
A SELF-RECONFIGURING ARCHITECTURE SUPPORTING MULTIPLE OBJECTIVE
FUNCTIONS IN GENETIC ALGORITHMS

Charalampos Effraimidis, Kyprianos Papadimitriou, Apostolos Dollas, Ioannis Papaefstathiou

Department of Electronic and Computer Engineering
Technical University of Crete

Chania, Greece
{ceufraimidis@isc, kpapadim@mhl, dollas@mhl, ygp@mhl}.tuc.gr

ABSTRACT

Genetic algorithms (GA) are search algorithms based on the
mechanism of natural selection and genetics. FPGAs have
been widely used to implement hardware-based genetic al-
gorithms (HGA) and have provided speedups of up to three
orders of magnitude as compared to their software counter-
parts. In this paper, we propose a parameterized partially
reconfigurable HGA architecture (PPR-HGA). The novelty
of this architecture is that it allows for the objective function
to be updated through partial reconfiguration, and supports
various genetic parameters.

1. INTRODUCTION

Genetic algorithms (GA) are techniques used to find exact
or approximate solutions to optimization and search prob-
lems [1]. Despite the GA ability to provide good solutions
to various problems, its algorithmic structure is simple. In
Figure 1 each of the block modules performs a simple oper-
ation: (i) the fitness module performs the evaluation of the
chromosome, (ii) the sequencer module randomly selects
the chromosomes, i.e. an aspect of the model under study,
and passes them to the selection module, (iii) the selection
module decides which of the sequenced module should ad-
vance, and (iv) the mutation and crossover modules mutate
and mate the selected chromosomes.

The need for hardware implementation of GAs arises
from the overwhelming computational complexity of prob-
lems that cause delays in the optimization process of soft-
ware implementations. The speed advantage of hardware
and its ability to parallelize, offer great advantages to ge-
netic algorithms to overcome those problems. Speedups of
1 to 3 orders of magnitude were achieved when frequently
used software routines were implemented in hardware with
Field Programmable Gate Arrays (FPGAs) [2]. However,
those implementations were focusing on solving one spe-
cific problem due to the hardware resources constraints.

Over the past few years, many vendors have incorpo-
rated the Partial Reconfiguration (PR) technology to certain
FPGAs. This technology provides great adaptability, as part

Fig. 1. Genetic algorithm flowchart

of the device can be reconfigured on-the-fly without affect-
ing the rest of the device. We present a parameterized par-
tially reconfigurable HGA (PPR-HGA) that solves various
problems by efficiently exploiting the device resources. As
opposed to the prior state of the art, this architecture can load
the requested objective function - also called fitness func-
tion - from an external device, and thus changing the target
problem while overcoming the device area constraint prob-
lem. Furthermore, it has the ability to incrementally build its
fitness function in order to reduce the total reconfiguration
overhead. The contributions of this work are:

• Optimization of an HGA and parameterization of its
features for maximum problem support

• Implementation of a reconfigurable mathematical unit
to support multiple fitness functions

• A PRM architecture that reduces bus macro usage

• This work is the first to use partial reconfiguration on
the GA problem



The rest of this paper is organized as follows: Section
2 presents previous works on HGA. Section 3 has the PPR-
HGA architecture. Section 4 illustrates the modifications
we made to the previous work on HGA concerning the static
part [3, 4]. The reconfigurable HGA part is presented in Sec-
tion 5. Section 6 has the experimental results, and Section 7
concludes the paper.

2. STATE OF THE ART

Based on the work by Scott et al. [2], Vavouras et al. im-
plemented an HGA in several FPGAs [3, 4]. The design
forms a coarse-grained pipeline and implements six differ-
ent polynomial fitness functions. Emam et al. [5] proposed
an HGA on non-linear adaptive filters for the purpose of
blind signal separation. The performance was reported with-
out the presence of a fitness function, claiming that the per-
formance of this implementation is determined by its fitness
function. The architecture is static, with fixed parameters
and solves a low complexity problem. Tommiska et al. [6]
designed an HGA with Altera Hardware Description Lan-
guage (AHDL). Their architecture combines the simplicity,
pipeline and structure of our HGA [3] with a more instance-
based architecture. Their HGA parameters are fixed and so
are their processing components.

The present work is based on our previous implementa-
tion [3, 4] which was proven to be very efficiently designed.
It has a coarse-grain pipeline that provides a good through-
put rate. The architecture is modular and the modules com-
municate through a handshaking protocol, thus increasing
robustness.

3. PPR-HGA ARCHITECTURE

We used the Xilinx partial reconfiguration design flow and
designed the PPR-HGA incrementally. This way the de-
signer can partially modify the design, leaving the place-
ment of the rest intact and thereby shortening design itera-
tions, and maintaining the required performance.

The design was implemented on a Virtex-II Pro FPGA.
Figure 2 shows the components of the design as connected
in the top level module: the system, the HGA and the DCM.
The system is composed of the PowerPC (PPC) and four pe-
ripherals: the Internal Configuration Acces Port (ICAP), the
Compact Flash (CF) controler peripheral, the serial port con-
troler, and the OPB-DCR - which through the OPB2DCR
bridge implements the interface between the On-Chip Pe-
ripheral Bus (OPB) and the Device Control Register (DCR).
The ICAP enables the PPC to read and write partially the
FPGA configuration memory. The PPC reads the stored
bitstreams from the Compact Flash and passes them to the
ICAP peripheral, which in turn reconfigures the device us-
ing a read-modify-write mechanism. The HGA is composed
of two parts, the static HGA and the reconfigurable HGA,
which are discussed in the next Sections.

Fig. 2. Top level architecture

4. STATIC HGA

Starting the optimization process, the first step was to in-
crease the HGAs supported parameter range which was ini-
tially discussed in [4]. The goal was to fully parameterize
the algorithm attributes in order to support the maximum
possible number of parameters for the target device features
[7]. This was not straightforward, since the increased pa-
rameters introduced a considerable degradation in the clock
frequency. We mitigated this by code optimization. We
found that the part of the algorithm that caused the clock
frequency reduction was the comparison of the member’s
fitness value with a threshold set by the selection module.
We then replaced this comparison with a subtraction and a
1-bit comparison, used to identify whether the subtraction
result was positive or negative. An extra Finite State Ma-
chine (FSM) state was added to handle the operations.

After the design parametrization, shown in Table 1, larger
parameter values were tested, i.e. up to 10-bit members
with 36-bit fitness function width. With these parameters the
number of distinct members was increased without increas-
ing the population size. This is because with 4-bit members
a maximum of 16 different members is represented, which
entails duplication of the same members among a popula-
tion of 32 members; with 10-bit members this duplication is
avoided. This increase in the distinct population members,
gives the GA increased efficiency as it avoids a premature
convergence to a local optimum. The genetic algorithm will
perform well and achieve better results as the rate of popu-
lation convergence will be less than the rate of search space
reduction [8].

Finally, additional modifications were applied to the mu-
tation/crossover module and to the selection module. Con-
cerning the selection module, we modified the selection pro-



Table 1. PPR-HGA attributes
Attribute Value Range
Memory 4096 × 46-bits

Max. population size 2044
Member width 10-bit

Fitness function width 36-bit
Sum of fitness width 46-bit

HGA max. clock frequency 127 MHz

cess in order to accelerate its decision. The new selection
criterion is the average fitness value of the population mem-
bers. The selection module will iterate until, either it finds
a member which fitness value is above a threshold, or, it
reaches an iteration limit which will force the unit to select
randomly a member.

Figure 3 has the static HGA modular architecture. The
output of the Crossover and Mutation unit is routed to the re-
configurable mathematical unit that implements the Fitness
Function, and the latter’s output is routed to the Memory.

5. RECONFIGURABLE HGA

5.1. Partial Reconfiguration Advantages

The PR technology allows the reconfigurable HGA to sup-
port more fitness functions. This offers better utilization
of the device features and better speed performance to the
HGA. By allocating the fixed amount of resources shown in
Table 2 we can solve many different problems, without hav-
ing to place them simultaneously within the same device.
This also offers a speed advantage as a result of the fact that
only the operating functions are routed, hence reducing the
logic and utilized area of the device and minimizing the rel-
ative delays.

Another advantage of PR is power consumption opti-
mization. A reduction in the static leakage of the compo-
nents can be achieved by loading blanking bitstreams to the

Fig. 3. Static HGA

Table 2. Resource utilization in a XC2VP30 FPGA
Resource Type Required Percentage
LUT 10118 36.9 %
FF 9235 33.7 %
SLICE 5144 37.5 %
MULT18x18 16 11.7 %
RAMB16 51 37.5 %

corresponding PRRs and keeping only the functional com-
ponents instantiated.

5.2. Mathematical Unit Implementation

We replaced the static HGA fitness function of our previous
implementation [3, 4] with a reconfigurable mathematical
unit. This unit comprises 4 partially reconfigurable regions
(PRR) each of which occupy the resources of Table 3. We
were constrained to the specific number of PRRs because
the Virtex-II Pro FPGA doesn’t support 2D reconfiguration.
It is mandatory to assign two different PRRs on the same
column. In each region a partially reconfigurable module
(PRM) is loaded. Each module applies simple mathematical
equations to the inserted binary number. Furthermore, each
module has 32-bit input and output values and it is designed
to process numbers ranging from 1 to 64 bits. It has 32-bit
interface but it internally reproduces up to 64-bit number.
This affects the mathematical unit performance as it needs 2
clock cycles to form a 64-bit number.

We implemented three PRMs for each PRR, a multiplier,
an adder and a zero unit. All the PRRs statically route their
output to an ADD unit. The latter summarizes the results of
the functional PRMs. The first column of PRRs also routes
their output to the next PRR, as shown in Figure 4. This se-
quential processing produces complex mathematical equa-
tions. Considering its performance, the mathematical unit is
pipelined and its performance is affected by the downloaded
mathematical units. Each PRM needs 2 to 4 cycles(1 cycle
for 1 to 32-bit input and 2 cycles for 33 to 64-bit input) to

Fig. 4. Mathematical unit architecture



Table 3. PRR resources allocation
Resource type Allocated
LUT 1216
FF 1216
SLICE 608
MULT18X18 4
RAMB16 4

create the I/O numbers plus a few cycles for the function
execution. For example the achieved throughput for 32-bit
input, 64-bit output and 4 cycles for the function execution
would be: 64-bit/((1+2+4)cycles × 127MHz) = 719 Mbps.

Each PRM contains three modules: The inputdata mod-
ule which receives 32-bit numbers and gradually assembles
them to form the input number. The function module which
evaluates the input numbers, and the outputdata module which
segments the output number of the function into 32-bit num-
bers, and then passes them to the next module. The synchro-
nization of the PRMs is achieved through the write signals.
When the write signal is asserted the next module stores the
32-bit input data. Figure 5 shows the PRM structure.

The inputdata and outputdata modules allow for the re-
duction of the required bus macros that implement the com-
munication between the PRRs. The bus macros presence
in the PRRs constrain their shape, as well as the designer’s
options. A reduction in the bus macros provides greater flex-
ibility to the floorplanning process and a better routing.

The design choices of the mathematical unit have been
made with respect to generality. Depending on the modeling
of the problem, only the necessary fitness evaluation mod-
ules need to be designed and downloaded.

6. EXPERIMENTAL RESULTS AND COMPARISON

The experimental results of the new PPR-HGA are com-
pared to the previous HGA implemented in the Virtex-II Pro
FPGA [3, 4]. The new architecture executes at 127 MHz,
and we tested it for member width equal to 10-bits, popu-
lation size 32-bits and simple fitness functions, i.e. x, 2x
and x2. In comparison with the initial HGA this architec-

Fig. 5. PRM structure

ture achieved better results. The GA not only converges
to the global optimum faster but the required clock cycles
are greatly reduced. The average convergence point of the
PPR-HGA for the above fitness functions is 7 generations as
opposed to an average of 22 generations needed for the pre-
vious HGA. There is also a clock frequency improvement
which accounts for the decrease of the average execution
time:

previous HGA exec.time = 218000cycles÷107MHz = 2ms
PPR−HGA exec.time = 178000cycles÷127MHz = 1.4ms

Therefore, the new architecture offers a speedup of 1.4.

7. CONCLUSIONS AND FUTURE WORK

This paper presents a new approach towards HGAs with ap-
plication of PR. It shows a way to create an autonomous self-
reconfiguring system that supports a large variety of fitness
functions. Due to the generality of the HGA architecture we
might have a performance disadvantage as compared with
other instance-specific HGAs. This is because the instance-
specific architectures utilize maximum hardware paralleliza-
tion. In the future, we can increase the reconfigurable mod-
ule support of the Compact Flash bitstream library which
will supply the user with additional reconfiguration options.

8. REFERENCES

[1] D. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning. Reading, Massachusetts: Addison-
Wesley Publishing Company, 1989.

[2] S. D. Scott, A. Samal, and S. Seth, “Hga: a hardware-based
genetic algorithm,” in Proceedings of the ACM third interna-
tional symposium on Field Programmable Gate Arrays.

[3] M. Vavouras, K. Papadimitriou, and I. Papaefstathiou, “Imple-
mentation of a genetic algorithm on a virtex-ii pro fpga,” in
Proceedings of the ACM/SIGDA International Symposium on
Field Programmable Gate Arrays.

[4] ——, “High-speed fpga-based implementations of a genetic
algorithm,” in Proceedings of the IEEE International Sympo-
sium on Systems, Architectures, Modeling and Simulation, to
be presented.

[5] H. Emam, M. Ashour, H. Fekry, and A. Wahdan, “Introducing
an fpga based genetic algorithm in the applications of blind
signals separation,” System-on-Chip for Real-Time Applica-
tions, 2003. Proceedings. The 3rd IEEE International Work-
shop on, pp. 123–127, June-2 July 2003.

[6] M. Tommiska and J. Vuori, “Hardware implementaion of ga,”
Aug 2006.

[7] Virtex-II Pro and Virtex-II Pro X FPGA User Guide v4.2.

[8] Y. R. Tsoy, “The influence of population size and search time
limit on genetic algorithm,” in Proceedings of the 7th Korea-
Russia International Symposium on Science and Technology,
vol. 3, June-July 2003, pp. 181–187.


