
PERFORMANCE EVALUATION OF A PRELOADING MODEL IN DYNAMICALLY
RECONFIGURABLE PROCESSORS

Kyprianos Papademetriou ∗ Apostolos Dollas †

Department of Electronic and Computer Engineering
Technical University of Crete

GR73100 Chania, Crete, Greece
email: {kpapadim, dollas}@mhl.tuc.gr

ABSTRACT
Dynamic reconfiguration allows for the reuse of the same
hardware by different tasks of an application at different
stages of its execution. However, reconfiguring the hard-
ware at run-time incurs a configuration delay causing per-
formance degradation of the application. This paper eval-
uates a preloading model that hides the configuration over-
head. An existing preloading model is augmented according
to the physical constraints of the system. A reduction of 6%
up to 86% in execution time has been obtained with the new
model.

1. INTRODUCTION

In our first work [1] it was shown that it is well worth in-
vestigating whether a preloading model leverages the per-
formance of an application designed on a partially reconfig-
urable hardware. The contributions of the present work vs.
[1] include a new experimental framework that better mod-
els a reconfigurable processor, examination of the impact of
the proposed model to the overall execution length, and dis-
cussion of the problems incurred by the proposed model.

A variety of preloading models exist that attempt to re-
duce reconfiguration overhead [2]. Most of them do not take
into account resource constraints. Banerjee et al [3] con-
sider reconfiguration overhead and configuration prefetch-
ing, while selecting a suitable task granularity. Then, simul-
taneous scheduling and columnar placement are performed,
where the scheduling integrates prefetch to reduce recon-
figuration overhead. Our work augments the results in [2]
which describes the static prefetching algorithm. It is also
related to [3] that schedules tasks according to the physical
resource constraints. The difference is that present work ex-
amines specific places in the code, i.e., branches, to select
the task to be transformed according to the resource con-
straints.
∗Funded with a Ph.D fellowship by the Greek Ministry of National Ed-

ucation and Religious Affairs under the program Heraklitus, EPEAEK II
†Also at ITRI, Wright State University, Ohio

2. CONFIGURATION IN MODERN DEVICES

Dynamic reconfiguration is applied on reconfigurable pro-
cessors combining a fixed processing unit (FPU) with a re-
configurable processing unit (RPU) on a single chip. In a
realistic scenario FPU initiates RPU configuration and con-
tinues undisturbed its execution, i.e., FPU execution is not
stalled waiting for the configuration data to be loaded. The
instruction inserted into FPU’s code resembles any other in-
struction, consuming a single slot in the pipeline.

The configuration memory of Xilinx Virtex-II is arranged
in 1-bit width vertical frames. They are the smallest address-
able segments of the device configuration memory space and
they configure a narrow vertical slice of many physical re-
sources. A pad frame is added at the end of the configuration
data which flushes out the reconfiguration pipeline [4].

Although Virtex-II devices have heterogeneous physical
resources this work assumes a homogeneous device model
wherein application tasks are placed on CLB columns only.
Furthermore, for sake of simplicity we consider that a task’s
circuit is placed in multiples of one CLB column and not in
multiples of one frame. As a consequence, reconfiguration
is performed in CLB column level only.

3. PROBLEM DESCRIPTION - PROPOSED
APPROACH

This section describes the problem that this work deals with
as well as the proposed model by presenting the modifica-
tions that have been made to the original prefetching model
[2]. Figure 1 shows an example application that comprises
of five tasks running on a reconfigurable processor. Figure 2
represents the reconfigurable processor with the parts occu-
pied by the FPU and the RPU along with the partitioning of
tasks. Tasks t0, t1 and t3 run on the FPU and t2, t4 run on
the RPU. In task t0, among other instructions, a decision is
made regarding which one of tasks t1, t3 should be followed.
Then, the corresponding RPUOP (RPU operation) is called.
Given that the available hardware allows for both RPUOPs



t0

t3 t1

…
Preload t4

...

t4 t2

Preload t2

llbe RPUOPmlbe RPUOP

Fig. 1. Insertion of preload instructions according to the
original model.

to be simultaneously placed onto the RPU, no reconfigura-
tion delay is incurred during transition of execution from t0
to the selected RPUOP.

On the contrary, if a resource-constrained RPU is em-
ployed that can at most hold one of the t2, t4 a delay might
be incurred. In Figure 2(a) we assume that t4 corresponds
to the most likely to be executed (mlbe) RPUOP, whereas t2
corresponds to the least likely to be executed (llbe) RPUOP.
One more CLB column would be required to place both
RPUOPs. In Figure 2(b), as t4 has been preloaded onto the
RPU according to the prefetching algorithm [2], in case the
outcome of branch in t0 requires t2 after the intervening task
t1 the execution might be stalled. The second preload in-
struction of Figure 1, reconfigures the RPU with t2 which
illustrated in Figure 2(c). If the system supports concurrent
FPU execution and RPU reconfiguration, t1 execution will
hide part or even all of the reconfiguration time. The amount
of time that can be hidden depends on the execution length
of t1 and the configuration latency of t2.

The static prefetching algorithm of [2] considers that
since the total size of the reachable RPUOPs for a certain
node could exceed the capacity of the chip, only highly prob-
able prefetches under the size restriction of the chip are gen-
erated. The rest of the reachable RPUOPs are ignored. In
our model given an area constraint, transformations to the
task graph are performed to employ a more aggressive preload
that utilizes all the physical resources. This is illustrated in
Figure 2(d) and (e). If t4 is the mlbe RPUOP, it is selected
for preloading. RPUOP t2 is then transformed; it is split into
two subtasks in that t2a fits on the remaining portion of the
hardware. Task t2a is preloaded before t0. Therefore, in Fig-
ure 1 if the outcome of the branch requires t2, only subtask
t2b is required to be loaded after t0.

In this work it is assumed that the RPUOPs selected for
split are divisible and recombinable. The idea is along with
the placement of the mlbe RPUOP to automatically break
down the llbe RPUOP into non-functional tasks according

+

(a)

(b) (c)

(d) (e)

t4 t2t0,
t1,
t3

FPU +
interface

RPU

t4
t0,
t1,
t3 X t2

t0,
t1,
t3

t0,
t1,
t3

t4
t0,
t1,
t3

t2bt2a t2a

Fig. 2. (a) shows that not all tasks fit into the platform. (b)
and (c) correspond to the original model, (d) and (e) corre-
spond to the augmented model.

to the physical constraints. Then one portion is placed on
the RPU and in case the llbe RPUOP is called, the remain-
ing portion is loaded by displacing the mlbe RPUOP that
was not finally executed. The cost of disconnecting the dis-
placed RPUOP when loading the remaining portion of the
split RPUOP is not examined. In addition, as illustrated in
Figure 2(d) the proposed model fully utilizes the available
area. An issue arisen at this point is the limitation to the
placement options of the RPUOPs compared to the original
model. To effectively exploit the augmented model, the first
subtask should be placed on an appropriate location where
the second subtask would be adjacently placed by replacing
the mlbe RPUOP as shown in Figure 2(e). The original mo-
del does not deal with such restrictions, i.e., llbe RPUOP is
loaded only when the mlbe RPUOP is not executed. The
trade-offs between the two models regarding this issue is an
interesting study but present work does not deal with this.

4. EXPERIMENTAL SETUP

The experimental setup consists of an application scenario
and the attributes that represent the physical resources of a
reconfigurable processor as well as the time and area re-
quired to carry out the tasks of the application. The ap-
plication is represented by a task graph where each node
corresponds to a task. This graph can be extracted from a
functional specification in a high-level language like Ver-
ilog, VHDL, C etc. In order to generate different problem
instances the TGFF tool [5] was used. It generates pseudo-
random task-graphs while users have parametric control over
a number of attributes for tasks, processors, and commu-
nication resources. Correlations between attributes may be
parametrically controlled.

In Figure 2, on the left part of the device an FPU is
placed, e.g., Microblaze, along with the interface with the



B

A


Prefetch t0_2Prefetch t0_4

A
B



A


A

Prefetch t0_2

Prefetch t0_2a

B


B

Prefetch t0_4b

A

Prefetch t0_4a

Prefetch t0_2b

B

Prefetch t0_4

(a) (b)

t0_0 (0)

t0_3 (3) t0_1 (1)

t0_4 (4) t0_2 (2)

t0_0 (0)

t0_3 (3) t0_1 (1)

t0_4 (4) t0_2 (2)

Fig. 3. (a) and (b) have the preloads according to the orig-
inal and the augmented model respectively. Two different
scenarios regarding the insertion and sequence of preload
instructions are denoted by the labels A and B at the thin
arrows.

RPU, e.g., ICAP. The rest of the device implements the RPU.
Figure 3 has the examined task graph as generated by TGFF.
Notice that regarding the task names a number on the left of
the low dash exists indicating the graph’s ID. This ID is used
if more that one graphs are generated and as we examine one
graph only we eliminate it, e.g., t0 2 will be referred as t2.

The left graph of Figure 3 is carried out with the original
model and the right graph is carried out with the augmented
model. In Figure 3(a), when the total size of t2 and t4 is
larger than the available hardware only the mlbe RPUOP
is preloaded. For example, in scenario B it is the t4 that
is preloaded before t0. If the decision matches the preload
instruction no new preload is executed (the demanded con-
figuration data are already loaded or are being loaded to the
RPU). On the contrary, if t2 is the outcome of the branch, the
corresponding preload instruction located after t0 should be
executed, incurring a greater configuration overhead to the
process (the demanded configuration data are not contained
onto RPU when execution reaches t2). It is this case we ex-
amine. In Figure 3(b) in scenario B, task t4 is preloaded and
then a preload instruction of a portion of the task t2 is in-
serted. The latter was split into two subtasks, t2a and t2b,
by statically transform the given task graph. The split was
performed in that the total size of t4 and t2a equals to the
available hardware. In case the branch’s outcome requires
t2 the preload instruction for t2b is executed.

A testbench is constructed consisting of 50 systems ex-
ecuting the same task graph. Each task node is unique. This
is denoted by the values in the parentheses of Figure 3. The
platform contains 24 CLB columns of 32 CLBs each which
resembles the Virtex-II XC2V500 device. The FPU with the
interface occupies 6 CLB columns which is roughly realis-
tic compared to the area required for Microblaze and ICAP.
It is assumed that each task carried out by the FPU takes an

Table 1. Configuration attributes for XC2V500.
Data from Xilinx’s data-sheet:

Device XC2V500
Number of CLB Col./chip 24

Number of frames/chip 928
Conf. time/chip 4.85ms

Number of frames/CLB col. 22

Simple computations give:
Conf. time/frame 4.85ms÷ 928 = 5.22µs

Conf. time/CLB col. 22 ∗ 5.22µs = 115µs

Conf. time/CLB col. w. pad 115µs + 5.22µs = 120.22µs

average execution of 300±250µs. The RPU is implemented
with the remaining 18 CLBs columns. The average number
of CLB columns required by a task is chosen to 10± 8. The
tasks on the RPU are assumed to be executed in an aver-
age of 200 ± 180µs. The only correlated attributes used in
the experiments are the CLBs needed for each RPUOP and
their execution time. Configuration time is also needed for
the experiments. A similar to ICAP interface is considered
with 8-bit of data running at 66 MHz. This is used for the
computations of Table 1. Configuration time is proportional
to the number of frames to be loaded. This is used to extract
the configuration time of the CLB columns to be loaded.

This setup considers column-based reconfiguration and
compared to [1] which examines reconfiguration per CLB
unit it is more realistic. Except of the configuration latency
and overhead that were examined in the first work as well,
present work examines more parameters such as how does
the utilization of remaining CLBs after preloading the mlbe
RPUOP affect the application execution length.

5. EXPERIMENTAL RESULTS AND DISCUSSION

In this section the experimental results showing the perfor-
mance gained by the augmented model are discussed. Fig-
ure 4 has the execution length of the overall process for
the two models for different values of remaining CLB col-
umns after preloading the mlbe RPUOP. A set of 50 ex-
periments were conducted for the same task graph and the
average for each CLB column was used to construct the
chart graph. In some cases the RPUOPs were completely
preloaded, i.e., their total size was smaller than the avail-
able hardware. These cases are not included. The results
concern llbe RPUOP execution. It is observed that as the
volume of CLB columns that can be utilized for preloading
the llbe RPUOP increases the execution length of the aug-
mented model decreases compared to the original model.

To evaluate the improvement in execution length, the
equation 100 × (ELorig − ELaugm) ÷ ELaugm was used



0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8

Available CLB columns after preloading the MLBE task

E
xe

cu
ti

o
n

 le
n

g
th

 (
u

s)


Fig. 4. Execution lengths for the original and augmented
model for different values of remaining CLB columns after
preloading the mlbe RPUOP. The llbe RPUOP is chosen for
execution.

where, ELorig and ELaugm are the execution lengths for
the original and the augmented model respectively. For 1
available CLB column the decrease was 6.16%, whereas for
7 available CLB columns the biggest improvement was ob-
tained, equal to 86.55%.

Table 2 shows the reconfiguration overhead for the aug-
mented model in contrast to the original model. It consol-
idates the worst cases with respect to the length of con-
figuration latency for the augmented model, i.e., it corre-
sponds to the cases in which for a specific number of re-
maining CLB columns after preloading the mlbe RPUOP,
the second portion of the llbe RPUOP to be loaded is the
largest. FPU task column has the execution time of the
task (t1 or t3) before which the preload instruction is in-
serted. CLOM (Configuration Latency for the Original Mo-
del) refers to the original model and is the time needed to
load the whole llbe RPUOP. CLAM (Configuration Latency
for the Augmented Model) refers to the augmented model
and is the time needed to load the second portion of the
llbe RPUOP. CLB col is the number of remaining CLB col-
umns after preloading the mlbe RPUOP. Reconfiguration
overhead corresponds to the amount of time that can(if posi-
tive)/can not(if negative) be hidden by overlapping reconfig-
uration with processor execution. ROOM (Reconfiguration
Overhead for the Original Model) is the overhead caused
by loading llbe RPUOP before FPU task (after the branch).
ROAM (Reconfiguration Overhead for the Augmented Mo-
del) is the overhead caused by loading the second portion of
llbe RPUOP before FPU task (after the branch).

The above results illustrate the relation between configu-
ration latency and reconfiguration overhead and whether re-
configuration can be hidden by the processor’s execution. In
a system where the FPU task executes concurrently with the
RPU reconfiguration, depending on the FPU’s and RPU’s
tasks execution time and the number of remaining CLB col-

Table 2. Performance gain of the augmented algorithm.
Worst cases regarding CLAM time are shown. All times
are in µs.

FPU task CLOM CLAM CLB col ROOM ROAM

167 1890 1775 1 -1722 -1607
335 1752 1522 2 -1417 -1187
335 1616 1271 3 -1281 -936
125 1195 735 4 -1070 -610
525 1285 710 5 -759 -184
227 815 125 6 -698 -8.4
236 923 118 7 -686 118
333 1116 196 8 -783 136

umns after preloading the mlbe RPUOP, the designer can de-
cide whether it is worthwhile trying to hide the llbe RPUOP’s
configuration latency by applying an appropriate split oper-
ation.

6. CONCLUSIONS

The experimental results showed significant improvements
in reconfiguration overhead over the original prefetching mo-
del. The main advantage of the proposed model is the in-
crease in the utilization of the available hardware achieved
by splitting the least likely to be executed task. A problem
arisen is the limitation to the placement options due to the
restriction of the area where the task can be placed. This
might cause degradation in task’s execution speed. More-
over, unless the less likely to be executed task is called, an
overhead is paid for the configuration data of the first por-
tion of the less likely to be executed task. The trade-offs
between these limitations and keeping the system in an ac-
ceptable performance level is a matter of further research.

7. REFERENCES

[1] K. Papademetriou and A. Dollas, “A Task Graph Approach
for Efficient Exploitation of Reconfiguration in Dynamically
Reconfigurable Systems,” in Proc. of the IEEE Symposium
on Field Programmable Custom Computing Machines, April
2006.

[2] Z. Li, “Configuration Management Techniques for Recon-
figurable Computing,” Ph.D thesis, Northwestern University,
June 2002.

[3] S. Banerjee, E. Bozorgzadeh, and N. Dutt, “Physically-aware
HW-SW Partitioning for Reconfigurable Architectures with
Partial Dynamic Reconfiguration,” in Design Automation Con-
ference, June 2005, pp. 335–340.

[4] B. Blodget, P. James-Roxby, E. Keller, S. McMillan, and
P. Sundararajan, “A Self-reconfiguring Platform,” in Proc. of
the International Conference on Field Programmable Logic
and Applications, September 2003, pp. 565–574.

[5] R. Dick, D. Rhodes, and W. Wolf, “TGFF: Task Graphs
For Free,” in Proc. of the International Workshop on Hard-
ware/Software Codesign, April 1998, pp. 97–101.


