern all CPUs. We performed experiments for two
type of messages, e.g. “write” and “write-execute”. For these
specific experiments the amount of flits transmitted was 2280
flits when firewall was on, and 7315 flits when firewall was
off. The above use case demonstrates the way the framework
is used to evaluate the effect of security both on delay and on
power consumption at the NoC layer.

In Figure 2 we analyse the relation between the network
traversal delay and the power consumed at the routers, when
firewall is on/off. In specific, we illustrate the relation between

0

10

20

30

40

50

60

70

1CPU2MEM 2CPU2MEM 4CPU4MEM 8CPU8MEM 16CPU16MEM

N
e

t
 t

ra
v

e
rs

a
l
d

e
la

y
 (

#
c
y

c
le

s)

Nodes setup (#CPU/#MEM)

(c) 8 Safe, 1 Malicious

0

0.5

1

1.5

2

2.5

1CPU2MEM 2CPU2MEM 4CPU4MEM 8CPU8MEM 16CPU16MEM

R
o

u
te

r
p

o
w

e
r

(W
a

tt
)

Nodes setup (#CPU/#MEM)

(d) 8 Safe, 1 Malicious

0

0.5

1

1.5

2

2.5

1CPU2MEM 2CPU2MEM 4CPU4MEM 8CPU8MEM 16CPU16MEM

R
o

u
te

r
p

o
w

e
r

(W
a

tt
)

Nodes setup (#CPU/#MEM)

(b) 1 Safe, 8 Malicious

0

10

20

30

40

50

60

70

1CPU2MEM 2CPU2MEM 4CPU4MEM 8CPU8MEM 16CPU16MEM

N
e

t
 t

ra
v

e
rs

a
l
d

e
la

y
 (

#
c
y

c
le

s)

Nodes setup (#CPU/#MEM)

(a) 1 Safe, 8 Malicious fw-on

fw-off

Fig. 2. Relation between network traversal delay (after NI) and router total
power consumption for two different scenarios. Each chart shows both cases,
when security is enabled (fw-on) and disabled (fw-off). Top side, i.e. (a)-(b),
has the 1S8M scenario, and bottom side, i.e. (c)-(d), has the 8S1M scenario.
Link-width of STNoC is 16 Bytes.

the delay of the flit after leaving the NI queue until reaching
its destination, and the total power consumed at the routers.
Figure 2 examines this correlation for two extreme cases, i.e.
1S8M and 8S1M . In the first case, shown on the top side of
Figure 2, (a) & (b), it appears that the total power consumed at
the routers decreases with the decrease in the network traversal
delay due to the activation of security, i.e. power consumption
follows delay tendency. In particular, only the dynamic power
is affected, as discussed earlier under Table II; neither the
clock power nor the static power of the router are affected.
The same behaviour is observed in the second case, shown at
the bottom of Figure 2, (c) & (d). In this case power remains
almost unchanged, following again the behaviour of network
traversal delay.

B. Saturation Analysis

We have experimented with different injection rates, i.e.
number of injected packets per cycle per CPU, for a 4-node
system. We conducted extensive experiments with different
parameters, i.e. mapping scenarios; amount of legal and ma-
licious requests; NoC firewall status (enabled or disabled);
and injection rates. The latter was kept the same across the
different CPUs, in each experiment. Our aim was to find the
injection rate beyond which the network reaches saturation in
each case. We deployed the following mapping scenarios for
the 4-node system:
(a) CPU#1 & CPU#2 send requests randomly both to

MEM#1 & MEM#2;
(b) CPU#1 sends to MEM#1, CPU#2 & MEM#2 are idle;
(c) CPU#1 sends to both memories, CPU#2 is idle;
(d) CPU#1 sends to MEM#1, CPU#2 sends to MEM#2;

(e) CPU#1 & CPU#2 send to MEM#1 only, MEM#2 is idle.
The 5 different mapping scenarios, 9 different combinations of
safe and malicious requests, 2 options for the security mech-
anism (on/off), and tests with roughly 20 different injection
rates, result in a total of 5×9×2×20 = 1800 configurations.

10

100

1,000

10,000

100,000

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

N
o

C
 d

e
la

y
(#

cy
cl

e
s)

injection rate (#packets/cycle/CPU)

(a) both CPUs send randomly to both MEMs

FW is off

all Safe

8S1M

4S1M

3S1M

2S1M

1S2M

1S3M

1S4M

1S8M

Fig. 3. NoC delay for different packet injection rates per cycle per CPU
(scale is logarithmic), in a setup with 2 CPUs and 2 memories interconnected
with STNoC, link-width=8 Bytes. Injection rate is the same across all CPUs.

10

100

1,000

10,000

100,000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

N
o

C
 d

e
la

y
(#

cy
cl

e
s)

injection rate (#packets/cycle/CPU)

(b) only 1 CPU sends to only 1 MEM

FW is off

all Safe

8S1M

4S1M

3S1M

2S1M

1S2M

1S3M

1S4M

1S8M

Fig. 4. NoC delay for different packet injection rates per cycle per CPU
(scale is logarithmic), in a setup with 2 CPUs and 2 memories interconnected
with STNoC, link-width=8 Bytes. Injection rate is the same across all CPUs.

Results of the above scenarios are shown in Figures 3, 4, 5,
6, 7 respectively. It appears that in all cases when the firewall
is disabled the NoC becomes saturated for small values of the

10

100

1,000

10,000

100,000

0.00 0.10 0.20 0.30 0.40 0.50

N
o

C
 d

e
la

y
(#

cy
cl

e
s)

injection rate (#packets/cycle/CPU)

(c) only 1 CPU sends to both MEMs

FW is off

all Safe

8S1M

4S1M

3S1M

2S1M

1S2M

1S3M

1S4M

1S8M

Fig. 5. NoC delay for different packet injection rates per cycle per CPU
(scale is logarithmic), in a setup with 2 CPUs and 2 memories interconnected
with STNoC, link-width=8 Bytes. Injection rate is the same across all CPUs.

10

100

1,000

10,000

100,000

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

N
o

C
 d

e
la

y
(#

cy
cl

e
s)

injection rate (#packets/cycle/CPU)

(d) each CPU sends to a separate MEM (1-to-1)

FW is off

all Safe

8S1M

4S1M

3S1M

2S1M

1S2M

1S3M

1S4M

1S8M

Fig. 6. NoC delay for different packet injection rates per cycle per CPU
(scale is logarithmic), in a setup with 2 CPUs and 2 memories interconnected
with STNoC, link-width=8 Bytes. Injection rate is the same across all CPUs.

injection rate, i.e. less than 0.05 packets/cycle/CPU . On
the other hand, when the firewall is active, as the number of
malicious requests increases over the safe ones, the injection
rate that the system can serve without becoming saturated
increases as well. We observe that in Figures 4 and 6, in the
case of 1S8M , the firewall prevents the system from becoming
saturated. Finally, Figure 7 illustrates the scenario in which the
network becomes saturated earlier than in the rest cases; this

TABLE III
RANGE OF PACKET INJECTION RATE - PER CLOCK CYCLE PER CPU - AT WHICH THE NOC STARTS BEING SATURATED. RESULTS CORRESPOND TO

2CPUs/2MEMs SETUP, WHEN BOTH SECURITY IS DISABLED, I.E. FW-OFF, AND ENABLED, I.E. ALL OTHER CASES.

mapping scenario fw-off/all safe 8S1M 2S1M 1S2M 1S4M 1S8M
(a) 0.035-0.040 0.040-0.045 0.050-0.060 0.100-0.120 0.180-0.200 0.360-0.380
(b) 0.045-0.050 0.050-0.055 0.065-0.075 0.130-0.150 0.270-0.290 does not saturate
(c) 0.045-0.050 0.050-0.055 0.065-0.075 0.130-0.150 0.240-0.260 0.400-0.500
(d) 0.045-0.050 0.050-0.055 0.065-0.075 0.130-0.150 0.260-0.290 does not saturate
(e) 0.025-0.030 0.030-0.035 0.035-0.045 0.070-0.090 0.130-0.150 0.250-0.300

10

100

1,000

10,000

100,000

0.00 0.10 0.20 0.30

N
o

C
 d

e
la

y
(#

cy
cl

e
s)

injection rate (#packets/cycle/CPU)

(e) both CPUs send to 1 MEM only

FW is off

all Safe

8S1M

4S1M

3S1M

2S1M

1S2M

1S3M

1S4M

1S8M

Fig. 7. NoC delay for different packet injection rates per cycle per CPU
(scale is logarithmic), in a setup with 2 CPUs and 2 memories interconnected
with STNoC, link-width=8 Bytes. Injection rate is the same across all CPUs.

is due to that both CPUs send requests to the same memory,
which subsequently causes higher congestion as compared to
the other cases. This is more clear in Table III, which shows
the saturation-point in each scenario for different amount of
legal and malicious requests per CPU. Obviously, enabling
the firewall affects the NoC saturation-point value, i.e. the
injection rate that can be served across the network increases;
this is more clear when the number of malicious requests is
much bigger than the safe ones.

We also performed some initial experiments with complex
networks. These represent more realistic MPSoC devices.
Figures 8 and 9 have the results for networks with 8 and
16 nodes respectively. The mapping scenario we ran is the
one in which all CPUs raise requests to all memories in a
random manner; this corresponds to mapping scenario (a). We
observe the exact same behaviour with the experiments for the
4-node MPSoC when the firewall is active. As the number of
malicious requests increases over the safe ones, the injection
rate that the system can serve without becoming saturated,
increases.

10

100

1,000

10,000

100,000

0.00 0.10 0.20 0.30 0.40 0.50

N
o

C
 d

e
la

y
(#

cy
lc

e
s)

injection rate (#packets/cycle/CPU)

4 CPUs send randomly to 4 MEMs

FW is off

all safe

8S1M

4S1M

3S1M

2S1M

1S2M

1S3M

1S4M

1S8M

1S1M

Fig. 8. NoC delay for different packet injection rates per cycle per CPU
(scale is logarithmic), in a setup with 4 CPUs and 4 memories interconnected
with STNoC, link-width=8 Bytes. Injection rate is the same across all CPUs.

Saturation is related with the packet injection rate, and
possibly with the incapability of the buffers at the network
interfaces to serve it, while the routing infrastructure remains
largely unaffected. While the packets are entering the network,
the buffers are filled up, and the problem is propagated to
the entire network, thus the physical links eventually become
underutilized. When the link-width is set to 8 Bytes the
system is not able to break down the packets in flits within
a reasonable time, and consequently the network experiences
long delays.

VI. CONCLUSIONS

We have analysed extensively the STNoC targeting mainly
small-scale MPSoCs in order to expose saturation conditions
for different injection rates, both when the firewall is on and
off. We revealed the cases in which the NoC is in steady
state, avoiding saturation. We then performed experiments
of limited extend for networks with up to 16 nodes and
we observed similar behaviour. We also showed the relation
between delivery time and power consumption for setups with
up to 32 nodes. In the near future we will perform experiments

10

100

1,000

10,000

100,000

0.00 0.10 0.20 0.30

N
o

C
 d

e
la

y
(#

cy
cl

e
s)

injection rate (#packets/cycle/CPU)

8 CPUs send randomly to 8 MEMs

FW is off

all safe

8S1M

4S1M

3S1M

2S1M

1S2M

1S3M

1S4M

1S8M

1S1M

Fig. 9. NoC delay for different packet injection rates per cycle per CPU
(scale is logarithmic), in a setup with 8 CPUs and 8 memories interconnected
with STNoC, link-width=8 Bytes. Injection rate is the same across all CPUs.

for large devices with up to 64 nodes, and for wider links. This
work is in progress, and our preliminary results demonstrate
that extensive study can reveal the setups that do not lead the
system to saturation conditions. This is useful in evaluating
MPSoC edge devices serving high-demanding applications.
Such examples are mpeg videos with real-time demands, and
Internet of Things applications in which multiple devices such
as sensors generate multiple streaming data processed by one
or many NoC-based MPSoCs.

ACKNOWLEDGMENT

This work is supported by the EU through the FP7 project
TRESCCA (GA No. 318036). The authors thank Antonis
Papagrigoriou for modelling the firewall that was then imple-
mented in hardware for measuring the actual time overhead.

REFERENCES

[1] M. D. Grammatikakis, K. Papadimitriou, P. Petrakis, A. Papagrigoriou,
G. Kornaros, I. Christoforakis, and M. Coppola, “Security Effectiveness
and a Hardware Firewall for MPSoCs,” in IEEE International Confer-
ence on High Performance Computing and Communications (HPCC),
August 2014, pp. 1032–1039.

[2] M. D. Grammatikakis, K. Papadimitriou, P. Petrakis, A. Papagrigoriou,
G. Kornaros, I. Christoforakis, O. Tomoutzoglou, G. Tsamis, and
M. Coppola, “Security in MPSoCs: A NoC Firewall and an Evalu-
ation Framework,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD) - Special Issue on Hardware
Security and Trust, vol. 34, no. 8, pp. 1344–1357, August 2015.

[3] G. Nychis, C. Fallin, T. Moscibroda, and O. Mutlu, “Next Generation
On-Chip Networks: What Kind of Congestion Control Do We Need?”
in Proceedings of the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks (Hotnets), October 2010.

[4] M. Moadeli, A. Shahrabi, W. Vanderbauwhede, and M. Ould-Khaoua,
“An Analytical Performance Model for the Spidergon NoC,” in 21st
IEEE Annual Conference on Advanced Networking and Applications
(AINA), May 2007, pp. 1014–1021.

[5] A. E. Kiasari, Z. Lu, and A. Jantsch, “An Analytical Latency Model for
Networks-on-Chip,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 21, no. 1, pp. 116–128, January 2013.

[6] Z. Qian, D.-C. Juan, P. Bogdan, C.-Y. Tsui, D. Marculescu, and R. Mar-
culescu, “A Comprehensive and Accurate Latency Model for Network-
on-Chip Performance Analysis,” in 19th Asian and South Pacific Design
Automation Conference (ASP-DAC), December 2014, pp. 323–328.

[7] Z. Qian, P. Bogdan, G. Wei, C.-Y. Tsui, and R. Marculescu, “A
Traffic-aware Adaptive Routing Algorithm on a Highly Reconfigurable
Network-on-Chip Architecture,” in International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), October
2012, pp. 161–170.

[8] L. Bononi and N. Concer, “Simulation and Analysis of Network on Chip
Architectures: Ring, Spidergon and 2D Mesh,” in Design, Automation
and Test in Europe (DATE), October 2006, pp. 154–159.

[9] M. LeMay and C. A. Gunter, ACM Computing Research Repository
(CoRR), title = ”Network-on-Chip Firewall: Countering Defective and
Malicious System-on-Chip Hardware”, month = April, year = 2014,
Tech. Rep.

[10] J. Porquet, A. Greiner, and C. Schwarz, “NoC-MPU: a Secure Archi-
tecture for Flexible Co-hosting on Shared Memory MPSoCs,” in Proc.
Design Automation and Test in Europe, July 2011, pp. 591–594.

[11] G. Palermo, C. Silvano, G. Mariani, R. Locatelli, and M. Coppola,
“Application-Specific Topology Design Customization for STNoC,” in
Proc. 10th Euromicro Conference on Digital System Design Architec-
tures, Methods and Tools (DSD), Aug 2007, pp. 547–550.

[12] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
Simulator,” ACM SIGARCH Computer Architecture News, vol. 39, no. 2,
pp. 1–7, 2011.

[13] http://rt.com/news/biggest-ddos-us-cloudflare-557/.

