
Validating Requirements Using Gaia Roles Models

Nektarios Mitakidis1, Pavlos Delias2, Nikolaos Spanoudakis3

1School of Electronic and Computer Engineering (ECE)
3School of Production Engineering and Management (PEM),
Applied Mathematics and Computers Laboratory (AMCL)

Technical University of Crete (TUC), Chania, Greece
{nmitakidis, nispanoudakis}@isc.tuc.gr

2Business School,
Eastern Macedonia and Thrace Institute of Technology, Kavala, Greece

pdelias@teiemt.gr

Abstract. This paper presents a method that aims at assisting an engineer in
transforming agent roles models to a process model. Thus, the software
engineer can employ available tools to validate specific properties of the
modeled system before its final implementation. The method includes a tool for
aiding the engineer in the transformation process. This tool uses a recursive
algorithm for automating the transformation process and guides the user to
dynamically integrate two or more agent roles in a process model with multiple
pools. The tool usage is demonstrated through a running example, based on a
real world project. Simulations of the defined agent roles can be used to a)
validate the system requirements and b) determine how it could scale. This way,
engineers, analysts and managers can configure the processes’ parameters and
identify and resolve risks early in their project.

Keywords: model checking agents and multi-agent systems·business process
models·agent simulation·Gaia methodology

1 Introduction

This paper aims to show how a Gaia Multi-Agent System (MAS) analysis (or
architectural design) role model can be represented as a business process model. This
allows employing available tools to validate specific properties of the modeled system
before its final implementation. Moreover, a business partner has a greater potential to
comprehend the system being modeled through intuitive process visualization.

Rana and Stout [1] highlighted the importance of combining performance
engineering with agent oriented design methodologies in order to develop large agent
based applications. To derive process performance measures, we need a quantitative
process analysis technique. Process simulation appears to be a prominent technique
that allows us to derive such measures (e.g., cycle time) given data about the activities
(e.g., processing times) and data about the resources involved in the process. Through
process simulation an engineer can forecast the process execution time, identify

possible bottlenecks and perform tests regarding the response of the process to
increasing demand. Process simulation is a versatile technique supported by a range
of process modeling and analysis tools [2]. However, to run a process simulation, the
engineer needs a process model.

In this paper we will see how liveness formulas, an important property of agent
role models, introduced by the Gaia methodology [3], and later employed by
ROADMAP [4], the Gaia2JADE process [5], Gaia4E [6] and ASEME [7], can be
transformed to process models. Moreover, we will present a tool that allows these
models to be integrated to produce a process model of a multi-agent system using the
XML Process Definition Language (XPDL) [8] portable standard. Having
transformed the MAS role model to a process model, we can use simulation to
validate several properties of the modeled system, and also determine its ability to
scale, as early as the analysis [3] or architectural design (introduced in the second
version of Gaia [9]) phases. This is demonstrated through a case study based on real
world system’s requirements for smart-phone services.

Therefore, this work is expected to have a high impact on a) Agent Oriented
Software Engineering (AOSE) practitioners using the Gaia methodology and its
successors, who can immediately take advantage of this work to evaluate their
models, b) AOSE researchers, and practitioners of other methodologies who can use
this transformation combined with method engineering to compile new
methodologies, and, c) those who use business process models for agent-based
simulations [10, 11] or for communicating them to business people [12], who can now
use an AOSE methodology to aid them in their modeling tasks.

In the following section we will briefly discuss the background of this work. Then,
in section three, we will present the algorithm for the automatic transformation
process and, in section four, the tool that allows integrating many individual agent
processes to build a common process that will resemble how the different agents
collaborate. In section five we will present the results of a number of simulations. In
section 6 we present the software process fragment that an engineer can use to
integrate this method to an existing software engineering process. Section seven
discusses our findings and the tool’s limitations, and, finally, section eight concludes
and provides an insight to future work.

2 Background

2.1 The Gaia Liveness formulas and AOSE

The liveness property of an agent role was introduced by the Gaia methodology [3, 9].
Gaia is an attempt to define a general methodology for the analysis and design of
MAS. MAS, according to Gaia, are viewed as being composed of a number of
autonomous interactive agents forming an organized society in which each agent
plays one or more specific roles. The latest version of Gaia defines a three phase
process and at each phase the modeling of the MAS is further refined. These phases
are the analysis phase, the architectural design phase, and, finally, the detailed design
phase. In the analysis phase, Gaia defines the structure of the MAS using the role

model. This model identifies the roles that agents have to play within the MAS and
the interaction protocols between the different roles. The role model is further refined
in the architectural design phase [9].

The objective of the Gaia analysis phase is the identification of the roles and the
modeling of interactions between the roles found. Roles consist of four attributes:
responsibilities, permissions, activities and protocols. Responsibilities are the key
attribute related to a role since they determine the functionality. Responsibilities are
of two types: liveness properties – the role has to add something good to the system,
and safety properties – the role must prevent something bad from happening to the
system. Liveness describes the tasks that an agent must fulfill given certain
environmental conditions and safety ensures that an acceptable state of affairs is
maintained during the execution cycle. In order to realize responsibilities, a role has a
set of permissions. Permissions represent what the role is allowed to do and, in
particular, which information resources it is allowed to access. The activities are tasks
that an agent performs without interacting with other agents. Finally, protocols are
specific patterns of interaction with other roles.

Gaia originally proposed some schemas that could be used for the representation of
interactions between the various roles in a system. However, this approach was too
abstract to support complex protocols [5]. ROADMAP [4] proposed that protocols
and activities are social actions or tasks and ASEME [13] moved one step further by
allowing protocols to define the involved roles processes as liveness formulas that
would later be included in the liveness of the system role model (a model inspired by
the Gaia roles model). This is one assumption of this work, i.e. that the protocols are a
send message action, a receive message action or a combination of message send and
receive actions and, possibly, other activities for each participating role.

Although the Gaia methodology does not explicitly deal with the requirements
capture phase, it supposes that they exist in some kind of form before the analysis
phase. ASEME supports the systematic gathering of requirements in free text form
and associating them with the goals of specific actors in the System Actor-Goals
Model [7]. Since ASEME has adopted a model-driven engineering approach these
requirements influence the role model definition, which emerges at the end of the
analysis phase.

In both cases, it makes sense to seek to validate or forecast specific properties of
the system to be, based on its requirements. Until now, an analyst can only reach this
goal by manually transforming the model. In this paper, we propose a systematic
method for achieving the same goal. The advantages of such an approach are that it
can be automated, is less error prone and faster. This is the actual research question of
this work.

The liveness model has a formula at the first line (root formula) where activities
can be connected with Gaia operators. Abstract activities must be decomposed to
activities again connected with Gaia operators in a following formula. The operators
used in the liveness formulas are:

A+ (activity A is executed one or more times)
A* (activity A is executed zero or more times)
[A] (activity A is optionally executed)

Α.B (activity B executes after activity A)
A|B (activity A or B exclusively is executed)
A||B (activities A and B are executed in parallel)
A~ (activity A is executed forever, the original Gaia operator was the greek

character omega “ω”, however for keyboard compatibility we chose to use
the tilde)

Figure 1 shows a Gaia roles model for an indicative role named ComplexProvider.
This role employs two protocols, one for servicing a complex service request and one
for requesting a simple routing service (activities are underlined in the Protocols and
Activities field). In its liveness formula it describes the order that these protocols and
activities will be executed by this role using three liveness formulas.

The liveness property is defined as a string, adhering to a grammar. The latter is
defined using the Extended Backus–Naur Form (EBNF), which is a metasyntax
notation used to express context-free grammars [14]. In Listing 1 we define the
liveness property grammar (char is any lower or upper case alphabetic character).

Role: ComplexProvider

Description: This role provides an added value service in routing requests. It receives a routing

request containing needed information but also the user’s preferences. Firstly it decides the route

type to request (public transport, car and/or pedestrian), then it composes a simple routing

request and after it gets the results it sorts them according to the user’s preferences.

Protocols and Activities: ComplexService, ReceiveComplexServiceRequest,

DecideRouteType, SimpleService, SortRoutes, SendComplexServiceResponse,

SendSimpleServiceRequest, ReceiveSimpleServiceResponse.

Responsibilities - Liveness:

CP = ComplexService+

ComplexService = ReceiveComplexServiceRequest. DecideRouteType. SimpleService.

 SortRoutes. SendComplexServiceResponse

SimpleService = SendSimpleServiceRequest. ReceiveSimpleServiceResponse.

Fig. 1. Part of the Gaia role model for a role.

2.2 Metamodels and Model Transformations

Model transformation is an essential process in Model Driven Engineering (MDE). It
is the process of transforming a model to another model [15]. To define a
transformation an engineer needs the metamodels of the source and target models. A
model is defined as an abstraction of a software system (or a part of it) and a
metamodel is an abstraction defining the properties of the model. A metamodel is
itself a model. For example, the metamodel of a text model can be the EBNF
grammar.

A model’s metamodel defines the elements that can be used by the engineer to
create the (terminal) model, usually in a format defined by a metametamodel which is

the language for defining metamodels. The Eclipse Modeling Framework (EMF, [16])
defines such a language, namely ecore, that is much like a UML Class definition.
Ecore defines that a model is composed of instances of the EClass type, which can
have attributes (instances of the EAttribute type) or reference other EClass instances
(using the EReference type). EAttributes can be instances of terminal data types such
as string, integer, real, etc). EMF allows to extend existing models via inheritance,
using the ESuperType relationship for extending an existing EClass.

Thus, using EMF technology, in order to define the text to model transformation
that is the liveness to XPDL transformation we need the XPDL metamodel.

Listing 1. The liveness property grammar

Liveness → {Formula}
Formula → LeftHandSide, "=", Expression
LeftHandSide → string
Expression → Term | ParallelExpr | OrExpr | SequentialExpr
ParallelExpr → Term, "||", Term { "||", Term }
OrExpr → Term, "|", Term { "|", Term }
SequentialExpr→ Term, ".", Term { ".", Term}
Term → BasicTerm | "(", Expression, ")" |

"[", Expression, "]" | Term, "*" | Term, "+" |
 Term, "~"

BasicTerm → string
String → char, {char | digit | "_"}

2.3 Business Process Modeling

Software Engineering (SE) and Business Process Management (BPM) are two
disciplines with clear associations. A visible influence of SE to BPM concerns quality
assessment, while SE aims its attention to BPM mainly to take advantage of its
advanced monitoring and controlling functions [17] and its experiment design
principles. For example, following the BPM paradigm, one can find solutions about
how business people and software engineers are facilitated in communicating system
requirements. Stakeholders are able to get involved in the system’s design, and hence
to assure the alignment of the produced software with the business objectives.

Simulation is employed to quantify the impact that a process design is likely to
have on its performance, and to numerically indicate the best design alternatives.
Regarding business process simulation, various tools exist [18], which facilitate the
adoption of BPM as a practical way for designing systems. However, a critical factor
in selecting which tool is more appropriate is the modeling language used.

Popular modeling languages in designing software systems, such as the object-
oriented ones (e.g., UML), lack process views, an issue that has been early identified
by [17]. On the other hand, process models do not usually map clearly to a
programming environment. Both approaches have their relative advantages, so it is a
hard decision to spare one. This is why there have been efforts to bridge object-
oriented models and process models through model transformations [17, 19].

In this work we chose the XML Process Definition Language (XPDL version 2.1)
as the target language. XPDL, a standard supported by the Workflow Management
Coalition (WfMC, http://www.wfmc.org), has a good potential for process
interchange and heterogeneous system integration since it is used today by more than
80 different products to exchange process definitions and keeps up to date with
BPMN 2.0.

The XPDL metamodel that we used for our project is shown in Figure 2. The
Package concept represents a set of processes and contains:

 pools, which represent major participant roles in a process, typically separating
different organizations. A pool can contain:
o lanes, which are used to organize and categorize activities within a pool

according to function or role.
 workflowProcesses, which aggregate sets of activities and transitions

o activities are represented by rounded rectangles and correspond to the
execution of a task or to the functionality of a gateway, which can be:
 XOR gateway (exclusively one of the outgoing transitions will be

followed), which is represented by a diamond shape with the “X”
character in the middle

 parallel gateway (all the outgoing transitions lead to activities that will
be executed in parallel), which is represented by a diamond shape with
the “+” character in the middle

o events are represented by circles and are specific kinds of activities that
correspond to something that happens. Common events are the start of a
process lane and its ending

o transitions, are represented with a solid line and arrowhead and have source
and target (at the arrowhead) activities and define the control flow in the
workflow process

 associations, are represented with a dotted line and arrowhead and have source
and target (at the arrowhead) activities and define the message flow between
different pools. Therefore, they also have source and target pools.

3 The Transformation Algorithm

The transformation algorithm uses elements from the liveness formulas grammar
(Listing 1) and the XPDL metamodel (Figure 2). It is a recursive algorithm that takes
the liveness formula expression elements from left to right and applies the templates
shown in Figure 3, gradually building the XPDL process. For all templates, the
control flows from left to right, i.e. if a template follows another, then it is connected
to its rightmost element. The algorithm is provided in pseudocode at the appendix.

Regarding the theoretical properties of the algorithm we believe that it can be
easily proved that it is correct using induction and the assumption that if we have a
correct XPDL model and replace an XPDL activity with a correct XPDL fragment (or
a well-structured fragment, as in [20]) the resulting model is correct. The templates
are all correct XPDL diagrams (well structured fragments) if they have a start event
on their left and a transition to an end event on their right, as every task is on a path

from the start event to the end event
easily assert that if we take a random template and replace an activity of the model
with it then, again, the model is correct. Then, we hypothesize that after
the model is correct and we insert a new random template. Then we show again that
the resulting model is correct.

The reader should note the common templates for the ~ and + operators.
Considering the semantics of the ~ operator the exclusive gateway should not be used
(the activity should just loop back to itself). In this way, the resulting process model
would not be easily ported to existing analysis techniques as it would not pass the
Proper Completion test (each workflow ends with an end event)
that in a later stage the situation could be remedied by adjusting the gateway to
always return the flow to the activity, and that in the second version of Gaia there is a
case where the authors allow the indefinite operator to be fol
activity [9], we believe that

As far as the algorithm’s complexity is concerned, since we have a recursive
function call inside a for loop, the complexity of our algorithm is
number of activities and protocols p

1 We used the org.enhydra

distributed under the GNU Free License by Together Teamsolutions Co., Ltd
loadable from http://tinyurl.com/org

from the start event to the end event. Then, for each of these valid models we can
easily assert that if we take a random template and replace an activity of the model
with it then, again, the model is correct. Then, we hypothesize that after n
the model is correct and we insert a new random template. Then we show again that
the resulting model is correct.

Fig. 2. The XPDL metamodel1

The reader should note the common templates for the ~ and + operators.
Considering the semantics of the ~ operator the exclusive gateway should not be used
(the activity should just loop back to itself). In this way, the resulting process model
would not be easily ported to existing analysis techniques as it would not pass the
Proper Completion test (each workflow ends with an end event) [21]. Given the fact
that in a later stage the situation could be remedied by adjusting the gateway to
always return the flow to the activity, and that in the second version of Gaia there is a
case where the authors allow the indefinite operator to be followed by a sequential

, we believe that our approach is the best compromise for this case.
As far as the algorithm’s complexity is concerned, since we have a recursive

function call inside a for loop, the complexity of our algorithm is O(n2), where
number of activities and protocols present in the liveness formulas. The algorithm

org.enhydra Java package defining the metamodel for XPDL 2.1, which is

distributed under the GNU Free License by Together Teamsolutions Co., Ltd. It is dow
http://tinyurl.com/org-enhydra

Then, for each of these valid models we can
easily assert that if we take a random template and replace an activity of the model

 insertions
the model is correct and we insert a new random template. Then we show again that

The reader should note the common templates for the ~ and + operators.
Considering the semantics of the ~ operator the exclusive gateway should not be used
(the activity should just loop back to itself). In this way, the resulting process model
would not be easily ported to existing analysis techniques as it would not pass the

. Given the fact
that in a later stage the situation could be remedied by adjusting the gateway to
always return the flow to the activity, and that in the second version of Gaia there is a

lowed by a sequential
our approach is the best compromise for this case.

As far as the algorithm’s complexity is concerned, since we have a recursive
, where n is the

resent in the liveness formulas. The algorithm

Java package defining the metamodel for XPDL 2.1, which is
It is down-

would run forever should there be circular references to LeftHandSide from a
formula’s Expression (or from subsequent formulas), however, we have a pre-
processing step guarding against this possibility and preventing the algorithm from
executing.

A

A A

A1 A2 An...

A1

A2

An

...

Α1

Α2

Αn

...

Op. Template

A~

[A]

A*

A
1
.A

2
..
..

.A
n

A
1
|A

2
|…

|A
n

A
1
||

A
2
||

…
||

A
n

Op. Template

A+

Fig. 3. Templates of liveness formula (Gaia) operators (Op.) for XPDL model generation.

4 The Liveness2XPDL Tool

The tool allows defining one or more agent roles. For each role, the user can edit a
liveness formula or import a role model. We researched for the Gaia methodology and
its derivatives’ metamodels to create the relevant import functionality. We found
documented metamodels for the Gaia [22], ROADMAP [23] and the ASEME [7]
methodologies. However, Gaia’s metamodel abstractly defines the LivenessProperty
class and ROADMAP’s metamodel file is not available on-line. Thus, we created an
importer for the ASEME System Roles Model (SRM) metamodel to demonstrate the
capability of our approach in importing meta-models. Since our tool is open source,
interested developers can create an importer for the metamodel they prefer or they can
type their formulas in the text editor.

The tool allows integrating multiple roles in the same XPDL model. We create one
Pool instance for each role in a common Package (the transformation algorithm
executes as many times as the participating roles with the same Package instance) and
then the user defines the associations for message sending and receiving activities.

Then, the tool creates the needed references of the associations to the pools and
outputs the Package in XPDL format.

In this section we demonstrate the usage of the developed tool. We consider a real
world system developed in the context of the ASK-IT Integrated Project2 where a
personal assistant agent on a lightweight device (e.g., a smart phone) requests services
from a mediator agent (or broker). This broker has the capability to service simple
requests but can also access a complex service provider agent who can offer high
level services. The complex provider also needs simple services from the broker in
order to compose a high level service. In our case, we consider a route calculation
service that can be simple (I want to get from point A to B with a car using the
quickest route) or complex (I want to get from point A to B with the best transport
means according to my user’s impairment needs and habits). In the second case the
complex provider will reason on the type of simple request based on the user’s
profile, make a simple route calculation service request to the broker and then sort the
results according to the user’s habits before replying to the user through the broker.

The agent roles models for the personal assistant and the broker are presented in
Figure 4 (just the role name and liveness property). The complex provider is the same
with the one presented in Figure 1.

Role: PersonalAssistant

Liveness:

PA = SendServiceRequest. ReceiveServiceResponse

Role: Broker

Liveness:

Broker = (ServicePAs || ServiceCP)+

ServicePAs = ReceiveServiceRequest. ProcessRequest. (InvokeDataManagement |

 SendComplexServiceRequest. ReceiveComplexServiceResponse). SendServiceResponse

ServiceCP = ReceiveSimpleServiceRequest.

 InvokeDataManagement. SendSimpleServiceResponse

Fig. 4. The Personal Assistant and Broker role models.

The user starts the Liveness2XPDL tool and imports through the File menu the
three role models, as presented in Figure 5. Then, the user can select one role and the
Single role transformation option from the Transform menu, or more than one
(holding down the control key) and the Multiple role transformation option from the
Transform menu. In Figure 6 the reader can see the single role file for the Complex
Provider role.

In the case of multiple roles transformation, the tool then prompts the user to select
where to save and how to name the output XPDL file. If there are activities that send

2 ASK-IT has been co-funded by the European Union under the 6th Framework Programme

(no IST-2003-511298)

or receive messages the graphical interface presented in Figure 7 helps the user to
create message flows.

Fig. 5. The main screen of the Liveness2XPDL tool.

Fig. 6. The Complex Provider displayed in Together Workflow Editor3.

Fig. 7. The Inter-role Messages Definition screen.

3 A graphical Workflow Editor implementing XPDL specification V2.1 using the BPMN

graphical notation, http://www.together.at/prod/workflow/twe

Finally, in Figure 8 the reader can see the combined roles process model for all the
roles used in our project. The modeler has used the graphical tool depicted in Figure 7
to define the message flows between the agents. A message flow represents the flow
of information between two separate roles (pools). The screenshot in Figure 8 has
been taken from the Signavio tool4. To import the model into the Signavio tool we
first used a free online XPDL to BPMN conversion service5.

Fig. 8. The three agent roles displayed together in Signavio BPM Academic Initiative.

4 The BPM Academic Initiative of Signavio offers a web-based process modeling platform to

students, lecturers and researchers, http://www.signavio.com/bpm-academic-
initiative

5 E.g. the “Convert XPDL to BPMN” service provided freely on-line by Trisotech,
http://www.businessprocessincubator.com

5 Simulating The Roles Interactions

In this section, we demonstrate how simulation can aid the system modeler
the project manager to make important decisions, mainly
requirements.

Initially, there were two reasons for simulating the
that the ASK-IT service providers needed to know if the system can satisfy non
functional user requirements, one of which was the deli
seconds. The frequency of service requests was calculated to be one request per 30
seconds. The second was to find out how the system
demand increased. The latter would be used for
plan.

The Signavio tool allows simulating a process model involving several roles. For
each simulation scenario, it allows to define:

 available resources for each role (how many instances of this role are available)
 the frequency in which a role can appear and start executing
 the percentage of times that a XOR gateway selects one or the other execution path
 activity duration (distribution type, mean and standard deviation values)
 number of simulations for each scenario

For our simulations we used several executions of function prototypes to define the
activities durations. Moreover, we added the network latency in the message receiving
activities. All the distributions that we used are
different scenarios by varying the frequency of PAs appearing in the network and
asking for services, the number of brokers serving the requests and the number of
complex providers (in Figure 9 you can see a screenshot from the Signavio tool for
defining a scenario).

Fig.

Simulating The Roles Interactions

In this section, we demonstrate how simulation can aid the system modeler
project manager to make important decisions, mainly concerning non-functional

Initially, there were two reasons for simulating the ASK-IT system. The first was
service providers needed to know if the system can satisfy non

functional user requirements, one of which was the delivery of the service within ten
seconds. The frequency of service requests was calculated to be one request per 30
seconds. The second was to find out how the system would scale when service

. The latter would be used for preparing the project’s exploitation

The Signavio tool allows simulating a process model involving several roles. For
each simulation scenario, it allows to define:

available resources for each role (how many instances of this role are available)
hich a role can appear and start executing

the percentage of times that a XOR gateway selects one or the other execution path
activity duration (distribution type, mean and standard deviation values)
number of simulations for each scenario

mulations we used several executions of function prototypes to define the
activities durations. Moreover, we added the network latency in the message receiving
activities. All the distributions that we used are Gaussian (Normal). Then, we defined

scenarios by varying the frequency of PAs appearing in the network and
asking for services, the number of brokers serving the requests and the number of

(in Figure 9 you can see a screenshot from the Signavio tool for

Fig. 9. Defining the scenario in the Signavio tool.

In this section, we demonstrate how simulation can aid the system modeler as well as
functional

system. The first was
service providers needed to know if the system can satisfy non-

very of the service within ten
seconds. The frequency of service requests was calculated to be one request per 30

scale when service
ct’s exploitation

The Signavio tool allows simulating a process model involving several roles. For

available resources for each role (how many instances of this role are available)

the percentage of times that a XOR gateway selects one or the other execution path

mulations we used several executions of function prototypes to define the
activities durations. Moreover, we added the network latency in the message receiving

. Then, we defined
scenarios by varying the frequency of PAs appearing in the network and

asking for services, the number of brokers serving the requests and the number of
(in Figure 9 you can see a screenshot from the Signavio tool for

Our experiments are presented in Figure 10. We have validated the system to
respond within 10 seconds in the worst case when we have an incoming request every
30 seconds with one broker and one complex provider. Moreover, we can see what
the expected quality of service will be, while the requests’ frequency rises. As far as
system scaling is concerned we see that by adding more broker instances, the system
performance has a better gain than by adding complex providers. Finally, we can
claim that with three broker instances the system can offer the required quality of
service (respond within ten seconds) even if we have a request every two seconds.

Fig. 10. Average and maximum response times in seconds (vertical axis). The horizontal axis
represents the time interval between two requests (in a normal distribution).

0

50

100

150

200

250

012345678910

personal assistant requests frequency (seconds)

One broker, one complex
provider

Average Cycle Time Max Cycle Time

0

10

20

30

40

50

60

70

00.511.522.53

personal assistant requests frequency (seconds)

Three brokers, one complex
provider

Average Cycle Time Max Cycle Time

0

50

100

150

200

250

012345678910

personal assistant requests frequency (seconds)

One broker, two complex
providers

Average Cycle Time Max Cycle Time

0

20

40

60

80

100

120

00.511.522.533.544.55

personal assistant requests frequency (seconds)

Two brokers, two complex
providers

Average Cycle Time Max Cycle Time

0

10

20

30

40

50

60

70

80

00.511.522.53

personal assistant requests frequency (seconds)

Three brokers, two complex
providers

Average Cycle Time Max Cycle Time

0

20

40

60

80

100

120

00.511.522.533.544.55

personal assistant requests frequency (seconds)

Two brokers, one complex
provider

Average Cycle Time Max Cycle Time

6 The Method Fragment for Validating the Analysis Model

Method fragments [24] are reusable methodological parts that can be used by
engineers in order to produce a new design process for a specific situation. This
allows a development team to come up with a hybrid methodology that will support
the needs of specific programming and modeling competencies.

The method fragment that corresponds to the process of validating an analysis
model is presented in this section. It is defined as a software development process
using the extended SPEM 2.0 language for representing agent oriented methodologies
[25]. A Software Process is defined as a series of Phases that produce Work Products.
In each phase simple or complex tasks take place. Tasks are achieved by Human
Roles. Work products can be either graphical or textual models. Graphical models can
be Structural (focusing in showing the static aspects of the system – such as class
diagrams) or Behavioral (focusing in describing the dynamic aspects of the system –
what happens as time passes). Textual models can be completely Free text or follow
some specifications or grammar (a Structured work product).

Each process package defines a process that contains tasks connected through
dashed arrows like in flowcharts. The black dot shows where the process starts and
the black dot in a circle where it ends. A task has input and output work products. An
arrow from a task to a work product means that the product is created (or updated) by
the task. An arrow from a work product to a task means that the product is an input to
the task.

This method fragment (shown in Figure 11) can be integrated with the Gaia
methodology or one of its descendants by the software engineer. It is activated at the
end of the analysis phase (or architectural design phase for Gaia 2.0) to validate the
system model. Its inputs are the various activities execution times (average and
standard deviation) and the (Gaia) role models (the liveness property).

Liveness2XPDL
Define

associations
Assign activities

duration

XPDL

Assign XOR
Gateway properties

Define
scenario

Simulate
scenario

Import to
BPMN tool

Software
Engineer

Verification
Scenarios

Role model(s)
Duration of basic

functionalities execution

Fig. 11. The analysis model validation method fragment in SPEM 2.0.

The engineer must first define the scenario for validation (first task). The scenario
is written in free text (the “Verification Scenarios” work product). Then the relevant

roles are selected and transformed to process models in the Liveness2XPDL task
using the developed tool. Optionally, using the same tool, in the next task, namely
“Define associations”, the engineer connects the message sending and receiving
activities of the roles. The XPDL work product is automatically produced and in the
next task it is imported to the desired tool that will be used for simulation (in our case
study Signavio). Then, the engineer assigns the activities duration and XOR gateway
properties using the same tool. Finally, the engineer simulates the scenario. The
process package finishes by updating the “Verification Scenarios” with the results of
the simulation or is restarted to simulate a new scenario.

7 Discussion

It is not the first time that the AOSE community studies and uses business process
models. There are a number of works, e.g., one for improving a process model
representing the behavior of agents [11], another for proposing a method for
transforming BPMN models to agent-oriented models in the Prometheus methodology
[26], and another that provides a mapping of BPMN diagrams to a normalized form
checking for certain structural properties, which normalized form can itself be
transformed to a petri-net that allows for further semantic analysis [27].

All these works can be aligned with ours using method engineering and provide a
number of new paths or possibilities for a system modeler that has come up with the
Gaia analysis models. Thus, an AOSE practitioner can transform the process model
outputted from our work to a system specification using the Prometheus methodology
notation [26] and continue using that methodology. Another might be interested in
checking certain structural properties of the process model [27].

Some preliminary results of this work have appeared in EUMAS 2010 (with
informal proceedings) [28]. In that work, we provided transformation templates
targeting the BPMN v1 metamodel. This work extends that one by targeting the
XPDL metamodel, which offers a wide range of possibilities when available tools are
concerned. Moreover, this work caters for integrating multiple roles in a single
process model.

Although we have achieved our goals, the Liveness2XPDL tool has specific
limitations. Firstly, when the user decides to create multiple associations that define
message flows from an activity that will be received by different activities in other
pools the method cannot automatically tell whether one of the possible paths will be
followed, or all of them. The inter-agent messages definition interface allows defining
such associations; however, it is not clear how these can be exploited with simulation.

An important note to the transformation approach concerns the templates’
definitions. Undoubtedly, there is not a single way to express a concept with XPDL
(or the BPMN notation). For example, the A~ formula can be represented either with
the template illustrated in Figure 3, or by adding the loop symbol in the rectangle.
Although some good styles and practices are in use today, in practice there are no
rules that guarantee an optimal design. The appropriateness of the model must every
time get validated by the end user. In our case, the templates were defined considering

the BPMN simulation tools features. For example, for the A~ formula, we chose that
particular definition because the loop symbol would introduce sub-processes to the
model, and available simulation tools have limited support for such a feature.

Moreover, in XPDL it is acceptable to create more than one transition from an
activity to other activities. This option reduces the complexity of the model as it is not
mandatory to use XOR gateways. However, a large number of process management
tools do not accept this option and most of the times they suggest that a gateway
should be placed to avoid errors. This is why we used the XOR gateway in our
templates.

Finally, after the process model is produced, the user still has to provide some
additional elements concerning the send/receive activities’ configuration. We are
currently working towards automating this step based on the following guidelines
(which are now manually configured):

 All activities that stand for sending or receiving messages are labeled as message
type activities.

 When a receive activity immediately follows a start event, then the start event and
the activity are merged into a start event triggered by a message.

 When a receive activity immediately precedes an end event, then the two are
merged into an end event triggered by a message.

 When a message is intended to be sent to one or more out of many recipients and
this decision has to be evaluated during runtime, then before the “send message”
activity a data-based exclusive gateway is added.

8 Conclusion

In this paper we showed how a development team that employs the Gaia
methodology, or its derivatives, i.e. ROADMAP [4], the Gaia2JADE process [5],
Gaia4E [6] and ASEME [7] can transform the output of the analysis phase model
(Role Model) to a process model. Actually, the role’s liveness property is used for the
transformation.

Process models are useful paradigms as they, on one hand, allow the usage of a
wide range of tools (free or proprietary) for simulation, thus providing the means to
explore non-functional properties of the system under construction, even before its
implementation. Therefore, project managers and engineers can evaluate the use of
methods and technologies in their project, but also information about the deployment
and scaling of their application. On the other hand, process models are commonly
used by business stakeholders, who can now understand and appreciate a MAS
analysis model. Finally, such models can be used to define agent and humans
interactions based on the associations of the process model.

Herein, we presented the transformation algorithm, demonstrated the developed
tool and showed how it can be used to validate a system analysis for a real world
application, which was created in the context of ASK-IT project. The open Java

sources and executable java jar file for the Liveness2XPDL tool can be browsed by
the interested reader at github6.

The approach that we followed has some limitations, but also opens interesting
paths for future work. A very promising path lies in developing a code generation tool
based on the process model and targeting the WADE7 toolkit of the popular JADE
platform. Another path is that of accommodating the definition of human-agent
interactions in the modern field of Human-Agent Collectives [29], based on process
models.

Appendix: The recursive transformation algorithm.

The pseudocode of the tranformation algorithm is presented below. The different
model elements are represented as classes and their properties as class properties,
accessible using the dot operator, i.e. <classname>.<property>. For representing a
list we use a List class that supports the operations add (to add an element to the list)
and size (to return the number of its elements). The program takes as input an XPDL
Package instance and the String liveness property of an SRM Role instance.

Program transform(Liveness liveness, Package package)

 WorkflowProcess workflowProcess = new WorkflowProcess

 package.workflowProcesses.add(workflowProcess)

 Event startEvent = new Event

 startEvent.type = start

 workflowProcess.add(startEvent)

 Activity lastActivity = createProcess(liveness.formula1.expression,

workflowProcess, startEvent)

 Event endEvent = new Event

 endEvent.type = end

 workflowProcess.add(endEvent)

 Transition transition = new Transition

 transition.from = lastActivity

 transition.to = endEvent

 workflowProcess.add(transition)

End Program

Function Activity createProcess(Expression expression, WorkflowProcess

workflowProcess, Activity activity)

 List terms = new List

 For Each termi In expression

 terms.add(termi)

 End For

 If terms.size() > 1 Then

 If expression Is SequentialExpr Then

6 https://github.com/ASEMEtransformation/Liveness2XPDL
7 WADE is a software platform based on JADE providing support for the execution of tasks

defined using the workflow metaphor, http://jade.tilab.com/wadeproject

 For Each termi In expression

 Activity newActivity = createProcess(termi, workflowprocess,

activity)

 activity = newActivity

 End for

 Else If expression Is OrExpr

 Activity xorEntryGateway = new Activity

 xorEntryGateway.gatewayType = XOR

 workflowProcess.add(xorEntryGateway)

 Transition transition = new Transition

 transition.from = activity

 transition.to = xorEntryGateway

 workflowProcess.add(transition)

 Activity xorExitGateway = new Activity

 xorExitGateway.gatewayType = XOR

 workflowProcess.add(xorExitGateway)

 For Each termi In expression

 Activity newActivity = createProcess(termi, workflowprocess,

xorEntryGateway)

 transition = new Transition

 transition.from = newActivity

 transition.to = xorExitGateway

 workflowProcess.add(transition)

 End for

 activity = xorExitGateway

 Else If expression is ParallelExpr

 //similar with orExpr, parallel gateway type instead of XOR

 End If

 For Each termi In expression

 If termi Is BasicTerm

 boolean foundLeftHandSideEqualsBasicTerm = false

 For Each formulai In liveness

 If formulai.leftHandside = termi Then

 Activity newActivity = createProcess(formulai.expression,

workflowprocess, activity)

 activity = newActivity

 foundLeftHandSideEqualsBasicTerm = true

 End If

 If foundLeftHandSideEqualsBasicTerm = false

 Activity newActivity = new Activity

 workflowProcess.add(newActivity)

Transition transition = new Transition

transition.from = activity

transition.to = newActivity

workflowProcess.add(transition)

activity = newActivity

 End If

 Else If (termi is of type ‘(’ term ‘)’) Then

 Activity newActivity = createProcess(term, workflowprocess,

activity)

 activity = newActivity

 Else If (termi is of type ‘[’ term ‘]’)Then

 //definition of the [A] template

 Else If (termi is of type ‘*’) Then

 //definition of the A* template

 Else If (termi is of type ‘~’) Then

 //definition of the A~ template

 Else If (termi is of type ‘+’) Then

 //definition of the A+ template

 End If

 End If

 End For

 return activity

End Function

References

1. Rana, O.F., Stout, K.: What is scalability in multi-agent systems? In: International
Conference on Autonomous Agents. pp. 56–63. ACM, Barcelona, Spain (2000).

2. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process
Management. Springer Berlin Heidelberg, Berlin, Heidelberg (2013).

3. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented
Analysis and Design. Auton. Agent. Multi. Agent. Syst. 3, 285–312 (2000).

4. Juan, T., Pearce, A., Sterling, L.: ROADMAP: extending the gaia methodology for
complex open systems. In: Proceedings of the first international joint conference on
Autonomous agents and multiagent systems part 1 - AAMAS ’02. pp. 3–10. ACM Press,
New York, New York, USA (2002).

5. Moraitis, P., Spanoudakis, N.: The GAIA2JADE Process for Multi-Agent Systems
Development. Appl. Artif. Intell. 20, 251–273 (2006).

6. Cernuzzi, L., Zambonelli, F.: Gaia4E: A Tool Supporting the Design of MAS using Gaia.
In: Proceedings of the 11th International Conference on Enterprise Information Systems
(ICEIS 2009), Volume SAIC, Milan, Italy, May 6-10. pp. 82–88 (2009).

7. Spanoudakis, N., Moraitis, P.: Using ASEME Methodology for Model-Driven Agent
Systems Development. In: Weyns, D. and Gleizes, M.-P. (eds.) Agent-Oriented Software
Engineering XI. pp. 106–127. Springer-Verlag, Berlin, Heidelberg (2011).

8. Workflow Management Coalition: Workflow Standard Process Definition Interface - XML
Process Definition Language, WFMC-TC-1025. (2008).

9. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: The Gaia
methodology. ACM Trans. Softw. Eng. Methodol. 12, 317–370 (2003).

10. Pascalau, E., Giurca, A., Wagner, G.: Validating Auction Business Processes using Agent-
based Simulations. In: Proceedings of 2nd International Conference on Business Process
and Services Computing (BPSC2009), March 23-24, Leipzig, Germany (2009).

11. Szimanski, F., Ralha, C.G., Wagner, G., Ferreira, D.R.: Improving Business Process
Models with Agent-Based Simulation and Process Mining. In: Nurcan, S., Proper, H.A.,
Soffer, P., Krogstie, J., Schmidt, R., Halpin, T., and Bider, I. (eds.) Enterprise, Business-

Process and Information Systems Modeling. pp. 124–138. Springer Berlin Heidelberg,
Berlin, Heidelberg (2013).

12. Onggo, B.S.S.: BPMN pattern for agent-based simulation model representation. In:
Proceedings Title: Proceedings of the 2012 Winter Simulation Conference (WSC). pp. 1–
10. IEEE (2012).

13. Spanoudakis, N., Moraitis, P.: An Agent Modeling Language Implementing Protocols
through Capabilities. In: 2008 IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology. pp. 578–582. IEEE (2008).

14. Wirth, N.: Extended Backus-Naur Form (EBNF), ISO/IEC 14977:1996(E). (1996).
15. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-driven

software development. IEEE Softw. 20, 42–45 (2003).
16. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: Eclipse Modeling Framework (2nd

Edition). Addison-Wesley Professional (2008).
17. Redding, G., Dumas, M., Hofstede, A.H.M. ter, Iordachescu, A.: Generating Business

Process Models from Object Behavior Models. Inf. Syst. Manag. 25, 319–331 (2008).
18. Jahangirian, M., Eldabi, T., Naseer, A., Stergioulas, L.K., Young, T.: Simulation in

manufacturing and business: A review. Eur. J. Oper. Res. 203, 1–13 (2010).
19. Cibrán, M.A.: Translating BPMN Models into UML Activities. In: Ardagna, D., Mecella,

M., and Yang, J. (eds.) BPM 2008 International Workshops, Milano, Italy, September 1-4,
2008. Revised Papers. pp. 236–247. Springer Berlin Heidelberg, Berlin, Heidelberg (2009).

20. González-Ferrer, A., Fernández-Olivares, J., Castillo, L.: From business process models to
hierarchical task network planning domains. Knowl. Eng. Rev. 28, 175–193 (2013).

21. Van der Aalst, W.M.P.: The application of petri nets to workflow management. J. Circuits,
Syst. Comput. 8, 21–66 (1998).

22. Bernon, C., Cossentino, M., Gleizes, M.-P., Turci, P., Zambonelli, F.: A Study of Some
Multi-agent Meta-models. In: Odell, J., Giorgini, P., and Müller, J.P. (eds.) Agent-Oriented
Software Engineering V. pp. 62–77. Springer Berlin Heidelberg, Berlin, Heidelberg (2005).

23. Juan, T., Sterling, L.: The ROADMAP Meta-model for Intelligent Adaptive Multi-agent
Systems in Open Environments. In: Giorgini, P., Müller, J.P., and Odell, J. (eds.) Agent-
Oriented Software Engineering IV. pp. 53–68. Springer Berlin Heidelberg, Berlin,
Heidelberg (2004).

24. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent design
methodologies: from standardisation to research. Int. J. Agent-Oriented Softw. Eng. 1, 91
(2007).

25. Seidita, V., Cossentino, M., Gaglio, S.: Using and Extending the SPEM Specifications to
Represent Agent Oriented Methodologies. In: Luck, M. and Gomez-Sanz, J.J. (eds.) Agent-
Oriented Software Engineering IX. pp. 46–59. Springer (2009).

26. Dam, H.K., Ghose, A.: Agent-Based Development for Business Processes. In: Desai, N.,
Liu, A., and Winikoff, M. (eds.) Principles and Practice of Multi-Agent Systems. pp. 387–
393. Springer Berlin Heidelberg, Berlin, Heidelberg (2012).

27. Endert, H., Hirsch, B., Küster, T., Albayrak, S.: Towards a Mapping from BPMN to
Agents. In: Huang, J., Kowalczyk, R., Maamar, Z., Martin, D., Müller, I., Stoutenburg, S.,
and Sycara, K.P. (eds.) Service-Oriented Computing: Agents, Semantics, and Engineering.
Springer Berlin Heidelberg, Berlin, Heidelberg (2007).

28. Delias, P., Spanoudakis, N.: Simulating Multi-agent System Designs Using Business
Process Modeling. In: 8th European Workshop on Multi-Agent Systems (EUMAS 2010). ,
Paris, France (2010).

29. Jennings, N.R., Moreau, L., Nicholson, D., Ramchurn, S.D., Roberts, S., Rodden, T.,
Rogers, A.: Human-Agent Collectives. Commun. ACM. 57, 80–88 (2014).

