
Combining Duplication, Partial Reconfiguration and Software for On-line Error
Diagnosis and Recovery in SRAM-based FPGAs

Anargyros Ilias, Kyprianos Papadimitriou and Apostolos Dollas
Department of Electronic and Computer Engineering

Technical University of Crete
GR73100 Chania, Crete, Greece

{ailias, kpapadim, dollas}@mhl.tuc.gr

Abstract—SRAM-based FPGAs are susceptible to Single-
Event Upsets (SEUs) in radiation-exposed environments due to
their configuration memory. We propose a new scheme for the
diagnosis and recovery from upsets that combines i) duplication
of the core to be protected, ii) partial reconfiguration to
reconfigure the faulty part only, and iii) hardcore processor(s)
for deciding when and which part will be reconfigured;
executing the application in software instead of hardware
during fault handling; and controlling the reconfiguration.
A hardcore processor has smaller cross section and it is
less susceptible than reconfigurable resources. Thus it can
temporarily undertake the execution during upset conditions.
Real experiments demonstrate that our approach is feasible
and an area reduction of more than 40% over the dominant
Triple Modular Redundancy (TMR) solution can be achieved
at the cost of a reduction in the processing rate of the input.

Keywords-Single-Event Upsets; Duplication; Partial reconfig-
uration; Hardcore Processor;

I. INTRODUCTION

The dominant method for error detection and recovery
is the Triple Modular Redundancy (TMR) [1], [2]. It uses
three replicas of the system and a voter to identify the
correct result amongst the three ones with respect to the
majority vote. When combined with partial reconfiguration
it is claimed to have zero error rate [3]. TMR is reported to
have at least 3.2x resource utilization cost [4], while clock
frequencies over 100 MHz in a Virtex-II FPGA are difficult
to achieve [5]. This scenario is rather optimistic as in other
works even for small filters resource utilization from 4x to
5x has been reported [1]. Another redundancy method with
smaller resource overhead is the Duplication With Compare
[6], which uses two replicas and a comparator to check their
outputs.

Our aim is to form a scheme with near the same per-
formance with TMR by paying less overhead in resources
and without sacrificing reliability. It lies between the DWC
and TMR, as the hardware cores are duplicated and a third
model of the application executes in software. We target
real-time domain in which the FPGA needs to sustain the
processing of continuous input data. Upon a failure, real-
time processing is undertaken by the software processor,
which executes with less performance than the hardware
counterpart. If the software processing rate is slower than
the input rate a FIFO is needed to avoid losing data.

II. ARCHITECTURAL CONCEPT AND ANALYSIS

First, we need to clarify some terms we use throughout
the paper. The operation of fault handling is distinguished
in the detection phase, i.e. finds that an error occurred,
the diagnosis phase, i.e. identifies the faulty part, and the
correction or recovery phase, i.e. corrects the fault. Also,
we are coining the term “restoration time” being the time
elapsed from a fault detection until the hardware core begins
processing again the input data.

The method we employed for the detection of faults is
the Duplication With Compare (DWC) [6]. Currently, the
architecture contains two hardcore processors (A and B)
communicating through a shared memory. The scope of the
processor A is threefold: checking a XOR gate for fault
detection, informing the processor B when a fault occurs,
and reconfiguring the faulty part. The main task of the
processor B is the execution of the software model of the
application upon a failure1.

For the implementation of our scheme we use the Xilinx
PR module-based design flow. The replicas of the core
are designed as partially reconfigurable modules (PRM).
They are placed into predefined regions of the FPGA called
partially reconfigurable regions (PRR). Upon a fault occur-
rence the bitstream of the corresponding PRM is loaded
to reconfigure a PRR. During reconfiguration the PRR is
isolated so as to leave intact the remaining part of the FPGA
by controlling special communication primitives called bus
macros - the I/Os of the PRR - placed at the edge of the
boundaries of PRRs.

Two different designs can take effect according to our
scheme. The architecture is the same for both designs. Their
main difference lies in whether the two replicas are placed in
the same PRR or in two separate PRRs. In the first case, the
so called 1-PPR design, the two replicas are implemented as
one PRM that is loaded into one PRR. In the second case,
the so called 2-PRRs design, each replica is created as one
PRM each of which is loaded into a separate PRR. Only the
operation of fault detection is the same for both designs; the
other operations differ:
• 1-PRR design (No diagnosis is made): Once a fault

is detected the processing in the HW cores is halted.

1With slight modifications one processor only can be used thus elimi-
nating the overhead of communication between the processors. Currently
our proof-of-concept system operates with two processors.



Table I
MAIN DIFFERENCES BETWEEN THE OPERATIONS CARRIED OUT IN THE 1-PRR AND 2-PRRS DESIGNS UPON A FAILURE.

1-PRR design (the two replicas are placed in one PRR) 2-PRRs design (one replica per PRR)
In the correction phase the entire PRR carrying both HW cores is reconfigured

(no diagnosis was made).
only one PRR carrying the corrupted HW core is
reconfigured (the SW diagnosed it).

The data processing continues by the SW model in processor B. by the uncorrupted HW core.

Then, the PRR carrying both HW cores is reconfigured
and at the same time the processor B is instructed to
continue processing the input data. After reconfigura-
tion completes, the HW cores undertake again the data
processing.

• 2-PRRs design (Diagnosis is made): Once a fault is
detected, the processing in the HW cores is halted.
Then, the processor B is instructed to process a specific
amount of the next input data and at the same time the
two HW cores process the same input data. The results
are stored in registers accessible by the processor A,
and the latter compares them in order to identify the
HW core that disagrees with the SW model. Then, it
instructs the uncorrupted HW core to resume its oper-
ation and reconfigures the PRR carrying the corrupted
HW core. Once reconfiguration is ended, the system
enters its normal operation.

Table I summarizes the differences amongst the two de-
signs. Their effectiveness is determined by their “restoration
time”. The smaller this time is, the faster the system will
enable the hardware to undertake again the processing of
the input and thus the smaller the FIFO that will be needed.
Clearly, the 1-PPR design doesn’t allow any HW core to pro-
cess the input until the reconfiguration completes. Contrarily,
the 2-PRRs design releases the uncorrupted HW core once
diagnosis is made without waiting for the reconfiguration to
complete.

Our approach resembles TMR in that a third model of
the application exists; however it is developed in software.
The software model offers the following capabilities; i) it
is developed in a hard processor which is less possible to
get upset and affected by permanent SEUs, ii) it doesn’t
operate continuously on the incoming data like a third
replica in the TMR does, and iii) its resource utilization
doesn’t scale with the same rate hardware resources would
do for large application designs. In particular, the demands
of the software model for a larger application design would
increase only with respect to the program memory. This is
of low concern as compared to the hardware counterpart that
besides memory requires more logic and routing resources.
Especially for a large design, triplication will result in a
dense circuit and in clock degradation [5]. We anticipate
that the benefits of the proposed scheme over TMR will
be exhibited for large HW cores. This will be possible if a
generic software subsystem with relatively fixed amount of
resources that won’t increase with the application size and
with a small FIFO can be built.

It is worth noting that until the system is restored the
processing rate decreases. This will disturb the output,
either by halting it completely, or by lowering the rate the

processed data occur at the output. Also, reliability issues
outside the guarded core haven’t been taken into account.
The same practice is followed in other projects as well [1].

III. PROOF-OF-CONCEPT

The proposed scheme was implemented in a Virtex-II Pro
FPGA that embeds two hardcore PowerPCs (PPCs). The
guarded application was a 7th-order FIR filter operating on
12-bit data. In order to evaluate our scheme for an as much
as possible susceptible core, the hardware filter was built
with configurable elements only, i.e. LUTs. This practice has
been followed by other researchers as well working towards
vendor-independent filters that are effectively configured in
partially reconfigurable devices [7].

Figure 1 shows the architecture of our scheme in the
Virtex-II Pro FPGA. The grey components correspond to
the hard resources, while the white components are SRAM-
based. Once the PPC0 (processor A of our scheme) detects
a fault it informs the PPC1 (processor B of our scheme) to
process the data with the software FIR. The rest operation
depends on which design amongst the 1-PRR and 2-PRRs
is deployed. Each PPC has a program memory implemented
with BRAMs along with a memory controller, and a dedi-
cated bus interface. The PPCs communicate through a shared
memory implemented with BRAMs. The partial bitstreams
are loaded by the PPC0 from an external compact flash
memory. The FIFO is implemented with embedded BRAM
blocks and its controller is implemented with the TMR
technique. The FIFO is connected with the FIR cores and
the PPC1. The guarded components implemented in partially
reconfigurable regions, i.e. the FIR cores and the TMR FIFO
controller, are enclosed in thick-lined boxes.

We implemented both the 1-PRR and 2-PRRs. Their
operation accords with the operation of the general scheme
described in Section II. Table II consolidates the operations
that affect the “restoration time” for each design. In the 1-
PRR it is influenced by the reconfiguration time, while in
the 2-PRRs it mainly depends on the time to identify the
corrupted filter.

A. Resource Utilization

Table III has the resource requirements of our scheme
derived from Figure 1. The first column has the component
type and the second column reports whether it is SRAM-
based (S), or hard IP (H). Amongst the SRAM-based
components only the HW cores and the FIFO controllers
are guarded, while the others belong to the static part of
the system. The fourth column of the Table III has the
components needed for the alternative TMR solution.



Compact

Flash

ICAP

P
L

B

P
L

B

Makes the communication

between the two PPCs

Guarded Core

O
P

B

O
P

B
Shared

Memory

PPC1

datain

PLB2OPB

bridge

Read

FSM cntlr

FIFO

Controls the

FIFO read for

the PPC1

Executes the SW FIR upon a 

fault presenceIt lies outside the FPGA.

Stores the partial

bitstreams of the FIR cores

and the FIFO controllers

Internal reconfiguration port

Responsible for :

1) continuously searching for faults by checking the XOR gate

2) informing PPC1 upon a fault presence

3) diagnosing the faulty FIR core (for 2-PPRs design only)

4) controlling reconfiguration

FIR Core (instance A)

FIR Core (instance B)

In the 1-PPR design, the XOR 

gate lies inside the guarded

region. In the 2-PPRs design, it

lies inside the static part

PPC0 PPC1

Program

memory

TMR FIFO

Controller

s
y
s
a
c
e

 c
n

tlr

BRAM

s
o

c
k
e

t
H

W
IC

A
P

 c
n

tlr

M
e
m

o
ry

 c
n

tlr

M
e
m

o
ry

 c
n

tlr

M
e

m
o

ry
 c

n
tlr

M
e

m
o

ry
 c

n
tlr

Program

memory

PLB2OPB

bridge

SRAM-based resources

Hardcore resources

PR areas

s
o

c
k
e

t

Figure 1. Block diagram of the scheme implemented in a Virtex-II Pro FPGA.

Table IV
RESOURCE UTILIZATION FOR THE STATIC AND THE PARTIALLY RECONFIGURABLE PARTS OF THE 2-PRRS DESIGN IN A VIRTEX-II PRO.

Resource type Available Static (%) FIR cores (%) TMR FIFO Cntlr (%) Total (%)
PPCs 2 2 (100%) - - 2 (100%)
LUTs 27392 3654 (13%) 4288 (15%) 480 (2%) 8422 (30%)
Flip-Flops 27392 3488 (12%) 4288 (15%) 480 (2%) 8256 (29%)
Slices 13696 3181 (23%) 2144 (15%) 240 (2%) 5565 (40%)
BRAMs 136 50 (36%) - - 50 (36%)

Table II
OPERATIONS AFFECTING THE RESTORATION TIME. “YES” AND “NO”
MEAN THAT THE CORRESPONDING OPERATION TAKES PLACE IN THE

DESIGN, BUT IT AFFECTS AND IT DOESN’T AFFECT THE RESTORATION
TIME RESPECTIVELY. “N/A” STANDS FOR “NOT APPLICABLE” MEANING
THAT THE CORRESPONDING OPERATION DOESN’T TAKE PLACE IN THE

RESPECTIVE DESIGN.

Operation 1-PRR 2-PRRs
Reconfiguration yes no
Processors’ communication yes yes
FIR initialization yes no
Execution of SW model (for diagnosis) n/a yes
Comparison between SW and HW results n/a yes

Table IV has the resource utilization of the 2-PRRs design.
It occupies relatively more logic resources than the 1-
PPR, thus we will compare the worst case of our scheme
in terms of area with the TMR. The BRAMs are used
mainly for the software subsystem, i.e. the PPC’s program
memories and the shared memory. Only one BRAM is used
for the configuration cache of the ICAP and one BRAM
for a 1024 × 12 FIFO. The amount of BRAMs that is
allocated for the software subsystem is the minimum that
can be set as imposed by the vendor’s tools. However, it is
much beyond the present memory needs and probably no

additional BRAMs would be needed to develop in software
a larger application.

B. Benefits, Drawbacks and Extensions

The proposed approach detects and mitigates upsets af-
fecting the HW core at real time. For a larger application
the static area will not necessarily increase. But even in this
case it is likely that it won’t scale as much as a hardware
core would do. The FIFO size relates to the restoration time
and the input data rate. The faster the restoration time and
the smaller the input rate is, the smaller the FIFO that is
needed. These factors are dependent on the application.

In present work except for the application core and the
FIFO controller we do not guard other components such
as the memories, controllers, buses and interfaces of Table
III. To increase the safety at system level such concerns
should be addressed. For instance, in order to guarantee the
operation of memories Error Correction Codes (ECC) can be
employed. Alternatively, the SRAM resources of the static
part can be placed in a partially reconfigurable region and
checked periodically so as to “scrub” it when the output
of the software subsystem disagrees with both HW cores’
outputs.



Table III
RESOURCE REQUIREMENTS FOR OUR SCHEME AND THE TMR

SOLUTION.

Component S/H our scheme TMR
HW cores S 2 3
majority voters S -

√
minority voters S -

√
feedback logic S -

√
bus macros S

√ √
ICAP port H

√ √
HWICAP controller S

√ √
ICAP’s BRAM H

√ √
sysace controller S

√ √
I/O interfaces S

√ √
hardcore processor H 2 1
program memory H 2 1
shared memory H 1 -
memory controllers S 4 1
internal bus (OPB and PLB) S

√ √
FIFO H

√
-

TMR FIFO controller S
√

-
voter for the TMR FIFO controller S

√
-

ReadFSM controller S
√

-
XOR gate S

√
-

Table V
SLICE UTILIZATION OF OUR SCHEME VS. TMR FOR VARIOUS BASE

DESIGNS IN THE VIRTEX-II PRO.

base our scheme TMR 5x
base× 2.3 + Static + TMR FIFO cntlr base× 5

901 2144+3181+240=5565 4505
2000 4759+3181+240=8180 10000
4000 9518+3181+240=12939 20000
6000 14277+3181+240=17698 30000

IV. COMPARING OUR SCHEME WITH THE TMR

In Table III, we observe that the TMR besides the tripli-
cation of the HW core requires a circuit supporting partial
reconfiguration in order to “scrub” the corrupted replica.
Just like in our system, this circuit comprises the PPC and
the ICAP port along with the supporting peripherals. The
primary difference between our scheme and TMR is that in
the former the third copy of the application runs in software.
This allows for better scalability in terms of area.

In Table IV it is shown that the TMR FIFO controller
consumes much less resources as compared to the HW core.
Even if the HW core increases, the area occupied by the
three FIFO controllers would remain about the same. In
the TMR solution the third HW core would scale with the
application size. Apart from it self the third core will incur
an additional overhead due to the bus macros and the I/O
interfaces, which is not paid in our scheme. In the latter
the needs in program memory would scale less, thus the
problem translates mostly to whether the FIFO size can be
kept small.

Table V projects the amount or slices needed for a larger
design than the filter we used, according to the scalability
factors derived from Table IV for our scheme, and from the
literature for the TMR [1]. The base (static) design of the
filter occupies 901 slices of the Virtex-II Pro. For the largest

Table VI
RESTORATION TIME AND MAXIMUM (TESTED) INPUT RATE WITHOUT

OVERFLOWING THE 1024× 12 FIFO DURING FAULT HANDLING.

1-PRR 2-PRRs
Restoration time 907.67 ms 23.33× 10−3 ms
Maximum input rate 4.4 Mbps 480 Mbps

base design our scheme achieves an area reduction of 41%
over the TMR.

V. EXPERIMENTAL RESULTS

To test our scheme we created an artificial way of injecting
faults. A streaming environment was emulated with a data
generator connected to the FIFO input. Table VI has the
restoration time and the maximum input rate that each
design can serve without loosing data for a 1024 × 12
FIFO. In the 1-PPR design the restoration time is dominated
by the reconfiguration time, which presently suffers from
considerable delays such as the communication of the PPC
with the compact flash and the ICAP port [8].

REFERENCES

[1] C. Bolchini, A. Miele, and M. D. Santambrogio, “TMR and
Partial Dynamic Reconfiguration to mitigate SEU faults in
FPGAs,” in Proceedings of the IEEE International Symposium
on Defect and Fault-Tolerance in VLSI Systems (DFT), 2007,
pp. 87–95.

[2] M. Caffrey, K. Morgan, D. Roussel-Dupre, S. Robinson,
A. Nelson, A. Salazar, M. Wirthlin, W. Howes, and D. Richins,
“On-Orbit Flight Results from the Reconfigurable Cibola
Flight Experiment Satellite (CFESat),” in Proceedings of the
IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2009, pp. 3–10.

[3] C. CarMichael, “Triple Module Redundancy Design
Techniques for Virtex FPGAs,” Xilinx Inc., Applica-
tion Note XAPP197, Jul. 2006. [Online]. Available:
http://www.xilinx.com

[4] Xilinx Inc. (2005) Radiation Effects and Mitigation Overview.
Presentation. [Online]. Available: http://www.xilinx.com/esp/
aerospace.htm

[5] B. Bridgford, C. CarMichael, and C. W. Tseng, “Single-
Event Upset Mitigation Selection Guide,” Xilinx Inc.,
Application Note XAPP987, Mar. 2008. [Online]. Available:
http://www.xilinx.com

[6] J. Johnson, W. Howes, M. Wirthlin, D. McMurtrey, M. Caffrey,
P. Graham, and K. Morgan, “Using Duplication with Compare
for On-line Error Detection in FPGA-based Designs,” in IEEE
Aerospace Conference, 2008, pp. 1–11.

[7] A. H. Gholamipour, H. Eslami, A. Eltawil, and F. Kurdahi,
“Size-Reconfiguration Delay Tradeoffs for a Class of DSP
Blocks in Multi-mode Communication Systems,” in Proceed-
ings of the IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2009, pp. 71–78.

[8] K. Papadimitriou, A. Anyfantis, and A. Dollas, “An Effective
Framework to Evaluate Dynamic Partial Reconfiguration in
FPGA Systems,” IEEE Transactions on Instrumentation and
Measurement, Apr. 2010.


