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Abstract—One very promising approach for solving complex
optimizing and search problems is the Genetic Algorithm (GA)
one. Based on this scheme a population of abstract representa-
tions of candidate solutions to an optimization problem gradually
evolves toward better solutions. The aim is the optimization of a
given function, the so called fitness function, which is evaluated
upon the initial population as well as upon the solutions after
successive generations. In this paper, we present the design of
a GA and its implementation on state-of-the-art FPGAs. Our
approach optimizes significantly more fitness functions than any
other proposed solution. Several experiments on a platform with
a Virtex-II Pro FPGA have been conducted. Implementations
on a number of different high-end FPGAs outperforms other
reconfigurable systems with a speedup ranging from 1.2x to 96.5x.

I. INTRODUCTION

Genetic Algorithms (GAs) are search optimization tech-
niques based on Darwin’s theory about evolution. They form
a particular class of evolutionary algorithms that utilize tech-
niques inspired by evolutionary biology such as inheritance,
selection, crossover and mutation. Their main advantage is that
they can solve more complex problems, in contrast to other
heuristic algorithms, because of their strong characteristics
which are mainly the following [1]: (a) they search starting
from a population of points and not from a single point. If
one path turns out to be a dead end, they eliminate it and
continue working on more promising avenues, giving them a
greater chance of finding the optimal solution, (b) they use the
inherited fitness function information and not other auxiliary
knowledge. Instead of using previously known domain-specific
information when taking decisions and making changes, they
make random changes to their candidate solutions and then
use the fitness function to determine whether those changes
produce an improvement or not, (c) they use probabilistic
transition rules and not deterministic ones, and (d) they work
with the coding of the parameter set and not the parameters
themselves.

The motivation for implementing GAs in hardware stems
from the fact that they are very CPU intensive while they
are also intrinsically parallel algorithms. Moreover, the basic
operations of a GA can be executed in a pipelining fashion. In
addition, the pipelined datapath can be replicated in a way that
many datapaths can process different population members, in
parallel.

A hardware-based genetic algorithm (HGA) implemented
on an FPGA board was first published in 1995 [2]. This design,
the so called original HGA, was implemented in a board with

eight FPGAs. In present work we implemented the HGA in
the XUPV2P platform. In order to create a flexible and low-
cost design we have utilized the embedded PowerPC of this
FPGA as well as built-in special-purpose cores like multipliers.
We fine tuned the architecture of the HGA so as to be more
parallel, and then we parameterized it and added more complex
fitness functions. The resulted architecture was implemented in
a number of high-end FPGAs. Real-world experiments carried
out on a fully functional prototype demonstrate that our system
outperforms any existing or proposed solution.

Our architecture has been extended in order to be flexible
so as to support a wide range of different genetic parameters.
We did this because there exist a few promising publications
from the Genetic Algorithms field proposing the examination
of the GA behavior when utilizing different fitness functions,
and examination of the GA performance when altering the
population size [3]. In this paper we explore the GA’s behavior
for different types of functions by conducting different experi-
ments and introduce the ability to vary the genetic parameters.
The main contributions of our approach can be summarized
in the following:

• our system has significantly higher performance com-
pared to other hardware systems,

• it supports more fitness functions than any existing sys-
tem, and it also supports parameterized values for the
population size, the member width and the fitness value
width. Thus a flexible design is available, more than any
other existing design allowing to explore the impact of
genetic parameters in the GA performance,

• our real-world experiments and results cover a different
viewpoint regarding the efficiency of a reconfigurable
hardware system implementing GAs

The paper is structured as follows: In Section II the basics
of the genetic algorithms along with the existing hardware de-
signs are presented. Section III describes the original HGA [2],
and our initial implementation on a XUPV2P platform. Section
IV presents our optimizations. Section V has implementation
details regarding the resources utilization and the execution
frequency when the optimized system was implemented in a
number of high-end FPGAs. Section VI contains the exper-
imental results and comparisons with existing and proposed
reconfigurable systems. Finally, Section VII discusses the
present status and the future directions of this work.



TABLE I
INITIAL POPULATION AND FITNESS VALUES BEFORE THE GA OPERATION

i Chromosome xi (in bin) f(xi) = 3x f(xi)÷
∑

f(xi)
Expected Count
f(xi)÷ f(xi)

Actual Count

1 11010 78 0.412 1.65 2
2 01101 39 0.206 0.82 1
3 00010 6 0.031 0.12 0
4 10110 66 0.35 1.39 1∑

f(xi) 189 1 4.00 4
f(xi) 47.25 0.25 1.00 1

max f(xi) 78 0.412 1.65 2

TABLE II
THE POPULATION AND THE FITNESS VALUES AFTER ONE GENERATION

i
Chromosome xi (in bin)

After Selection Mate Crossover Point After Crossover f(xi) = 3x

1 11/010 x3 2 11101 87
2 1/1010 x4 1 10110 66
3 01/101 x1 2 01010 30
4 1/0110 x2 1 11010 78∑

f(xi) 261
f(xi) 65.25

max f(xi) 87

II. RELATED WORK

In this section we introduce the basics of genetic algorithms
and we present the most efficient existing hardware designs;
some of those systems have been implemented in real hard-
ware whereas other have been simulated.

A. Genetic algorithm operation
A GA is implemented as a computer simulation in which

a population of abstract representations (called chromosomes)
of candidate solutions (called individuals or phenotypes) to
an optimization problem gradually evolves toward better so-
lutions. Traditionally, solutions are represented in binary as
strings of 0s and 1s, but other encodings are also possible.
The basic operations of a GA are selection, crossover, and
mutation. Initially, a population of candidate solutions of the
problem is randomly generated. A fitness function is then
applied on each member of the population and produces a
fitness value. The members are evaluated according to their
fitness values and the most promising ones are selected as
parents. The ‘fittest’ member has the more chances to be
selected as a parent. Then the following process is repeated
until a certain termination criterion is met: The selected
members, i.e. parents, are randomly mated via crossover. This
means that they exchange part of their body. Then, mutations
are performed to preserve population diversity in order to
avoid convergence to local optima, and the new individuals
called offsprings are generated. Afterwards, the fitness value
of each offspring is evaluated which affects the selection
process for the next generation; in every step the worst
part of the population is replaced with the newly generated
offsprings. The termination criterion might be a maximum
number of generations, or, a satisfactory fitness value. If m
is the population size, and g is the number of generations,
a typical GA would execute each of its operations m × g
times. If the termination criterion is a predefined number of
generations, a satisfactory solution may or may not be reached.
Recapitulating, the GA operation involves random number

generation, copying, and partial string exchange and lies on
the survival of the fittest when searching for optima. The use
of a population of points helps the GA to avoid converging to
false peaks (local optima) in the search space.

The exact GA operation is better illustrated with the ex-
ample shown in Tables I and II. First, an initial population
of four chromosomes each encoded with a string of 5 bits is
given. The values in the other cells of the Table are decimal.
The fitness function to be optimized is f(x) = 3x. The
scope is to maximize the fitness function over the domain
0 ≤ x ≤ 31. Table I has the initial population along with the
corresponding fitness values and percentages as derived from
the fitness function. The “f(xi)÷

∑
f(xi)” column contains

the probability of the chromosomes selection. The “Actual
Count” column has the selection results, which correspond
with the values of the “Expected Count” column.

After selecting the chromosomes, these are randomly paired
and each pair is examined separately. For each pair, the GA
decides whether to perform crossover or not. If it does not,
then both chromosomes are placed into the population with
possible mutations. If it does, then a random crossover point
is selected and the crossover task proceeds. Table II illustrates
the situation after the completion of the GA operation. It is ob-
served that the selection process left out the chromosome with
the lowest probability, i.e. x3 of Table I. In our example, we
have assumed that the selected chromosomes to be randomly
paired are A=11010 and B=01101. After two point crossover,
i.e. 11/010 and 01/101, they become A’=11101 and B’=01010.
These bit strings are then placed in the population with
possible mutations. The GA operation invokes the mutation
operation on the new bit strings very rarely, i.e. with a low
probability, generating a random number for each bit and
flipping this bit only if the random number is less than or
equal to the mutation probability. In the present example, the
mutation operation has not affected the bit strings.

As shown in Table II, after the selection, crossover, and
mutation are complete, the new strings are placed in a new



population. In this example, just after only one generation,
the sum of fitness values

∑
f(xi) was increased from 189 to

261 and the average fitness value f(xi) was increased from
47.25 to 65.25, which gives for both an increase of 38%;
the maximum fitness value max f(xi) was increased from
78 to 87 which gives an increase of 11%. These metrics can
be monitored throughout GA execution as the quality criteria
of the population after each generation. The above operation
continues until the termination criterion is met.

B. Hardware implementations of GAs
Scott et al. [2] published one of the first works on hardware-

based implementation of a genetic algorithm. It forms the basis
of our work and we describe it in detail in the next Section.

Koonar et al. [4] designed a genetic algorithm for circuit
partitioning in VLSI physical design automation. All GA
operations are carried out by the hardware. The fitness function
to be optimized performs a combination of bit-wise AND
and OR operations. The synthesis results reported a maximum
frequency of 123 MHz for a Xilinx Virtex FPGA. However,
no actual hardware was implemented and simulations were
conducted at 50 MHz.

Martin et al. [5] implemented a GA that evaluates popu-
lations for fitness functions that correspond to the regression
problem and to a certain boolean logic problem. The former
problem uses the fitness function x = 2a + b with integer
values. The boolean logic problem has the fitness function
x = a ⊕ b. The authors experimented with different designs
utilizing different numbers of parallel fitness evaluation mod-
ules. The scope was to find the optimal degree of parallelism,
and thus evolution speed, when the silicon cost was taken
into account. The design was implemented on a Xilinx Virtex
FPGA running at 25 MHz.

Glette et al. [6] designed a system for image recognition
using a genetic algorithm. Only the fitness function is im-
plemented in hardware, whereas all other GA operations are
executed on an embedded PowerPC. The fitness function to be
optimized is the summation

∑
x. The design was implemented

in a XUPV2P platform. The synthesis reported 131 MHz;
however, due to the clock of the platform the hardware
executed at 100 MHz and the PowerPC at 300 MHz.

All the above designs conform to the simple GA style
described in [1]. Also, they all contain adequate experimental
results which allows for comparisons with our work, and
they experimented with moderate population sizes as we did
at the present phase. However, none of them has examined
the convergence of the different functions to optimums when
the number of generations changes, which is explored in the
present work. With respect to the generality of the architecture
our work is the first to incorporate six fitness functions and
variable population size, member width and fitness value
width.

III. THE INITIAL SYSTEM

Our design is based on the HGA system first presented in
[7], [2].

A. The original HGA
The HGA system consists of two parts, a software appli-

cation and the hardware design. The software running on a

PC, generates the initial population along with the genetic
parameters and writes them to a memory located on the
hardware platform. The hardware is the HGA core which reads
the contents of the memory, executes the GA and writes the
results back to the same memory for the user to view.

Using the software application the user controls the fol-
lowing genetic parameters: the population size m, the sum of
fitnesses of the initial population

∑
f(xi), the maximum num-

ber of generations g, a seed for the pseudorandom generator,
the crossover probability and the mutation probability. More
specifically, the user enters the population size, the fitness
function to be optimized, the maximum number of generations
- which is the termination criterion -, and the crossover and
mutation probabilities. Then, the software produces randomly
the initial population, calculates the sum of fitnesses of the
initial population according to the given fitness function, and
generates a seed with a pseudorandom number generator.
Moreover, the software using the fitness function calculates
the fitness value of each member. Then, it concatenates each
member with its fitness value and forms a ‘quantity’. The
above are sent to the SRAM of the prototyping board through
the PCI interface. A “Go” signal from the software indicates
that the data have been written in the SRAM. The HGA core
then starts execution, and when done it activates a “Done”
signal indicating to the software that the final population has
been generated and written in the SRAM. The software reads
the SRAM contents, and writes them into a file for the user
to view.

The HGA core comprises the following modules shown in
Figure 1: the Memory Interface Module (MIM), the Population
Sequencer (PS), the Selection Module (SM), the Random
Number Generator (RNG), the Crossover and Mutation Mod-
ule (CMM) and the Fitness Module (FM). The HGA modules
have been designed according to the GA operators described
in [1]. They operate concurrently and they form a coarse-
grained pipeline. The Shared Memory (MEM) is the external
SRAM which is directly accessed by the software application
and by the HGA core. After the genetic parameters and the
initial population with the fitness values have been loaded
into the shared memory, a “Go” signal notifies the memory
interface module that the GA can start execution. In turn,
the MIM notifies the population sequencer, the pseudorandom
number generator, the fitness module, and the crossover and
mutation modules that they should start execution. Each of
these modules requests its parameters from the MIM, which
fetches them from the appropriate locations of the MEM. The
PS starts the pipeline by requesting population members from
the MIM and passing them to the SM. The latter receives a
member and decides whether it will be selected according to a
selection algorithm, called roulette wheel selection algorithm
[7]. More specifically, the SM compares the fitness value of
each member with a random number. If a member is selected,
then another member is examined until a pair of sufficiently
fit members is found. Then the pair of members is passed
to the CMM, and at the same time, the SM resets itself and
restarts the selection process. The CMM decides whether to
apply crossover and mutation based on random number values
sent from the RNG. Then, the new members are sent to the
FM for evaluation by the fitness function. When done, the
two new members are written to the MEM through the MIM.
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Fig. 1. Block diagram of the original HGA system.

The FM also keeps some records regarding the current state
of the HGA that are used by the SM to select new members.
The above steps are repeated until the FM determines that the
current HGA run is completed. When that happens the FM
notifies the MIM, which in turn shuts down the HGA modules
and activates the “Done” signal.

The original design was implemented in a board with eight
Xilinx FPGAs. Due to capacity limitations the member’s width
was n = 3 bit and only the function f(x) = 2x was optimized.
The width of the fitness value produced by the fitness function
was f = 4 bits, which accommodates the maximum fitness
value of a member. The experiments were conducted for a
population size of m = 16 members, and simulation were
reported for n = 4, f = 5 and m = 32. Finally, although the
synthesis result reported a frequency of 12 MHz, the prototype
operated at 2 MHz clock due to the wire-wrapping connection
between the FPGAs.

B. Porting the design to the XUPV2P platform

In the original implementation the software communicated
with the hardware through the PCI interface. In our case, this
is performed using the embedded PowerPC which provides
ready-to-use routines. Moreover, the external SRAM has been
replaced by a dual port memory implemented with FPGA
Block RAMs (BRAMs). Thus the Shared Memory is now
considered as part of the HGA core. Its size is 128 entries x 9
bits. Its depth accommodates the populations of two successive
generations, i.e. 2× 32 = 64, and the six genetic parameters.
More specifically, two distinct parts of the memory locations
have been assigned to two successive generations. During an
active generation, the new population members are written in
the memory part that contains the oldest members; it should
be noted that only the members of the previous generation are
needed during an active generation. An appropriate memory
width was selected such as to accommodate the concatenation
of the members with their fitness values, i.e. n=4 and f=5
respectively.

Our initial HGA system and some improvements have been
introduced in [8]. It operates as follows: When starting, only
the initial population and the genetic parameters are sent
from the PC to the PowerPC; those parameters are not at

all processed by the PC, they are just entered by the user.
Those values are written to the memory, i.e. MEM, which
is implemented with BRAM resources. Then, the PowerPC
activates a “Go” signal indicating to the HGA core to start
execution. After the GA execution completion, the HGA core
sends a “Done” signal to the PowerPC indicating that the final
population is available in the MEM. The PowerPC reads the
MEM contents and it sends them to the host PC for the user
to view. The system enters an awaiting state which allows for
the user to send new data. It should be noted that the initial
population and the genetic parameters could also be sent to the
PowerPC by other means (e.g. a simple keyboard attached to
the platform) making our system a fully embedded one. The
only reason for using an external PC was due to a Graphical
User Interface to enter the initial population and the genetic
parameters and getting the resulting data.

The communication between the PowerPC and the HGA
core is performed through the OPB bus; it is infrequent, i.e.
happens only at the initial and the final stages of system
execution, and thus it is conducted through memory mapped
registers. A signal activation controller, implemented in hard-
ware, stands between the PowerPC and the HGA core for
supervising their communication. This module undertakes the
task of holding a signal activated, which is driven from a reg-
ister written by the PowerPC, only for the necessary number
of cycles. For example, the disabling of the clock enable signal
when memory port access is not required, provides the best
technique to minimize the embedded memory dynamic power
consumption as described in [9]. This operation is depicted in
Figure 2.

We verified the correct operation by using the f(xi) of the
final population as the validation criterion. This is also used
as a criterion for optimization. We observed that for the same
fitness function, the resulted values after different generations
were almost equal to the ones published for the original HGA.
At this stage, only the f(x) = 2x was included, and the design
was not parameterized.

IV. THE NEW HGA SYSTEM

In the new system the type of fitness function to be
optimized is given as an input parameter from the user to the
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HGA core. All fitness functions are implemented in the HGA
core and their outputs are connected to a multiplexer. The
multiplexer outputs the result of the appropriate fitness func-
tion which is controlled with a selector driven by the above
parameter. The following six fitness functions are supported:
• f(x) = 2x
• f(x) = x
• f(x) = x + 5
• f(x) = x2

• f(x) = 2x3 − 45x2 + 300x
• f(x) = x3 − 15x2 + 500

In order to increase the performance of our design, we
implemented them using the built-in resources of the FPGA.
This is the first version of the improved HGA denoted as
HGAv1. As we gradually improve the design and we plan
to explore the HGA performance for various parameters [3],
in the next version we have parameterized the population size,
the member width and the fitness value width. In this system,
the so called P-HGAv1 (P stands for parameterized), we have
increased the depth of the Shared Memory (MEM) so as to
support large population sizes. Specifically, its depth has been
changed to 4096 so as to accommodate a population of up
to 2044 members, i.e. 2 × 2044 = 4088, plus the six genetic
parameters. In addition, we support larger members and fitness
values, i.e. we increased the member width to n = 10 and the
fitness value to f = 36. This affected other parameters, such as
the widths of the shared memory and the sum of fitnesses. The
former’s width was changed from 9-bits to 46-bits, so as to
accommodate the member and its fitness value. Consequently,
the width of the sum of fitnesses was changed to 47-bits.

The block diagram of the P-HGAv1 design is shown in
Figure 2. The HDL code was significantly changed to make it
parameterized, and to increase the parallelism. A new module
has been added, the fitness evaluation module, which consists
of built-in multiplier blocks and adders, a controller and a
multiplexer. The multipliers are implemented in a pipeline

manner. Thus the fitness value of each member is calculated
in more than one cycle. In the original design, the calculation
was done in a single clock cycle but for one simple function
only. In present system each multiplier indicates with a RDY
signal when its result is ready. The function controller handles
the RDY signals and activates a signal when the appropriate
fitness value is ready. Then, the function multiplexer drives the
appropriate fitness function to the output. Hence, the fitness
value of a member is calculated in more than one cycles, and
it finishes when the RDY signal is activated. The elapsed time
between a multiplier’s initiation and assertion of its RDY signal
varies depending on the fitness function.

As the operation is applied on pairs of members, we decided
to instantiate two components of the fitness evaluation module.
Thus when the CMM outputs the two new members, i.e. the
offsprings, it sends them to the FM module and the two fitness
evaluation modules. More specifically, both are sent to the FM,
and in parallel each of them is sent to one fitness evaluation
module. This allows for parallel evaluation of the two members
as soon as they are given by the CMM. In the original design
the two new members were evaluated by the FM in a serial
manner.

In order to increase the transparency during the experiments,
we added a dual port memory for storing the sum of fitnesses
of each population after successive generations; the sum of
fitnesses serves as a quality criterion for the generated popula-
tions. After the algorithm’s completion, the memory contents
are given to the PowerPC and then to the PC for the user
to view. The results of Section VI were collected using this
memory.

V. IMPLEMENTATION DETAILS

Table III has the area costs of the initial and the optimized
HGA systems covering the BRAMs, built-in multiplier blocks,
slices, flip-flops and LUTs utilization. For both systems, the
HGA core is clocked with the 100 MHz clock of the OPB bus,



TABLE III
INITIAL AND PARAMETERIZED HGA CORE RESOURCES UTILIZATION OF

THE VIRTEX-II PRO

Resources available HGA Porting P-HGAv1
# MULT18x18 136 1 (1%) 11 (8%)
# BRAMs 136 4 (3%) 5 (3%)
# Slices 13,696 830 (6%) 1,193 (8%)
# Flip Flops 27,392 792 (3%) 1,140 (4%)
# 4-In LUTs 27,392 1,520 (5%) 2,055 (7%)

while the PowerPC is clocked at 300 MHz. The development,
was conducted within the Xilinx EDK and ISE ver. 9.1 tools.

The initial implementation occupied 6% of the FPGA slices
and one built-in multiplier block. The latter is not occupied
by the function f(x) = 2x; this function is implemented
with logic resources and not built-in blocks so as to create
a design which is identical to the original one. The built-in
multiplier block is used within the SM module for multiplying
the sum of fitnesses with a random value; the low clock rate
achieved when this multiplier was implemented with CLBs
forced as to use a built-in multiplier. Finally, the BRAM
resources implement the main memory of the PowerPC and
the shared memory.

In the optimized P-HGAv1, the fitness functions occupy 8%
of the built-in multiplier blocks. One more BRAM was added
for storing the sum of fitnesses. The slices increased to 8%
mainly due to the control for the fitness evaluation modules
and the sum of fitnesses memory.

The above illustrate the differences in the implementation
between the initial HGA design, and our optimized P-HGAv1,
both as implemented in the Virtex-II Pro FPGA. It would
have not been reasonable to compare any new implementations
with the original HGA [2] due to the huge differences in the
technology since then. A first remark about the P-HGAv1, as it
has low silicon requirements while supporting multiple fitness
functions and it is parameterized, is that it can perfectly fit into
larger applications/systems in which the genetic algorithms are
used for optimization, like scheduling and image recognition
systems [6].

During the development of the fitness evaluation module we
experimented with different configuration for the multipliers
implementation using the Xilinx Core Generator. The param-
eters to be configured concern the depth of the pipelining,
and whether the input and the output of the multiplier are
registered. In Table IV, the checked cells correspond to the
selected configurations for the generation of each multiplier.
Each of them was incorporated into the P-HGAv1 design, and
the results after place and route are shown in the Table. Based
on these results, we created all fitness functions using the
configuration that produces the fastest multipliers. We believe
that Table IV clearly demonstrates the effect of the designer’s
decisions on the actual performance of such a system.

As reported in Section IV we continuously evolve the
architecture and at present we have incorporated six fitness
functions, parameterized the population size and increased the
member and the fitness value widths. Moreover, we experi-
enced with newer FPGAs of similar volume with the Virtex-
II Pro, which just illustrates the benefits when implementing
the design in a newer FPGA technology. The results were

TABLE V
P-HGAV1 CORE RESOURCES UTILIZATION OF THE VIRTEX-4

Resources Available P-HGAv1
# DSP48s 128 10 (7%)
# BRAMs 232 5 (2%)
# Slices 25,280 1,223 (4%)
# Flip Flops 50,560 1,139 (2%)
# 4-In LUTs 50,560 2,276 (4%)

TABLE VI
P-HGAV1 CORE RESOURCES UTILIZATION OF THE VIRTEX-5

Resources Available P-HGAv1
# DSP48Es 48 10 (20%)
# BRAMs 60 3 (5%)
# Slices 7,200 760 (10%)
# Flip Flops 28,800 1,124 (3%)
# 6-In LUTs 28,800 1,714 (5%)

produced after the placement and routing and are shown in
Tables V and VI. The algorithm operates at 136 MHz and 160
MHz, when targets the Virtex-4 and the Virtex-5 respectively.

VI. EXPERIMENTAL RESULTS AND COMPARISON

In this Section we present real-world results, and a per-
formance comparison with the existing hardware approaches
discussed in Section II.

A. Experimentation with different parameters

In our experiments we evaluated the optimization of the
fitness functions according to the number of generations. This
type of experiments is different from the ones conducted for
the original HGA [2], but we believe it demonstrates in a
more concrete way the efficiency of our approach. The fixed
parameters were m = 32, n = 4, and f = 14. Six different
functions were optimized and the P-HGAv1 ran for 1 up to
100 generations. Each experiment was repeated for several
initial populations that were randomly generated. The sum
of fitnesses serves as a quality criterion for the populations
produced after successive generations. The results are depicted
in Figure 3 in logarithmic scale.

As observed in the Figure all the fitness functions are
optimized, meaning that better solutions are found, just after
a few generations. This is due to the small population size
and the member’s width. However, the function f(x) =
x3 − 15x2 + 500 is optimized in less generations than the
other ones, i.e. it converges faster. This occurs as the specific
function has two optimums, 0 and 15. The rest of the fitness
functions converge in about 20 number of generations. In
Figure 3, an arrow pointing to the series of each fitness
function indicates the number of generations after which each
function converges.

B. Comparison with other hardware implementations

In order to accurately examine the performance of the P-
HGAv1 we inserted a module that counts the clock cycles for
each generation. The I/O timings were removed because we
are interested only in the execution time of the P-HGAv1. This
takes approximately 0.021msecs for each generation, and it
growths almost linearly with the number of generations. This



TABLE IV
THE EFFECT OF PARAMETERS DURING MULTIPLIER CONFIGURATION ON THE P-HGAV1 DESIGN

i
Maximum
Pipeline

Minimum
Pipeline

Register
Input

Register
Output

Output
Latency

Maximum P-HGAv1
Frequency(MHz)

1
√

1 101
2

√ √ √
2 102

3
√ √

1 102
4

√ √
1 108

5
√

0 60
6

√ √ √
2 94

7
√ √

1 98
8

√ √
1 99

TABLE VII
COMPARISON BETWEEN HARDWARE IMPLEMENTATIONS OF SIMPLE GAS

Ref. Year Device MHz m g Execution time (ms) Execution time (ms)
for g=1,000

[5] 2001 Xilinx XCV2000 25 16 511 14 27
[6] 2007 Xilinx XC2VP30 100 16 1,000 1,313 1,313
[4] 2002 Xilinx XCV50 50 20 100 7.2 72

P-HGAv1 2009 Xilinx XC2VP30 100 32 100 2.19 21.9
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Fig. 3. Fitness functions optimization and convergence over the number of generations

TABLE VIII
SPEEDUP OF THE P-HGAV1 IMPLEMENTED IN V-II PRO OVER OTHER

HARDWARE DESIGNS (ACTUAL IMPLEMENTATION)

Ref. V-II Pro
[5] x1.2
[6] x60.0
[4] x3.3

linearity was observed in [7] as well. In our case, we observed
that the above time varies slightly for different fitness functions
and initial populations.

Tables VII and VIII have the comparison of the P-HGAv1
implementation in Xilinx Virtex-II Pro with other hardware
approaches targeting small population sizes. Although the
existing approaches optimize different fitness functions, we

TABLE IX
EXECUTION OF THE P-HGAV1 IN HIGH-END FPGAS. NO ACTUAL

IMPLEMENTATION YET

Device MHz m g Execution time (ms)
Xilinx XC2VP30 107 32 1,000 20.4

Xilinx XC4VFX60 136 32 1,000 16.1
Xilinx XC5VLX50T 160 32 1,000 13.6

TABLE X
SPEEDUP OF THE P-HGAV1 DESIGN IN HIGH-END FPGAS OVER OTHER

HARDWARE DESIGNS (PAR RESULTS)

Ref. V-II Pro V-4 V-5
[5] x1.3 x1.6 x2.0
[6] x64.3 x81.5 x96.5
[4] x3.5 x4.4 x5.3



believe that this has a minor impact in the comparison results
as the module that executes the calculation of the fitness
function, does not consume much of the total execution time;
no matter if the fitness evaluation is a combination of bit-wise
AND and OR [4], XOR [5], summation [6], or polynomial [2],
we saw that it does not consume a large portion of the total
execution time. Specifically, in our case during one generation
which requires approximately 2100 cycles, 160 cycles are
consumed for the heavier fitness function when calculating
the fitness values for 32 population members; this entails 8%
of the total execution time. Finally, the execution time is
normalized for g = 1, 000 which is easily done due to its
linear relation with the generation counts.

The contents of Table VII have been sorted according to the
population size m. It is clear that the P-HGAv1 is significantly
faster when compared with the existing approaches. It is also
worth noticing that the populations supported by the existing
systems are smaller than the one supported by our system.
Since, as it is widely stated, the smaller the population size,
the faster the execution time, it is clear that our system would
be even faster for population sizes of m = 16 or 20. It should
also be stressed that the devices used for all those designs are
very similar, if not identical, to the one in which we have
implemented the P-HGAv1. Therefore, we strongly believe
that the comparisons are fair.

Another interesting observation concerns the implementa-
tion in [6] which uses the same XUPV2P platform as well.
In that work only the fitness function module is implemented
in hardware, whereas all other operations are carried out by
the PowerPC. This incurs significant delay to the algorithm
execution. The frequency in Table VII refers to the hardware
part, whereas the Power PC operates at 300 MHz.

As Table VIII shows, our system achieves a speedup of 1.2
up to 60 over the existing solutions, while it also supports
larger population sizes, member and fitness value widths, and
more fitness functions. We believe that the P-HGAv1 is one
of the most promising approaches for systems implementing
GAs. In addition, Tables IX and X have the performance
improvements when the design targets the Virtex-4 and Virtex-
5 FPGAs. They also have the performance improvement
achieved when the Virtex-II Pro executes at its maximum
frequency and not when it is clocked with the 100 MHz clock
of the OPB bus.

Present paper does not include area comparisons with other
works as our target was to implement a high-speed GA.
However, in the previous Section we showed that the new
HGA consumes a small portion of the resources. Moreover,
we do not provide comparison with software implementations
as due to the high parallelization and pipelining of the genetic
algorithm the existing hardware solutions are the stronger
competitors. However, this information is available in the
references.

VII. CONCLUSIONS AND FUTURE WORK

A fully functional prototype has been developed that sup-
ports the optimization of six different fitness functions, more
than any other existing design, with variable population size,
member and fitness value widths. It outperforms the existing
systems in terms of the processing speed, while it also supports

larger population sizes. This system is fully operational and
ready-to-use on the XUPV2P platform.

In order to further increase the efficiency of our approach,
the role of the PowePC will be extended in order to undertake
the reconfiguration of the fitness function. Moreover, even
though we have achieved better results as compared to the
existing FPGA designs, we plan to extend the hardware with
further parallelization of the selection modules, and replication
of the SM/CMM/FM pipeline. Also, we plan to identify and
report the optimal parallelism level when the cost of the silicon
resources is taken into account.

To the best of the authors knowledge, other works on
hardware designs for different genetic algorithms optimized
for larger populations have conducted experiments for up to
100,000 members [10] and for up to 1,000,000 generations
[11]. The impact of the population size increase to the GA
performance and the number of generations for the search of
the solution are of special interest to the scientific community
and thus we plan to conduct such experiments [3]. Moreover,
we saw that the convergence point depends on the fitness
function to be optimized; thus we will continue investigating
the behavior of the system regarding the convergence point for
more fitness functions and for larger population sizes.
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