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ABSTRACT
Modern model-driven engineering and Agent-Oriented Soft-
ware Engineering (AOSE) methods are rarely utilized in
developing robotic software. In this paper, we show how a
Model-Driven AOSE methodology can be used for specifying
the behavior of multi-robot teams. Specifically, the Agent
Systems Engineering Methodology (ASEME) was used for
developing the software that realizes the behavior of a physi-
cal robot team competing in the Standard Platform League
of the RoboCup competition (the robot soccer world cup).
The team consists of four humanoid robots, which play soc-
cer autonomously in real time utilizing the on-board sensing,
processing, and actuating capabilities, while communicating
and coordinating with each other in order to achieve their
common goal of winning the game. Our work focuses on the
challenges of coordinating the base functionalities (object
recognition, localization, motion skills) within each robot
(intra-agent control) and coordinating the activities of the
robots towards a desired team behavior (inter-agent con-
trol). We discuss the difficulties we faced and present the
solutions we gave to a number of practical issues, which, in
our view, are inherent in applying any AOSE methodology
to robotics. We demonstrate the added value of using an
AOSE methodology in the development of robotic systems,
as ASEME allowed for a platform-independent team be-
havior specification, automated a large part of the code
generation process, and reduced the total development time.
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1. INTRODUCTION
The Model-Driven Engineering (MDE) paradigm has gai-

ned popularity among software developers and a number
of methodologies, models, and tools have been developed
to facilitate task decomposition, enable software reusability,
minimize coding mistakes, and allow for inexpensive soft-
ware maintenance. Even though some of this technology has
been extended to cover the needs of agent-oriented software
development, it is rarely exploited to address the needs of
robotic software. Indeed, the real-time constraints and the
concurrency of device operation in robotics typically impose
a low-level of coding, whereas the potential of programming
high-level behaviors that exploit the lower-level functionali-
ties at a meta-level of coding remains largely unexplored.

Agile processes address several modern software devel-
opment needs, such as the need for coping with continu-
ously changing requirements, the need for continuous eval-
uation, and the need for less bureaucracy related to the
extensive production of models that few people (only the
developers) can read [8]. Thus, agile processes are very useful
for projects, such as the development of a RoboCup team,
whereby an autonomous robot team competes against an-
other and the behavior of the robots may need to change
between games to cope with skilled opponents.

Given that robots capture the inherent properties of agents
(autonomy, social ability, reactivity, proactiveness), in this
paper, we show how an Agent-Oriented Software Engineer-
ing (AOSE) methodology can be used for specifying the be-
havior of multi-robot teams encompassing the model-driven
and agile characteristics described above. More specifically,
we focus on the Agent Systems Engineering Methodology
(ASEME) [21] and the domain of robotic soccer. Accord-
ing to Schlegel et al. [17], software engineering for robotics
is different in some important aspects from software engi-
neering for other, even related, areas, such as distributed
and real-time systems. Thus, in our work we had to adapt
the ASEME process to accommodate the needs of robotic
software development. In this context, we defined a generic
transformation tool (IAC2Monas) for instantiating the sta-
techart models of ASEME (the platform-independent mo-
dels [11]) to our Monas robot software architecture [14] for
integration with implemented functionalities and execution
on our robots; this coupling provided automatic code gener-
ation and execution on a generic multi-threaded statechart
engine along with the Monas software modules. As a result,
instead of specifying complex team behavior using hundreds
of lines of conventional code, the developer can now accom-
plish this task using an intuitive graphical representation



with advanced control modes. Our work demonstrates the
added value of using the ASEME methodology in robotics,
as it allowed for a platform-independent team behavior spec-
ification, automated a large part of the code generation pro-
cess, eliminated common coding mistakes, and reduced the
total development time.

2. BACKGROUND AND MOTIVATION
It is common practice for roboticists to specify a robot’s

behavior using conventional procedural code, whereby a com-
plex arrangement of conditional statements determines what
the robot is supposed to do in each condition. A higher-
level practice is to specify a robot’s behavior using the for-
malism of Finite State Automata (FSA) whose graphical
representation with nodes (states) and edges (transitions)
offers a more intuitive way of synthesizing the desired beha-
vior. However, as robots become more complex and employ
the computing power of modern processors, their program-
ming also becomes more demanding, requiring concurrent
and threaded code to support efficient implementations of
advanced operations, such as machine learning and signal
processing algorithms. Thus, there is a clear need for modern
software engineering methods in developing robotic software.

Statecharts [6], a formal model familiar to software develo-
pers, have been widely used for specifying agent plans, even
in the RoboCup domain [12, 13]. Murray [12], in particular,
proposes the use of extended statecharts (with synch states
for synchronizing the actions of different agents) for defin-
ing the behavior of RoboCup simulation players. This work
is also supported by an editing tool (StatEdit). Both pro-
posals [12, 13] support semi-automatic code generation for
Robolog, a robot programming language based on Prolog.
These approaches have been used only in RoboCup simula-
tion leagues and it is not clear how they could be adapted
for use on real robots. In that case, base functionalities,
such as perception and locomotion, which are provided freely
in the simulation leagues, will have to be inserted into the
statechart. It is not straightforward how this can be done,
when a procedural programming language, such as Python
or C++, is used for implementing these functionalities.

Recent developments in Multi-Agent Systems (MAS) have
demonstrated that high-level approaches, such as the Exten-
sible Agent Behavior Specification Language (Xabsl) [15]
and Petri Net Plans (PNPs) [25], can be utilized for the
behavioral modeling of robots. Despite their different for-
mal models, hierarchical FSAs for Xabsl and Petri Nets for
PNPs, both approaches offer hierarchical decomposition of
complex behaviors, concurrent action support within their
formalism, and multi-robot coordination. Although, PNPs
have a more compact representation than FSAs, they still
require more semantics than statecharts. Integration with
state-of-the-art frameworks (B-Human [16] for Xabsl and
OpenRDK [1] for PNPs) provides a threaded, low-latency
environment for efficient runtime execution. Analysis and
validation of the designed models can be done using standard
tools, due to the use of formal and widely-used representa-
tions. Both approaches have been employed successfully in
the RoboCup competition. However, both of them model
only behavioral, but not functional, aspects of the system.
Moreover, inter-agent coordination protocols cannot be in-
tegrated directly into their formal models.

In their work, De Loach et al. [2] apply the Multi-agent
Systems Engineering (MaSE) methodology for designing te-

ams of cooperating robots. They use a top-down approach,
starting from system goals and gradually refining them to
simpler goals. They use sequence diagrams for designing in-
teraction protocols and independent instances of finite state
machines (called concurrent task diagrams) for designing
the behavior of each identified agent role. However, their
approach is quite limiting, as it allows only for bilateral con-
versations, thus favoring centralized coordination schemes.
Moreover, the lack of hierarchical structure in the agent
plans leads to flat, large, and complex representations.

Other authors, such as Gascuena and Fernandez-Caballero
[5], used the Prometheus methodology [23] to specify the
behavior of a robot. Prometheus provides specific diagrams
for depicting the agent roles, their resources, and exchanged
messages with other roles. It uses AUML Agent Interaction
Protocol (AIP) diagrams (extended UML1 sequence dia-
grams) for specifying agent interactions. However, the seven
different types of diagrams they propose are always con-
structed manually anew. The support for implementation,
testing, and debugging of Prometheus models is limited and
available only for the JACK agent platform. Finally, they
do not address the multi-tasking issue on a single robot,
but rather identify each component/task as a distinct agent.
Nevertheless, in practice a lot of information coming from
sensors and other modules accomplishing specific tasks need
to be processed concurrently and the timing between these
tasks is critical. Finally, AUML agent coordination protocols
are not integrated seamlessly in agent plans.

A method coming from the MDE community is presented
by Schlegel et al. [17]. The authors argue for switching the
traditional code-driven robotic software development to a
model-driven one. They define strict interfaces for wrapping
existing components and then utilize a statechart-based ap-
proach for specifying the behavior of robots. Then, they use
MDE techniques for transforming the platform-independent
model they define to executable code. Their approach is a
significant step towards model-based software engineering
for robots, lacking mostly in the multi-agent aspect, as there
is no catering for agent interaction protocols definition.

The Agent Systems Engineering Methodology (ASEME)
[21] fills this particular gap. ASEME supports a modular
agent design approach and introduces the concepts of intra-
and inter- agent control. The former defines the agent’s be-
havior by coordinating the different modules that implement
its own capabilities, while the latter defines the protocols
that govern the coordination of the society of the agents.
ASEME applies an MDE approach to multi-agent systems
development, so that the models of a previous development
phase can be transformed to models of the next phase. The
transition from one phase to another is assisted by automatic
model transformation leading from requirements to com-
puter programs. The ASEME platform-independent model,
which is the output of the design phase, is a statechart that
can be instantiated in a number of platforms using existing
Computer-Aided System Engineering (CASE) tools.

ASEME specifies three levels of abstraction for each phase
of the software development process. The first is the societal
level, in which the whole multi-agent system functionality
is modeled. Then, the agent level zooms on each member
of the society, i.e. the individual agent. Finally, the details
that compose each of the agent’s parts are defined in the

1The Unified Modeling Language (UML) is a standardized
object-oriented modeling language: www.uml.org

www.uml.org


Figure 1: ASEME phases and AMOLA products.

capability level. The concept of capability is defined as the
ability of an agent to achieve specific tasks that require
the use of one or more functionalities. The latter refers to
the technical solution(s) to a given class of tasks. More-
over, capabilities are decomposed to simple activities, each
of which corresponds to exactly one functionality. Thus,
an activity corresponds to the instantiation of a specific
technique for dealing with a particular task (a unique charac-
teristic compared to the other statechart-based approaches).
ASEME is mainly concerned with the first two abstraction
levels, assuming that development in the capability level
can be achieved using classical (or even technology-specific)
software engineering techniques.

In Figure 1, the ASEME phases, the different levels of
abstraction, and the models related to each one of them are
presented. ASEME uses the models of the Agent Modeling
Language (AMOLA) [19]. The AMOLA metamodels have
been formally defined using the Eclipse Modeling Framework
of the Eclipse Modeling Project2. Eclipse technology has
been employed for developing model transformations and
graphical editing tools for both models and processes3.

3. ROBOCUP, NAO, AND SPL
In its short history, the RoboCup competition [10] (robot

soccer world cup) has grown to a well-established annual
event bringing together the best robotics researchers inter-
nationally. To succeed in playing soccer autonomously, the
core problems of artificial intelligence and robotics (per-
ception, cognition, action, coordination) must be addressed
simultaneously under real-time constraints. The proposed
solutions are tested through soccer games in various leagues.
A key aspect of most RoboCup leagues is the multi-agent
environment. The robots in each team cannot simply act
as individuals; they must focus on teamwork in order to
cope effectively with an unknown opponent team and such
teamwork requires coordination.

The Standard Platform League (SPL)4 is among the most
popular leagues, featuring four humanoid Aldebaran Nao
robot players in each team. The Nao is a 58cm, 4.3Kg hu-

2The Eclipse Modeling Project provides a unified set of mod-
eling frameworks, tooling, and standards implementations:
www.eclipse.org/modeling
3The AMOLA metamodels and ASEME transformation
tools are freely available from: www.amcl.tuc.gr/aseme
4SPL Web Site: www.tzi.de/spl

Figure 2: The System Actors Goals (SAG) model.

manoid robot developed by Aldebaran Robotics in Paris,
France. It is equipped with an x86 AMD Geode processor at
500 MHz, 256 MB SDRAM, 2 GB flash disk, two color ca-
meras, two ultrasound sensors, an inertial unit (2 gyroscopes
and 3 accelerometers), an array of force sensitive resistors on
each foot, encoders on all servos, and a total of 21 degrees
of freedom (4 in each arm, 5 in each leg, 2 in the head, and
1 in the pelvis). SPL games take place in a 4m × 6m field
marked with white lines on a green carpet with two colored
(skyblue and yellow) goals. Each game consists of two 10-
minutes halves and teams switch sides at halftime. There are
several rules enforced by human referees during the game.

In SPL, all teams use the same robotic hardware and
differ only in terms of their software. Therefore, research
efforts focus on developing more efficient algorithms and
techniques for visual perception, active localization, omni-
directional motion, skill learning, individual robot behavior
specification, and team coordination strategies. This paper
focuses on the last two challenges.

4. SOFTWARE ENGINEERING PROCESS
In this section, we describe the proposed model-based

agent-oriented software engineering process in a step-by-step
manner following the principles of AMOLA and using the
RoboCup domain as our case problem.

4.1 Requirements Analysis Phase
In the requirements analysis phase, AMOLA defines the

System Actors and Goals (SAG) model, containing the main
actors in the system and their goals. For the Robocup do-
main, the actors are the players and the goalie of the team
(see Figure 2). The player aims to score and defend, both
goals depending also on the other players. The goalie aims
to defend its post (individual goal), but also to coordinate
the defense (depending on the players).

4.2 Analysis Phase
In the analysis phase, AMOLA proposes the System Use

Cases (SUC) model, where the different activities that re-
alize the agent capabilities are defined in a top-down de-
composition process, the Agent Interaction Protocol (AIP)
model, which specifies the coordination between agents, and,
finally, the System Roles Model (SRM), through which the
previously-defined activities are integrated to define the dy-
namic behavior of the roles of the agents. Initially, the SAG
model from the previous phase is transformed to the SUC
model (see Figure 3). The SAG goals are transformed to
SUC use cases and the SAG actors to SUC roles. The mo-
deler optionally adds roles and �includes� use cases. The
goals transformed to use cases form the roles’ capabilities.

In Figure 3, the score capability has been decomposed to
simpler use cases using the �includes� relation. Thus, for
scoring, the player can kick the ball towards the goal (kick
ball use case) or participate in the coordinated attack use

www.eclipse.org/modeling
www.amcl.tuc.gr/aseme
www.tzi.de/spl


Figure 3: The System Use Cases (SUC) model.

Table 1: The AIP model for the attack protocol.
Participants center center for
Engagement no robot has control of the ball and
Rules center is the robot closest to the ball and

center for is the robot farthest from the ball
Outcomes the center for shoots to goal or

an opponent takes control of the ball or
the ball goes out of bounds

Process WalkTowardsBall. WalkTowardsGoal.
[passBall] [WalkTowardsBall.

[kickBall]]

case. Note that the attack use case has also been associated
with two new roles, the center and center for, which are
connected to new use cases, decomposing further the attack
use case. Thus, the center walks towards the ball and passes
it to the center for, while the center for walks towards the
opponent’s goal post to receive the pass, then walks towards
the ball and kicks it. The SUC model does not specify the
order in which use cases are employed by the roles. The AIP
and SRM models fill exactly this gap; the former specifies
how to coordinate the cooperative roles’ activities and the
latter how to coordinate the individual role’s activities.

Thus, as the human soccer team coach sketches the play-
ers’ movements for a coordinated team action in real soccer,
the robotic team coach uses the AIP model to sketch the ro-
botic team’s coordinated activities. The AIP model lists the
participants along with the preconditions and postconditions
in free text format. The process of each participant, how-
ever, is described formally using liveness formulas. Liveness
formulas connect activities using the Gaia operators [24].
Briefly, A.B means that activity B is executed after activity
A, Aω means that A is executed continuously (it restarts
as soon as it finishes), A|B means that either A or B is
executed, A||B means that A and B are executed in parallel,
and [A] means that A is optional.

The attack protocol with two participant roles (i.e. center
and center for) is presented in Table 1. The rule for engaging
in these roles is depicted in the second row, followed by
the expected outcomes in the third row, and the process
for each role defined using liveness formulas in the fourth
row. In particular, the player closer to the ball becomes the
center and the other players become center for. The center
is expected to approach the ball and pass it to a center for
who, in turn, is expected to be near the opponent’s goal
post to receive the pass and shoot to score. The protocol
may terminate early, if an opponent takes control of the ball
or the ball goes out of bounds.

The System Roles Model (SRM) defines each concrete role

(corresponding to a SAG actor) by specifying the protocols
in which the role participates and liveness formulas defining
its dynamic behavior including the relevant process parts of
the AIP model. Figure 4 shows the SRM for the player role.
Note that this role can participate in the attack protocol
either as a center or as a center for. While in the AIP model
process part the activities are abstractly defined, in the SRM
liveness formula all activities are connected to specific func-
tionalities of the robot. The identified functionalities in our
case are the following:

• Sensors, for collecting and filtering all data from the
robot sensors (accelerometers, buttons, bumpers, etc.),

• RobotController, for listening to external information
about the game state coming from the game controller,

• LedHandler, for managing the operation of the colored
LEDs of the robot (eyes, ears, buttons),

• MotionController, for scheduling and executing motion
commands (walk, kick, stand-up, special actions, etc.),

• Vision, for detecting the ball and the goals in the ca-
mera image and estimating their distance and bearing,

• Localization, for estimating the position and orienta-
tion of the robot and the ball in the field,

• ObstacleAvoidance, for planning obstacle-free paths in
a local polar map using ultrasonic range measurements,

• HeadHandler, for managing the movements of the robot
head and, thus, the camera (scanning, tracking, etc.).

The self-explained activities named Stand, CalibrateCamera,
CheckForBallObservation, ScanForBall, TrackBall, WalkTo-
wardsBall, KickBall, PassBall, WalkTowardsOpponentGoal
are provided either directly by the above functionalities or
by combining information coming from some of them (for
example, Vision with ObstacleAvoidance and MotionCon-
troller to realize WalkTowardsBall). Similarly to the work
of Schlegel et al. [17], all functionalities are wrapped with
standard interfaces. In our Monas architecture they are de-
fined through XML configuration files.

4.3 Design Phase
In the design phase, AMOLA defines the intEr-Agent Con-

trol (EAC) model and the Intra-Agent Control (IAC) model,
which are based on the formalism of statecharts and define
both the functional and behavioral aspects [6] of the multi-
agent system. The ASEME SRM2IAC tool is used to trans-
form the process formulas of an AIP model protocol to an
EAC model and the liveness formulas of an SRM role to an
IAC model. The EAC and IAC models are statecharts, where
the developer can insert events, conditions, and actions in
the transition expressions, thus controlling each role’s pro-
cess either for satisfying the needs of a protocol (in the EAC
model) or for coordinating the agent’s capabilities (in the
IAC model). There are six types of states in a statechart [6]:

• start, showing where execution starts

• end, showing where execution stops

• or, having sub-states (of any kind) related by“exclusive-
or”, i.e. only one is executed at any given time



Role: player
Protocols: attack: center, attack: center for
Liveness:
player = Sensorsω || RobotControllerω || LedHandlerω || MotionControllerω || (initialize . activate)
initialize = Stand . CalibrateCamera
activate = Visionω || Localizationω || ObstacleAvoidanceω || HeadHandlerω || decisionω

decision = CheckForBallObservation . (ScanForBall | action)
action = TrackBall || (WalkTowardsBall | KickBall | center | center for)
center = WalkTowardsBall . [PassBall]
center for = WalkTowardsOpponentGoal . [WalkTowardsBall . [KickBall]]

Figure 4: The SRM model for the player (participating as center or center for in the attack protocol).

• and, having or -states as sub-states related by “and”,
i.e. all of them are executed concurrently

• basic, having no sub-states, representing an activity

• condition, offering only conditional transitions (also
known as OR-connector or conditional transition)

The state at the highest level (the one with no parent
state) is called the root. Each transition from one state
(source) to another (target) is labeled by an expression,
whose general syntax obeys the pattern e[c]/a, where e
is the event that triggers the transition; c is a condition
that must be satisfied for the transition to be taken, when
event e occurs; and a is an action that takes place, when the
transition is taken. All elements of the transition expression
are optional. The scope of a transition is the lowest level or -
state, which is a common ancestor of both the source and
target states. When a transition occurs all states in its scope
are exited and the target states are entered.

Having defined the statechart, as it is used in AMOLA [20],
it is now possible to proceed to the definition of the inter-
agent control (EAC) model. The EAC is a statechart that
contains an initial (start) state, an and-state named after
the protocol, and a final (end) state. The and-state con-
tains as many or -states as the protocol roles, named after
these roles. One transition connects the start-state to the
and-state and another transition the and-state to the end-
state. Transitions can be triggered by a timeout event or
by the completion of the executed state activity. Thus, for
the attack protocol, since the two participating roles operate
simultaneously in parallel, the SRM2IAC tool transforms
the following formula along with the process part of the AIP
model protocol into a statechart:

action = center || center_for

The result of the automatic model transformation is de-
picted graphically in the form of an ordered rooted tree
(Figure 5) that defines the statechart. In the fragment of
the statechart shown in Figure 5, the reader can see the
center role. The nodes of the tree (rounded rectangles) de-
fine the states (gray lines point to parent nodes in the tree
structure). Each node includes the state name and the state
type. Labeling the nodes properly helps the modeler identify
the position of a node within the tree. For example, the A.1
label means that the node labeled with A is the parent of
the node labeled with A.1. Nodes without a name coming
from the formula, e.g. start nodes, are named after their
label. Each or -state includes a start-state and, usually an
end-state (except in the cases where a state loops infinitely
to its self, thus no end state is needed) to note where execu-
tion starts and where it stops. The modeler can now define

transition expressions for all the transitions (depicted with
red/dark lines) using the grammar defined in Figure 6 in
EBNF format [9]. In Figure 5, the modeler has just defined
a condition for the transition having as source the condition-
state at the bottom of the figure and target the basic state
to its right named passBall. It checks if the ball is within
an angle of 10 degrees from the current orientation of the
robot’s torso and within a distance of 6 cm from the center
of its feet, i.e. the robot can kick the ball to pass it.

The intra-agent control (IAC) model is also initiated by
the SRM2IAC tool for each role. Again, the modeler must
define the transition expressions and the variables contained
in these expressions. By convention, the user should not
define new transitions, although the statechart formalism
allows for transitions between any two states, because the
resulting IAC model will no longer represent the process de-
fined by the liveness formulas. Moreover, the modeler must
ensure that the branches of the statechart that come from
EAC models are transferred unchanged in the statechart
(their transition expressions must not change). Only in this
way are the protocols guaranteed to be executed as planned.
The RoboCup player ’s statechart (IAC model) is shown in
Figure 7, with the zoom window focusing on the center part
of the attack protocol. Notice that the example condition
introduced earlier appears unchanged at the correct place.

Figure 5: The EAC model for the attack protocol.



transitionExpression = [ event ] [ ’[’ condition ’]’ ] [ ’/’ actions ]
event = string
condition = expr | expr (compOp | logicOp) condition

| ’(’ condition ’)’ | notOp condition

actions = action | action ’;’ actions

action = expr | variable ’=’ expr | ’read_messages’
| ’write_messages’ ’.’ topic ’.’ commType ’.’ msgType

expr = varVal | function ’(’ args ’)’

function = string

args = varVal | varVal ’,’ args
varVal = variable | value
value = constant | stringLiteral
compOp = ’<’ | ’<=’ | ’>’ | ’>=’ | ’==’ | ’!=’
logicOp = ’&&’ | ’||’
notOp = ’!’

variable = host ’.’ topic ’.’ commType ’.’ msgType ’.’ member
| topic ’.’ commType ’.’ msgType ’.’ member

commType = ’signal’ | ’state’ | ’data’
host = string

topic = string

msgType = string

member = string

stringLiteral = ’"’ string ’"’

string = letter (letter | digit)*
letter = ’A’..’Z’ | ’a’..’z’ | ’_’
digit = ’0’..’9’

constant = [ ’+’ | ’-’ ] digit digit* [ ’.’ digit digit* ]

Figure 6: The transition expression grammar.

Figure 7: The IAC model for the RoboCup player.

4.4 Implementation Phase
To facilitate the code generation process, we built the

IAC2Monas transformation tool [14], which translates the
IAC model automatically to C++ source code adhering to
the Monas architecture. IAC2Monas is a model-to-text (M2T)
transformation tool. Thus, the platform-independent model
(IAC) is transformed to a platform-specific model (code),
which is subsequently cross-compiled to produce the exe-

#include ”AttackerPlan . h”

namespace { Sta techar tReg i s t ra r<AttackerPlan > : :
Type temp( ”AttackerPlan ”) ; }

AttackerPlan : : AttackerPlan (Communicator∗ com) {

s t c = new Statechar t ( ”Player ” , com ) ;
Sta techar t ∗ Node0 = s t c ;
s t a t e s . push back ( Node0 ) ;

OrState∗ Node0212 = new OrState
( ”Robo tCon t r o l l e r f o r ev e r ” , Node021 ) ;

s t a t e s . push back ( Node0212 ) ;

IAc t i v i t y ∗ ActivI02122 = Act iv i tyFactory : :
Ins tance ( )−>CreateObject ( ”RobotContro l ler ” ) ;

a c t i v i t i e s . push back ( Act ivI02122 ) ;
Bas i cState ∗ Node02122 = new Bas i cState

( ”RobotContro l l er ” ,Node0212 , Act ivI02122 ) ;
s t a t e s . push back ( Node02122 ) ;

ICondit ion ∗ CondI02TO03 = new TrCond02TO03 ;
c ond i t i o n s . push back ( CondI02TO03 ) ;

t r a n s i t i o n s . push back ( new Transit ionSegment
<State , State>(Node02 , Node03 , CondI02TO03) ) ;

Figure 8: An extract of the auto-generated code.

cutable for the robot. In order to build this tool we used the
Xpand language offered by the Eclipse Modeling Project fol-
lowing the practice proposed by ASEME for the IAC2JADE
transformation [21]. Xpand is used to define the templates
for the required C++ classes, which are instantiated using
information from the IAC metamodel elements, and is inte-
grated with Xtend to handle the instantiation of complex ex-
pressions. An extract from the automatically generated sta-
techart definition file (by the IAC2Monas tool) is presented
in Figure 8. The reader can get an idea of how or -states,
basic states, and condition states are defined in C++. The
generation of a node (state) requires a name and the parent
node as arguments, with the exception of the Statechart

class, which appears only at the top of the hierarchy.
To support this phase, we had to develop two important

software libraries: (a) the communication framework both
for inter-agent (i.e. between different agents) and intra-agent
(i.e. between activities on a single agent) communication and
(b) the statechart engine for executing statecharts.

Our communication framework [22] is based on the pub-
lish/subscribe messaging pattern [4] and supports multi-
ple ways of communication, including point-to-point and
multicast connections. The information that needs to be
communicated between nodes (agents or activities) is formed
as messages, tagged with appropriate topics, and relayed
through a message queue for delivery. We used Google Pro-
tocol Buffers5 to facilitate the serialization of data and the
structural definition of the messages. Additionally, the black-
board paradigm [7] is utilized to provide efficient access
to shared information stored locally at each node and is
extended to support history queries and a mechanism that
controls the information updates.

Our statechart engine [14] was built on top of existing
open-source projects. Its main distinguishing characteristic

5Protocol Buffers are Google’s language- and platform-
independent, extensible mechanism for serializing structured
data. http://code.google.com/apis/protocolbuffers

http://code.google.com/apis/protocolbuffers


from other frameworks, e.g. UML and Boost6, is the multi-
threaded statechart execution that provides the required
concurrency and meets the real-time requirements of the
activities on each robot.

These libraries are linked to the automatically generated
code at compilation time. A blackboard is instantiated (a)
for each agent and (b) for each or -state that is a substate
of an and-state. This way, the shared information is dis-
tributed, not only among network nodes (agents), but also
among the concurrently executed parts of each agent. The
latter allows for a significant increase in run-time perfor-
mance, as it eliminates starvation and producer/consumer
problems. The presented models do not include explicit com-
munication activities, because coordination occurs through
the read_messages and write_messages actions. These ac-
tions allow the use of shared information from the black-
boards as variables in the transition expressions (see the
grammar rules for action and variable in Figure 6).

5. EMPIRICAL EVALUATION
To empirically evaluate our approach, we compared it

to our previous practice, i.e. using Aldebaran’s middleware
for Nao (NaoQi) which provides, besides the API, a plat-
form for modular software development and a thread-safe
mechanism for communication. As a proof of concept, a
student familiar with both development methods was asked
to develop the same behavior for the RoboCup team. The
empirical results in terms of some development performance
metrics are shown in Table 2. Run-Time Performance refers
to the system load average over 5 minutes of execution.
Values greater than one indicate CPU overload. The NaoQi-
based agent had inferior performance, due to system over-
load caused by the vast amount of exchanged information
between the modules. Writing C++ code had its impact on
Total Development Time, which was considerably higher in
NaoQi, whereas the statechart graphical editing tool allowed
for quicker development. The ASEME-based agent consisted
of more Lines of Source Code, however the vast majority of
them were Auto-Generated. The NaoQi-based agent required
the maintenance of several State Variables to indicate the
current state of the agent, whereas in the ASEME-based
agent it was represented explicitly in the statechart. The
advantages of the ASEME approach were also reflected on
the Debugging Phase, where NaoQi exhibited increased De-
bugging Time with a larger Number of Bugs.

Our experience from our RoboCup team7 indicates that
the model-based ASEME methodology with the automated
transformation tools (SRM2IAC, IAC2Monas) is advanta-
geous over our previous practice. New students familiarize
themselves with robot team behavior specification in signifi-
cantly less time. New ideas on team behavior can be quickly
prototyped and existing behaviors can be easily explained.
ASEME proves itself in behavior update or modification,
which rarely involves the introduction of new functionality
and typically amounts to changes in the agent’s process and
team protocols. This feature turned out to be extremely
useful in the RoboCup 2011 competition, where we were able
to modify our team behavior even at half-times or during
timeouts. ASEME was one of this year’s innovations that

6Boost is a set of free peer-reviewed portable C++ libraries:
www.boost.org
7TUC RoboCup team Kouretes: www.kouretes.gr

Table 2: Comparison of development methods.

Metric / Concept NaoQi ASEME

Run-Time Performance (load) 1.3 0.8
Development Phase

Total Development Time 8 hours 5 hours
Lines of Source Code 490 826
Auto-Generated Lines N/A 805
Number of State Variables 18 N/A

Debugging Phase
Total Debugging Time 12 hours 5 hours
Number of Bugs 16 4

contributed to a significantly better team performance in
the SPL games of RoboCup 2011 compared to RoboCup
2010 and led to winning the second place in the SPL Open
Challenge Competition. The reader may watch our robot
players in action at: www.kouretes.gr/aamas2012.mp4.

6. DISCUSSION
We faced several challenges in applying the ASEME AOSE

methodology to multi-robot behavior specification, which,
in our view, are inherent in this process and every AOSE
practitioner will face in a similar endeavor.

Firstly, most AOSE methodologies take for granted that
the agents communicate and coordinate through message
passing. This does not always hold in robotic applications,
where coordination can be based on diverse communication
means, such as inter-agent messages, blackboards, or even
sensory information. Even though ASEME defines interac-
tion protocols based on the activities of the participants,
the original statechart transition expression language [18]
assumed that a FIPA8-like communication language would
be used for message exchange. This is not true for most
multi-robot applications, where the real-time constraints for-
bid the use of Java, on which the most successful agent
platforms and those that comply to FIPA are based. The use
of the publish/subscribe communication framework and the
blackboard paradigm for local storage, forced us to modify
the transition expression language.

Additionally, the transformation of the platform-indepen-
dent model, typically the output of the design phase, to the
platform-specific model is not straightforward. The com-
putational limitations of robotic platforms make existing
model-to-text transformations of the AOSE methodologies
obsolete and new transformations need to be defined. To-
wards this end, it is very important that the AOSE metho-
dology delivers a platform-independent model with a clear
and compact meta-model. Statecharts offer more compact
semantics than PNPs [25], behavior trees [3], and hierarchi-
cal FSAs [15], and additionally capture both the functional
and behavioral aspects of the system.

Finally, behavior specification is not a trivial task. The de-
velopment of the simple player, which served as our running
example, led to a statechart with 99 states in a hierarchy
with a depth of 17 (Figure 7). This shows the added value
of starting with the early ASEME models and particularly
using the automatic transformation of liveness formulas to a
statechart, as opposed to starting the design directly with a
statechart CASE tool, such as StatEdit [12], or using a flat
statechart model, such as the plan diagrams of MaSE [2].

8Foundation for Intelligent Physical Agents www.fipa.org

www.boost.org
www.kouretes.gr
www.kouretes.gr/aamas2012.mp4
www.fipa.org


7. CONCLUSION
In this paper we showed how the ASEME model-driven

AOSE methodology can be extended for multi-robot beha-
vior specification. The modeler is assisted by the existing
graphical and model transformation tools of ASEME and
by the IAC2Monas transformation tool that allows the auto-
mated code generation for the defined behavior coupled with
a generic multi-threaded statechart engine and a blackboard
publish/subscribe messaging system.

We discussed the challenges we faced, to share our experi-
ence with any AOSE practitioner aiming to move to robotic
agents’ development. The solutions proposed in our work
can serve as a first guide on how to go about addressing
such challenges.

Our future work lies in enhancing the code generation
tool with tight checking functionalities for minimizing user
errors, e.g. for semantic validation of the transition expres-
sions. Moreover, we plan to work on making the graphical
editing tools more efficient and more flexible in visualizing
and manipulating statecharts. The collection of our tools for
ASEME-based robot software development, including the
entire code of our RoboCup team, has been released to the
community through www.kouretes.gr/aseme.
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