
Methodology and Experimental Setup for the Determination of System-level
Dynamic Reconfiguration Overhead

Kyprianos Papadimitriou ∗ Antonis Anyfantis Apostolos Dollas
Department of Electronic and Computer Engineering

Technical University of Crete
GR73100 Chania, Crete, Greece

{kpapadim, aanyfantis, dollas}@mhl.tuc.gr

1. Introduction

Dynamic reconfiguration is gaining popularity [2], [4]
but it may cause degradation of overall execution time due
to the time to download the bitstream before an application
starts execution of the new configuration. Thus evaluation
of its performance becomes an interesting area [3]. In this
work we include an analysis of the reconfiguration time by
defining the delays that add up to it. An experimental setup
is deployed that can be used for performance evaluation of
applications implemented with dynamic reconfiguration, as
well as of mechanisms developed to reduce reconfiguration
overhead.

The configuration memory of Xilinx Virtex-II is ar-
ranged in vertical frames. In a self-reconfigurable system
[1] where the PowerPC reconfigures the FPGA through the
Internal Configuration Access Port (ICAP), once data are
available in the configuration cache HWICAP BRAM the
nominal time to reconfigure a single frame is 12.5 µs for 66
MHz. However, this is not the only aspect in the reconfigu-
ration process. Several physical components of the system
add significant delays causing reconfiguration time to in-
crease more than three orders of magnitude as compared to
the above time.

2. Experimental Setup

The setup consists of a Digilent XUPV2P platform, a
logic analyzer and a PC for evaluation. During the first
phase of experimentation, two configuration partial bit-
streams are placed in a compact flash memory and a Pow-
erPC processor loads them to the Virtex-II XC2VP30 FPGA
according to a user input. The ACE Controller supervises
the transfer of data from the compact flash to the FPGA.
The processor and several peripherals have been configured
in the FPGA. A push button fires partial reconfiguration at
any time during operation. Four dip switches control the
functionality of an FPGA peripheral. A UART sends status

∗Funded with a Ph.D fellowship by the Greek Ministry of National Ed-
ucation and Religious Affairs under the program Heraklitus, EPEAEK II,
grant number 88727/11

Figure 1. Shadowed boxes represent inter-
nal components of the FPGA system. White
boxes are the parts of the XUP platform that
are connected to the FPGA.

messages to the PC. A few signals of the FPGA peripherals
along with some other internal signals are monitored with
the logic analyzer.

2.1. The FPGA System

The FPGA system is illustrated in Figure 1. An up/down
counter which can be partially reconfigured and a cyclic
shift register which remains unchanged during operation
have been implemented. Ten dummy logic peripherals have
been implemented as partially reconfigurable modules. The
push button forces the processor to request a partial bit-
stream from the compact flash. Configuration data are then
written in the PPC memory, and subsequently transmitted to
the HWICAP BRAM. The latter writes the FPGA configu-
ration memory. The above operation is due to the HWICAP
API that needs a configuration data chunk to be loaded in



processor memory before transfer to the HWICAP BRAM
takes place. The reconfig status indicates the duration of re-
configuration process. The dummy logic slave peripherals
are added in experiments of reconfiguration of more than
one peripherals in which measurements with the logic ana-
lyzer were conducted.

2.2. Reconfiguration Time Breakdown

We define the following delays that add up to the recon-
figuration time:

• CF-PPC: is the time to transfer one configuration data
chunk from the compact flash (CF) to the PPC mem-
ory.

• PPC-HWICAP: is the time to transfer configuration
data from the PPC memory to the HWICAP BRAM.
The maximum size of the data transferred per trans-
mission equals to one BRAM, i.e., 512 words.

• HWICAP BRAM-CM: is the time to transfer data of
one HWICAP BRAM to the configuration memory of
the FPGA.

These delays correspond to processor code functions and
are measured with software timers. Their values are sent to
the PC through a UART peripheral.

3. Conducting the Experiments

Several parameters of the processor were configured be-
fore entering the experimental phase. The processor mem-
ory was chosen to be 48 Kbytes, the stack was 6000 bytes
and the buffer cache where the configuration data are loaded
on, varied between 512 and 4096 bytes. The buffer cache
is located in the processor memory and it acts like a normal
cache where the data are loaded on prior processor main
memory. We also varied the processor array size, i.e., pro-
cessor memory array in which configuration data chunks are
loaded from the compact flash, from 512 to 4096 bytes. In
particular, transactions in units of several multiples of one
sector were conducted per processor request. A sector is the
smallest unit the compact flash is organized in, and is equal
to 512 bytes.

4. Results and Analysis

Initially, we measured piece-wise delays during recon-
figuration of one frame using the software timers. The cor-
responding bitstream size was 636 words. Table 1 contains
software measurements for all buffer cache sizes up to 4096
bytes and all processor array sizes up to 4096 bytes. The
measured delays do not correspond to the time to transmit
the entire frame. The processor array size puts the upper
limit on how many bytes are transferred per transaction. Ac-
cording to the definition of software measured delays, we
measure delay per transaction.

Table 1. Piece-wise delays. Processor array
size is in multiples of one sector. Size is in
bytes and time in msecs

buffer
cache

processor
array

CF-
PPC

PPC-
HWICAP

HWICAP
BRAM-CM

512-4096 1 × 512 1.5 0.42 0.02526
512-4096 2 × 512 2.94 0.83 0.02526
512-4096 3 × 512 4.35 1.25 0.02526
512-4096 4 × 512 5.79 1.67 0.02526
512-4096 5 × 512 7.24 1.67 0.02526
512-4096 6 × 512 7.24 1.67 0.02526
512-4096 7 × 512 7.24 1.67 0.02526
512-4096 8 × 512 7.24 1.67 0.02526

When the buffer cache was varied from 512 up to 4096
bytes in multiples of 512, and the processor array size was
kept constant, no variation on CF-PPC and PPC-HWICAP
delays was observed. By contrast, while we were varying
processor array size, the delay increased up to the point the
processor array size was set to 2560. This increase is nor-
mal as more data were allowed to be loaded per transaction.
When the processor array size was set equal to or greater
than 2560 no difference in the delays was recorded. This
is because any processor array size above this value can
accommodate the entire bitstream, which is equal to 2544
bytes. The PPC-HWICAP delay was stopped increasing af-
ter the processor array size was set to 2048. That is due
to the HWICAP BRAM size which can not hold more than
2048 bytes. The HWICAP BRAM-CM delay was found to
be 0.02526 ms.

In cases where the processor array is larger than the bit-
stream, the latter is transferred with one processor request
and stored in the processor memory in its entirety prior
transmission to the HWICAP. From the HWICAP part, con-
figuration cache size is 2048 bytes and can not be changed,
thus inhibiting transfer and accommodation of the entire bit-
stream at once. However, in our system HWICAP is not
the bottleneck as the time for the PPC to load 2048 bytes
to HWICAP BRAM is larger than the time the HWICAP
needs to configure the FPGA.

References

[1] B. Blodget, P. James-Roxby, E. Keller, S. McMillan, and
P. Sundararajan. A Self-reconfiguring Platform. In Proceed-
ings of the International Conference on Field Programmable
Logic and Applications, pages 565–574, 2003.

[2] C. Kachris and S. Vassiliadis. Performance Evaluation of an
Adaptive FPGA for Network Applications. In Proceedings of
the 17th IEEE International Workshop on Rapid System Pro-
totyping, 2006.

[3] H. Tan, R. F. DeMara, A. J. Thakkar, A. Ejnioui, and J. D.
Sattler. Complexity and Performance Evaluation of Two Par-
tial Reconfiguration Interfaces on FPGAs: a Case Study. In
Proceedings of the ERSA, 2006.

[4] Xilinx Inc. Press Release: ISR and Xilinx Roll Out
Ready-to-Wear SDR. Xilinx Inc., San Jose, CA., 2006.
www.fpgajournal.com.


