
A CASE Tool for Robot Behavior Development

A. Topalidou-Kyniazopoulou1, N. I. Spanoudakis2, and M. G. Lagoudakis1

1 Department of ECE, Technical University of Crete, 73100, Chania, Greece
atopalidou@isc.tuc.gr, lagoudakis@intelligence.tuc.gr

2 Department of Sciences, Technical University of Crete, 73100, Chania, Greece
nikos@science.tuc.gr

Abstract. The development of high-level behavior for autonomous robots
is a time-consuming task even for experts. This paper presents a Computer-
Aided Software Engineering (CASE) tool, named Kouretes Statechart
Editor (KSE), which enables the developer to easily specify a desired
robot behavior as a statechart model utilizing a variety of base robot
functionalities (vision, localization, locomotion, motion skills, communi-
cation). A statechart is a compact platform-independent formal model
used widely in software engineering for designing software systems. KSE
adopts the Agent Systems Engineering Methodology (ASEME) model-
driven approach. Thus, KSE guides the developer through a series of de-
sign steps within a graphical environment that leads to automatic source
code generation. We use KSE for developing the behavior of Aldebaran
Nao humanoid robots competing in the Standard Platform League of the
RoboCup competition.

1 Introduction

Computer-Aided Software Engineering (CASE) tools improve productivity and
quality in software development [1]. However, they are not widely used for robot
behavior development, even in domains, such as RoboCup, where robot behavior
needs to be frequently modified. It is quite common for a RoboCup team to find
itself in a place where the code realizing the behavior of its robots needs to
be urgently modified, for example during half-time because of some unexpected
opponent strategy. The time constraints and the programmers’ stress in such
situations consist a recipe for failure. CASE tools can be really helpful in this
context, as they offer ways to make behavior development and modification
quicker and less error-prone.

Recent advances in Agent Oriented Software Engineering (AOSE), Model-
Driven Engineering (MDE) and Domain Specific Languages (DSLs) allowed us
to define a novel model-driven process for developing collaborative robot behav-
iors [2]. This process, however, lacked the assistance of a CASE tool that would
allow the graphical editing of the behavior models. The work presented in this
paper aims to fill this gap by proposing the Kouretes Statechart Editor (KSE)
CASE tool, which enables the developer to easily specify a desired robot behav-
ior as a statechart model utilizing a variety of base robot functionalities (vision,

localization, locomotion, motion skills, communication). A statechart [3] is a
compact platform-independent formal model used widely in software engineer-
ing for designing software systems. KSE adopts the Agent Systems Engineering
Methodology’s (ASEME) model-driven approach [4] and assists the developer
from the analysis phase to the design and code generation phases. More specif-
ically, KSE supports (a) the automatic generation of the initial abstract stat-
echart model using compact liveness formulas, (b) the graphical editing of the
statechart model and the addition of the required transition expressions, and
(c) the automatic source code generation for compilation and execution on the
robot. KSE has been developed using the Eclipse Modeling Project3 technolo-
gies and has been integrated with our Monas software architecture [5] and our
Narukom communication framework [6], which provide the base functionalities.
KSE is used for developing the behavior of the Aldebaran Nao humanoid robots
of our team Kouretes competing in the RoboCup Standard Platform League.

In the rest of the paper, after examining the background technologies in
Section 2, we present our ASEME-based robot behavior development method in
Section 3 and the main features of KSE, including design and implementation
choices, in Section 4. Subsequently, we present the results of a first empirical
evaluation in Section 5. Finally, we discuss our findings and related work in
Section 6 before concluding in Section 7.

2 Background

The Agent Systems Engineering Methodology (ASEME) [4] supports a modular
agent design approach and introduces the concepts of intra- and inter- agent
control. The former defines the agent’s behavior by coordinating the different
modules that implement its own capabilities, while the latter defines the proto-
cols that govern the coordination of the society of the agents. ASEME applies
a Model-Driven Engineering (MDE) approach to multi-agent systems develop-
ment, so that the models of a previous development phase can be transformed to
models of the next phase. The transition from one phase to another is assisted
by automatic model transformation leading from requirements to computer pro-
grams. The ASEME platform-independent model, which is the output of the
design phase, is a statechart, and is referred to as the Intra-Agent Control (IAC)
model. ASEME uses the models of the Agent Modeling Language (AMOLA) [7].
The AMOLA metamodels have been formally defined using the Eclipse Model-
ing Framework (EMF) of the Eclipse Modeling Project. Eclipse technology has
been employed for developing model transformations and graphical editing tools
for both models and processes.

Our communication framework, Narukom [6], is based on the publish/sub-
scribe messaging pattern [8] and supports multiple ways of communication, in-
cluding point-to-point and multicast connections. The information that needs
to be communicated between nodes (agents or activities) is formed as messages,

3 The Eclipse Modeling Project provides a unified set of modeling frameworks, tooling,
and standards implementations: www.eclipse.org/modeling

www.eclipse.org/modeling

tagged with appropriate topics, and relayed through a message queue for delivery.
Three types of messages are supported: (i) state, which remain in the blackboard
until they are replaced by a newer message of the same type, (ii) signal, which
are consumed at the first read, and (iii) data, which are time-stamped to indicate
the precise time the values they carry were acquired. We used Google Protocol
Buffers4 to facilitate the serialization of data and the structural definition of the
messages. Additionally, the blackboard paradigm [9] is utilized to provide effi-
cient access to shared information stored locally at each node and is extended to
support history queries and a mechanism that controls the information updates.

Our software architecture, Monas [5], provides an abstraction layer from the
Nao robot and allows the synthesis of complex robot software as XML-specified
Monas modules and/or model-based (ASEME) statechart modules. Monas mod-
ules focus on specific functionalities (perception, motion, behavior, etc.) and each
one of them is executed independently at any desired frequency completing a
series of activities at each execution. Statechart modules are executed using
a generic multi-threaded statechart engine. The statechart engine [5] is built
on top of existing open-source projects, provides the required concurrency, and
meets the real-time requirements of the activities on each robot. The base func-
tionalities utilized by a statechart can be implemented as Monas modules and
include the following: Sensors, for collecting and filtering measurements from
the robot sensors; RobotController, for handling external signals on the game
state; MotionController, for managing and executing robot locomotion and spe-
cial actions; Vision, for obtaining visual object observations; Localization, for
estimating the position of the robot and the ball in the field; and HeadHandler,
for managing the movements of the robot head (camera).

3 ASEME-based Behavior Development

ASEME suggests a strict hierarchical decomposition of the desired robot be-
havior into smaller activities until a level of provided base activities is met.
Each design step is supported by a formal model. These models are automati-
cally transformed when moving from one step of the design process to the next.
Briefly, the process begins with the specification of a set of liveness formulas
(analysis phase) which are converted to an initial statechart model; the state-
chart is subsequently enriched (design phase) and is converted to source code.

Liveness formulas describe and connect the activities included in the desired
behavior in a formal way, similar to regular expressions. Each formula is a rule
decomposing one activity (shown on the left side) into a number of intercon-
nected smaller activities (shown on the right side). Activities on the right side of
a formula are connected using the Gaia operators [10]. Specifically, A.B means
that activity B is executed after activity A, A* means that A is executed zero
or more times, A+ means that A is executed one or more times, A∼ means that
A is executed indefinitely (it resumes as soon as it finishes), A|B means that

4 Google’s language- and platform- independent, extensible mechanism for serializing
structured data: http://code.google.com/apis/protocolbuffers

http://code.google.com/apis/protocolbuffers

either A or B is executed exclusively, A||B means that A and B are executed
concurrently, and [A] means that A is optional. Using liveness formulas, the pro-
grammer can hierarchically decompose the desired behavior in specific activities
until the existing base activities are reached, however without specifying the
precise conditions under which individual activities are chosen.

The statecharts [3] are formal models that describe complex processes and
control structures using directed graphs with nodes (states) and edges (transi-
tions). Six types of nodes or states are allowed: start–states, indicating the entry
of execution in a complex state, end–states, indicating the exit of execution from
a complex state, or–states, indicating complex states with mutually exclusive
sub-states (only one sub-state is executed at each time), and–states, indicat-
ing complex states with sub-states of type or which are executed concurrently,
basic–states, indicating the execution of base activities, and condition–states,
providing the ability to make conditional transitions. The state at the highest
level (the only one without a parent) is called the root. Each transition from one
state (source) to another (target) is characterized by an expression whose syntax
follows the pattern e[c]/a, where e is the event triggering the transition, c is
the condition that needs to be satisfied for the transition to take place when e
occurs, and a is an action executed when the transition is taken. All the elements
of an expression are optional.

The liveness2IAC tool [11] is used to transform the liveness formulas to stat-
echarts and the IAC2Monas tool [5] is used to transform the statechart auto-
matically to C++ source code adhering to the Monas architecture. With the use
of the latter, the platform-independent model (statechart) is transformed to a
platform-specific model (source code), which is subsequently cross-compiled to
produce the executable for the robot.

4 The Kouretes Statechart Editor CASE Tool

The Kouretes Statechart Editor (KSE) is a Computer-Aided Software Engineer-
ing (CASE) tool designed to support all steps of ASEME-based behavior devel-
opment through an intuitive graphical interface. In particular, liveness formulas
are given in plain text and are automatically converted to an initial statechart
model, where the designer can graphically and intuitively add the appropriate
expressions for transitions between states. The correct syntax of transition ex-
pressions is formally specified in the form of an EBNF grammar [12]. Each stat-
echart can be associated with a source code repository implementing the base
activities; in our case, this is an instance of our software architecture Monas.
KSE also allows the creation of statecharts from scratch (without liveness for-
mulas) and graphical editing and modification of any existing statechart. To
ensure that the designer will not produce an invalid statechart with respect to
Harel’s statechart language [3] and the EBNF grammar, KSE offers a validation
procedure which identifies mistakes in the statechart and warns the user. The
final statechart is automatically converted to source code which is integrated
with the associated source code repository and is cross-compiled for execution.

Fig. 1. KSE example: the generated statechart model from the liveness formula.

4.1 KSE Example

We provide a simple example to demonstrate KSE and the behavior develop-
ment process. Consider a very simple behavior, whereby a robot listening to
SPL’s game controller executes the following actions, whenever it enters the
PLAYER PLAYING state: sit down when you see the ball and track it, stand up and
scan for the ball when you lose it. In any other game state, it does nothing.

The first step in creating a behavior with KSE is to describe the behavior
with liveness formulas. The two liveness formulas for this simple behavior are:

TestBehavior = (Play | NoPlay)+

Play = SitDownAndStare | StandUpAndScan

The first formula indicates that our behavior (TestBehavior) will choose one or
more times between Play and NoPlay exclusively. NoPlay is a base activity, which
handles game states different than PLAYER PLAYING, and is not analyzed further.
Play is refined in the second formula, which simply states that Play will have
to choose one of the two base activities, SitDownAndStare or StandUpAndScan,
exclusively. SitDownAndStare commands the robot to sit down and stare at the
(visible) ball, whereas StandUpAndScan commands the robot to stand up and
scan for a ball. Note that this decomposition specifies what activities are included
in the desired behavior, but gives no information on when execution will switch
from one activity to another.

As soon as the formula is provided to KSE, the initial statechart model is
generated and the user has to associate it to a source code repository, which
provides the base functionalities and in which the code of the new statechart
is going to be integrated. At this point, the user can initialize the graphical
representation (Figure 1) of the automatically created statechart model in order
to edit the transition expressions or the activities of the basic states. Note that
each activity in the liveness formula has become a node/state in the statechart
and the hierarchy is preserved in the graphical node enclosures. The yellow-
color-labeled rounded rectangles indicate or-states, the green-colored rounded

Fig. 2. KSE example: the complete statechart model with all the transition expressions.

rectangles basic-states, and the blue-color-labeled rounded rectangles and-states
(none in this example). A node with a circled c is a condition-state, whereas solid
black nodes correspond to start-states and circled black nodes to end-states.

An empty transition expression (inidicated by <..>) implies that no event
is required for triggering, the condition is evaluated to true, and no action is
executed, therefore such a transition is always taken and should be used only
in unconditional transitions with no branches. To ensure proper execution of
the statechart, the user must define the appropriate transition expressions. In
our example, we have to provide six transition expressions: when to continue
with (Play | NoPlay), when to leave (Play | NoPlay), when to choose Play,
when to choose NoPlay, when to choose SitDownAndStare, and when to choose
StandUpAndScan. These conditions take into account information delivered by
incoming messages from existing Monas modules indicating the game state and
whether the ball is visible or not. The complete statechart with all transition
expressions is shown in Figure 2. It is worth noting the loop transition on (Play

| NoPlay), which executes a timeout action (200 msec), so that the transition
to the target state can only take place at a certain frequency. The same action
is taken when this state is entered the first time (transition from its start-state).

At this point, the user can validate the statechart model and generate the
source code. Classes are generated for the model, for the activity of each basic-
state, and for each transition. Additionally, if the activity of a basic state is
not already provided, a class template will be generated in which the user must
define the corresponding functionality using conventional C++ code. The user
can edit the source code of the activity corresponding to a basic state directly
within KSE. In this example, the user just needs to define the activities of the

#include ”TestBehavior . h”
#include ” t rans i t i onHeade r s . h”
using namespace s t a t e cha r t eng i n e ;
namespace {Statechar tReg i s t ra r<TestBehavior > : :Type temp(”TestBehavior ”) ;}
TestBehavior : : TestBehavior (Narukom∗ com) {

s t a t e c h a r t = new Statechar t (”Node TestBehavior ” , com) ;
Statechar t∗ Node 0 = s t a t e ch a r t ;
s t a t e s . push back (Node 0) ;

S ta r tS ta t e∗ Node 0 1 = new Sta r tSta t e (”Node 0 1” , Node 0) ; //Name : 0 . 1
s t a t e s . push back (Node 0 1) ;

. . .

Fig. 3. KSE example: an extract of the generated code for the TestBehavior statechart.

#include ” a r ch i t e c t u r e / s tatechartEng ine / ICondit ion . h”
#include ”messages /AllMessagesHeader . h”
#include ” t o o l s /BehaviorConst . h”
c lass TrCond TestBehavior0 20 2 : public s t a t e cha r t eng i n e : : ICondit ion {
public :

void Use r In i t () { blk−>updateSubscr ipt ion (” behavior ” , msgentry : : SUBSCRIBE ON TOPIC) ;}
bool Eval () {

boost : : shared ptr<const GameStateMessage> var 621149599 = blk−>readState<
GameStateMessage> (” behavior ”) ;

boost : : shared ptr<const TimeoutMsg> msg= blk−>readState<TimeoutMsg>(” behavior ”) ;
return ((msg . get () !=0 && msg−>wakeup () !=”” && boost : : pos ix t ime : : f r om i s o s t r i n g

(msg−>wakeup ())<boost : : pos ix t ime : : m i c r o s e c c l o ck : : l o c a l t ime ()) && (
var 621149599 . get () !=0 && var 621149599−>p l a y e r s t a t e () !=PLAYER FINISHED)) ;

}
} ;
#include ” a r ch i t e c t u r e / s tatechartEng ine / IAct ion . h”
#include ” a r ch i t e c t u r e / s tatechartEng ine /TimoutAciton . h”
c lass TrAct ion TestBehavior0 20 2 : public s t a t e cha r t eng i n e : : TimeoutAction {

public : TrAct ion TestBehavior0 20 2 () : s t a t e cha r t eng i n e : : TimeoutAction (” behavior ”
,200) { ;}

} ;

Fig. 4. KSE example: the generated code for the loop transition on (Play | NoPlay).

three basic-states: NoPlay, SitDownAndStare, and StandUpAndScan. A sample
of the auto-generated code is shown in Figures 3 and 4. In our example, the size
of the total auto-generated code is 35.5 KB and with the user-defined activities
for the three basic-states it increases to 50.9 KB. Therefore, about 70% of the
code for this simple behavior has been automatically generated.

4.2 KSE Design and Implementation

To design and implement KSE, we chose the eclipse platform and the technolo-
gies offered by the Eclipse Modeling Project, in particular the Eclipse Modeling
Framework (EMF), the Graphical Modeling Framework (GMF), and the Xpand
language. This choice was apparent, mainly because of the fact that the ASEME
tools already used these technologies, but also because other modern CASE tools,
such as Yakindu5, are also based on them.

For creating the liveness formulas, the designer uses a simple text editor. The
liveness2IAC transformation tool transforms the liveness formulas to a statechart
instance based on the transformation templates for Gaia operators [11]. This
text-to-model transformation uses the formal definition of liveness formulas and
the Statechart metamodel defined in EMF ecore format, shown graphically in
Figure 5. According to the Statechart metamodel, a Model consists of Node,
Transition, and Variable instances. Nodes represent a state in the statechart
and have a name (providing a description of the state), a label (indicating their

5 A free toolkit for model-driven development of embedded systems: www.yakindu.org

www.yakindu.org

Fig. 5. The Statechart metamodel in EMF ecore format.

unique position in the hierarchy), an activity (hosting a path to the source code
implementing the functionality executed when the state is active), and a type
(indicating the type of the state: or-state, and-state, etc.). Nodes aggregate their
Children (sub-nodes) and reference their Father (parent state). Variables can be
defined by the designer and have a name and any desired data type. Transitions
have a name, one source node, one target node, and a transition expression
TE. Using the EMF representation of the ecore metamodel as Java classes, we
used the Java language to write a recursive algorithm that builds the correct
statechart by parsing the input liveness formulas.

For editing the statechart we used the GMF technology that allows to asso-
ciate the ecore metamodel elements with graphical components and dynamically
create the graphical model. GMF provides tools for the programmer to define
validation rules for the model, if any, and the relevant error or warning mes-
sages. Using the GMF API, we also implemented a copy-cut-paste functionality
for graphical views, which is not automatically supported by GMF. Thus, the
designer can use KSE to edit graphically any part of a statechart, even copying
and pasting parts from statecharts of different models.

The IAC2Monas transformation tool has been built using the Xpand lan-
guage, which is used to define the templates for the required C++ classes. These
templates are instantiated using information from the Statechart metamodel
elements.

5 KSE Evaluation

To obtain an objective evaluation of our CASE tool, 28 ECE undergraduate
students taking the Autonomous Agent class at the Technical University of Crete
were asked to use KSE and evaluate it in one of their laboratory sessions. The
plan of this 2-hour lab session was to go through a short tutorial on using KSE,
study a complete SPL Goalie behavior as an example (shown in Figure 6 without
the transition expressions), and finally develop their own SPL Attacker behavior
using KSE and the same functionalities of the Goalie behavior. The provided
functionalities were supported by a Monas source code repository. The students
worked in small teams of two or three people per team. None of them had any

Fig. 6. The statechart of the provided SPL Goalie behavior (expressions not shown).

prior experience with CASE tools, KSE, Monas, SPL, or RoboCup in general.
This lab session was run three times to accommodate all students in the four
available work stations. At the end of each lab session, a quick SPL game took
place with the four attackers split in two teams of two players each.

The results were in general positive for KSE as a CASE tool, but also for the
concept of ASEME-based behavior development. Both seemed to be pretty un-
derstandable, even though most students were not familiar with Agent-Oriented
Software Engineering. All student teams were able to go through the provided
material and deliver the requested SPL Attacker behavior. The great bet, won
by KSE in this evaluation, was that all student participants succeeded to create
a simple SPL robot behavior and even enjoyed watching their players in a game
without having to go through the typical lengthy training procedures required
for student members of an SPL team.

All student participants were asked to fill in an anonymous user satisfaction
questionnaire after the lab session. The total number of responders was 19. A
small sample of the user responses is shown in Table 1. The overall assessment
of KSE was positive. The main negative comment was that the long transition
expressions on the model were cluttering the view of the statechart graph.

Table 1. Summarized responses to the KSE user satisfaction questionnaire.

Question Very Easy Easy Normal Difficult Very Difficult
The liveness formulas was ... to edit. 21.05% 63.16% 15.79% 0.00% 0.00%
The statechart was ... to edit. 0.00% 31.58% 57.89% 10.53% 0.00%
The navigation to the KSE menu was ... 10.53% 42.11% 47.37% 0.00% 0.00%
The use of KSE was ... in general. 0.00% 57.89% 26.32% 15.79% 0.00%

6 Related Work and Discussion

Our research revealed two CASE tools that relate most to our work, namely
XabslEditor and Yakindu. We briefly review these tools below.

The Extended Agent Behavior Specification Language (XABSL) [13,14] is a
language for describing behaviors of autonomous agents based on hierarchical
finite state machines. XABSL was originally developed by the RoboCup team
GermanTeam to design the behavior of soccer robots. However, XABSL is not
restricted to robotic soccer, but can be used for all kinds of autonomous robots
or virtual agents, like characters in computer games. XabslEditor is a tool devel-
oped by the Nao Team Humboldt team in 2008 and allows the user to describe
agents and behaviors using the XABSL language. This editor is basically a text
editor for XABSL, having also the capability to represent graphically the hierar-
chical finite state machines that describe the agents’ behavior. XabslEditor also
provides a compiler for XABSL.

The Yakindu toolkit supports the development of both reactive, event-driven
and data flow-oriented systems with the help of finite-state machines, statecharts
(according to Harel), and block diagrams. Yakindu provides graphical modeling
tools with integrated validation and simulation, which allow for the early assess-
ment of the models and offers efficient code generators for a target platform.

The main features of the KSE, XabslEditor, and Yakindu tools are sum-
marized in Table 2. KSE compares favorably with the other tools in terms of
supported features. A major advantage of KSE for the design process is the anal-
ysis tool, which enables the user to abstractly and compactly define the desired
behavior using liveness formulas. A small set of liveness formulas can lead to a
large statechart model, therefore the user can save a significant amount of time
by seeding the design through the analysis tool. As an example, the statechart of
the SPL Goalie behavior in Figure 6 was initiated by only four liveness formulas.

The user can configure KSE and use it with any desired source code generator
and can choose which editor KSE opens for editing activities. The default config-
uration of KSE uses our IAC2Monas code generator for integrating statecharts
into our Monas architecture. Using a different code generator and a different
grammar for transition expressions, KSE can be configured to generate code for
any other platform. For example, we have configured KSE to generate code for
the popular JADE agent platform using the IAC2JADE tool [15] and a grammar
for expressions assuming FIPA-ACL6 communication between the agents.

6 The Foundation for Intelligent Physical Agents - Agent Communication Language
Specification: www.fipa.org

www.fipa.org

Table 2. Feature comparison of XabslEditor, Yakindu, and KSE.

Feature XabslEditor Yakindu KSE

Supported Platforms java eclipse helios linux, windows

Open Source
√

free-ware
√

Model Validation
√ √ √

Analysis Tool
√

Model Simulation
√

Multiple Editing Tabs
√ √ √

Symbol Auto-Completion
√

Graphical Editing
√ √

Reusability of Graphical Components
√

Source Code Generation
√ √ √

Integrated Source Code Editing
√ √

Customization of Code Generator
√

To facilitate rapid behavior updates, we have configured KSE to store all
statecharts and models within the source code repository of our Monas architec-
ture. Thus, all developed statecharts (behaviors) are available at any time and
the developer can choose on the fly which statechart to execute on the robot.
In general, it is important that the user-defined activities are generic enough to
be re-used in a variety of statecharts. This way, a developer can design and test
new behaviors, which do not entail the definition of new functionality, just by
editing statecharts and reusing existing functionalities.

Recently, we proposed the use of liveness formulas and statecharts also for
specifying agent interaction protocols [2]. We showed how an attack protocol can
be modeled and then inserted in the respective robot behavior. This feature is
fully supported by KSE, as the designer can define the coordinated action and
then copy and paste the relevant parts to the interacting robots’ statecharts,
thus ensuring the correct execution of the protocol. Consider, for example, the
following simple attack protocol defining three roles, two instances of center-for
and one of center : the center assumes control of the ball and then passes the ball
to one of the center-fors. The liveness formula for this protocol begins with:

attack = center || center-for || center-for

Then, in a robot’s IAC model the designer defines in a liveness formula that the
player will assume either a center or a center-for role, when attacking:

attack = center | center-for

When the statechart is generated in the second case, the designer can simply
copy the relevant states from the previously edited protocol definition statechart
and paste them over the auto-generated center and center-for basic-states.

7 Conclusion

In this paper, we presented the Kouretes Statechart Editor (KSE), a graphical
CASE tool for robot behavior development. KSE offers a number of features that
make it suitable for domains, such as RoboCup, where behavior modifications

are frequent and require quick and error-proof solutions. KSE currently under-
goes thorough testing and will be released to the public before RoboCup 2012
alongside the already public Monas architecture. A video showing the behavior
development process with KSE is available at www.kouretes.gr/KSE.ogv.

References

1. Baik, J., Boehm, B.: Empirical analysis of case tool effects on software develop-
ment effort. ACIS International Journal of Computer & Information Science 1
(November 2000) 1–10

2. Paraschos, A., Spanoudakis, N.I., Lagoudakis, M.G.: Model-driven behavior speci-
fication for robotic teams. In: Proceedings of The Eighth International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2012), Valencia, Spain
(June 2012)

3. Harel, D., Naamad, A.: The Statemate semantics of statecharts. ACM Transactions
on Software Engineering and Methodology 5 (1996) 293–333

4. Spanoudakis, N.I., Moraitis, P.: Using ASEME methodology for model-driven
agent systems development. In: Agent-Oriented Software Engineering XI, Revised
Selected Papers of the 11th International Workshop AOSE 2010. Volume 6788 of
Lecture Notes in Computer Science. Springer (2011) 106–127

5. Paraschos, A.: Monas: A flexible software architecture for robotic agents. Diploma
thesis, Technical University of Crete, Greece (2010)

6. Vazaios, E.: Narukom: A distributed, cross-platform, transparent communication
framework for robotic teams. Diploma thesis, Technical University of Crete, Greece
(2010)

7. Spanoudakis, N.I., Moraitis, P.: The agent modeling language (AMOLA). In: Pro-
ceedings of the 13th International Conference on Artificial Intelligence: Methodol-
ogy, Systems, and Applications (AIMSA). Volume 5253 of Lecture Notes in Com-
puter Science. Springer (September 2008) 32–44

8. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Computing Surveys 35 (2003) 114–131

9. Hayes-Roth, B.: A blackboard architecture for control. Artificial Intelligence 26(3)
(1985) 251–321

10. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems 3(3)
(2000) 285–312

11. Spanoudakis, N.I., Moraitis, P.: Gaia agents implementation through models trans-
formation. In: Proceedings of the 12th International Conference on Principles of
Practice in Multi-Agent Systems (PRIMA). Volume 5925 of Lecture Notes in Com-
puter Science. Springer (December 2009) 127–142

12. ISO/IEC: Extended Backus-Naur form (EBNF). 14977 (1996)
13. Loetzsch, M., Risler, M., Jungel, M.: Xabsl - a pragmatic approach to behavior

engineering. In: 2006 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). (October 2006) 5124–5129

14. Risler, M.: Behavior Control for Single and Multiple Autonomous Agents Based on
Hierarchical Finite State Machines. PhD thesis, Technische Universität Darmstadt,
Germany (2009)

15. Spanoudakis, N., Moraitis, P.: Modular JADE agents design and implementation
using ASEME. In: Proceedings of the IEEE/WIC/ACM International Conference
on Intelligent Agent Technology (IAT), Toronto, Canada (2010)

www.kouretes.gr/KSE.ogv

	A CASE Tool for Robot Behavior Development

