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Abstract, A formally forth-order, in space and time, well-balanced hybrid finite
volume/ difference numerical schems for approximating the Boussinesg-type for-
mulations of Mwogu and Madsen and Shrensen is presanted. The scheme otilizes
whe approximate Riemann solver of Roe for the inter-cell advective fluxes and
hathymetry source term, and finite difference discretizatons for the dispersive
ferms, Special attention i given o the numerical treatment of wetidry fromts,
friction ferm and wave breaking. To access the performance and expose the mer-
iits and dife of the two Baussinesq Tormulations the numerical model has
been applied to o number of idalized and expenimental test cases.

Key wonds: Bousainesq-type equations, finite volums methed, solitary waves, run-
up. breaking waves

1 Introduction

In the last two decades numerical modeling of free surface flows has been one of the
most interesting fields in coastal engineering. Tn particular, depth averaped models have
gained a lot of popularity, with the nonlinear shallow water equations (NSWE) being
one of the most applied models falling in this catepory. However, MSWE are not ap-
propoate for desper waters where dispersion effects become more important than non-
linearity. On the other hand Boussinesg-type equations introduce dispersion terms and
are more applicable in water where dispersion begins to have an effect on the frec sur-
face. The extended Boussinesq formulations of Madsen and Sdrensen [1] and Nwogu
[3] harve received, probably, the most aftention in recent years, In this work both formu-
lations are solved using a Godunov-type finite volume technique, based on the approxi-
mate Riemann solver of Roe with the bathymetry source term discretized as to provide
a well-balanced scheme, also in the presence of welldry fronts which are properly han-
dled in the numerical model. Also two wave breaking models are presented and tested
following recent advances in the feld,

Mwopu [3] derived a system of equations using the water velocity w, atan arbitrary
distance, z,, from a still water level, d, as the velocity variable, instead of the commonly
used depth-averaged velocity. An optimum valve of =, = 0.531d was used. so that the
dispersion properties of the system most closely approximate those defined by linear
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wave theory, making the cquations applicable 1o 3 wider range of water depths, The
equations can be reformulated in vector conservative f , [4], as

U, + FiU), = S{U). i

wherz U is the vector of the conserved varables, F s the flux vegtor and S is the spurce
term,

H 4 Hu
U=[P']‘ F‘”"[Huuggm]'

H = d % nis the total water depth, 1 the free surface elevation and w, = u is the
horizontal flow velocity.

P*= Hu+ Hzy (%ul? + {“Jz:] (2

is the velocity function that containe all fme-derivatives in the momeantum equation and
a part of the dispersion terms while g is the gravitationz] acceleration. The source term
S{U) = 8y + 8¢ + 84 models the effects of the shape of the topography, friction
and o part of the dspersion ferms. By denofing with b the bed topography elevation,
B = [0, —gAb.|", 8¢ includes the bed friction siresses, given as Sy = [0, —phs;|T
with §; = ’u‘_l?lﬂ,;” and 8By = [—to, —urle + g — B]T contains the dispersion
.

¥ = Hyzq (%“ﬂ + {“)n) » Wo= [(%1 - %)d"n + (zo + gjd{dul:rsr] (&)

By, represents the parametrization of wave-breaking characteristics.

The equations derived by Madsen asd Sérensen (MS) [1] for a slowing varying
bathymetry, are written also in conservative form (1) following [2]. Now the velocity
functien P* has the form:

P = Hu— (B+ 3)(Hul, - J=H).. @
with B = 1/15 being a free parameter that determines the system’s dispersion proper-
ties [1]. The source term S(UT) = Sy, + 8¢+ 84, with Sy, and Sy exactly as in Nowgu's
equation but now 8y = [0, —yr — 74)T where

P= _BﬂfPE‘rﬂ - Madsﬂ.';'l"]'r:- (5

2 The numerical scheme

The numerical scheme developed to solve the two =15 of equations is formally fourth
order aceurate i space and in time, We use the finit: volume formulation for the dis-
cretization of the advective part of the equations ard the bed source ferm and finite
difference formulations for the dispersive terms. A Cartesian mesh is used in which
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index i represents the centroid of & particular computational cell, O, where the aver-
age quantities of the conserved variables, denoted as U, (t), are nominally stored. After
integration of {1} over cach control volume O the advective and the bed source terms:

Hu 1] 1 1

[Hu?+é§m:|l ] ['gu"‘]s F FMAFI+IAR‘ @
where AF; is the flux variation from the right to the left cell and AR, is the contri-
Tbution of the bed where up-winding of the lopography source term is performed [7].
The numerical fluxes in Equation (6) can be evaluated solving the Riemann problem at
the cell interfaces. In this study the approximare Riemann solver of Roe [7] is utilized.
High-order accuracy in the calculation of Huxes is achieved by constrecting cell inter-
face values using a fourth order MUSCL reconstruction, prior 1o the application of the
Riemann solver [2.6). This fourth order reconstouction is performed, 10 the total water
depth T, velocity w, and bed b.

In both formulations the dispersion ferms contain spatial derivatives of up to third
ordes. Accoeding to [5] 8 fourth order accurate treatment of the first-order derivatives
is required so that the rencation ervors in the numerical scheme are smaller than the
dispersion terms present in the model, We discretize them using fourth order central
difference approximations for first order derivatives, third order central difference ap-
proximations for third erler derivatives and second order for second order derivatives.
[n Mowgu’s formulation in order to discretize the term g in the continuity equation, we
evaluate the first and second-onder derivatives of the Aow velocity at the cell interfaces
using Taylor series expansion as:

?{¢.+L+¢.J—tw.=—-ﬁ. 1) iz + ghi-1) — [doar — )
7] 2427

Bisigr = v ldiprpales =

resalting to

{—S“]"m = dﬂ'—?“ )ff.' ruraltivngales

(¥ :,_‘,k[

+ (:in‘.h-f:l,'i*' -'-zlﬂ)'li|-:|,12|:4|+1,|'=lh+1,.'!}"J

TP
| ((W‘T—m = -Tm)m_u,{u._.m"

* (fa].-:r: + "@':zlﬂ)du-ljﬂ[di—lﬁul—lﬂ)rl)J .

For the momentum disspersion eem oy wedlimize the second order derivalive using
second order central difference, e, = U=2"7UEN4 hence ur Is then given by

()i = (Hiltoals {E5 e + i) ™

The term { Hy ) can be explicitly obtain from the continuity equation in terms of spatial
derivatives only.
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For the MS formulation, to discretize the term o of the mamentum equation, use:

(d)e = iz —%—:;&@w: —i\-l:’ [i)ane = ez '2@-+;;;:':¢.—: —ﬁu—nr @
and applying (8) in equation (5) results in:
o= = iﬂf [mide = Zougr + Enio1 — ozl
- % (idimg = Beliey + Bilisy _di+s}{']i—:l_2'T-+'h+l:|j| m

In order to keep the well-balanced (C-property) in the fourth order MUSCL discretiza-

tion an extra term is added to the sousce term discretization for maintaining the cor-
rect balance [8]. In the boundary defined by a wet/dry front a special reatment is also
needed, In order to identify a dry cell, a tolerance parameter is used. Reconstructed
values are computed as o satisiy % = -~ 48 Bed slope is rdefined as o satisfy an
extended C —property [8] and numerical Auxes at the wet/dry interface are computed
assuming lemporanily zero velocity. Finally the error due to pessible negative depths or
due to the imposed threshold are summed and added properly into the entire computa-
tional domain [B].

As proposed by Wei and Kirby [5], nme integration should be fourth-order accuraie
since first to third order spatial derivatives are included in both formulations, Here, time
mtegration is achieved in two stages, namely the third order Adams-Basforth predictor
stage and the founh-order Adams-Moulion corrector stage [2,4]. The predictor and the
corector stages update the values of the velocity function P* given by equations ()
and (4) for the respective formulations. The values of fu and therefore the velocities
need to be extracted after, booth stages, by solving a tridiagonal system resulting from
the discretizations of the spatial derivatives by ising the finite difference method. In
order to handle the friction terms a separate implicit formulation [B] was applied after
the predictor and the comector stages.

The shallow water steepness is the primary cause of breaking for waves on a beach,
As the wave amplitude increases and reaches a eritical level wave crest steepen, the
front of the wave becomes vertical and then the crest of the wave overiurns, At this
point physical models like Boussinesq equations are unable to describe the physical
procedure and a weve breaking model is necessary, Two wave breaking models arne
considered in this work. The first one is an eddy viscosity approach [4] and the second
one is based in NSWE [2]. In the model proposed in [4] , an extra wave breaking term
is added to the equations in order to dissipate the energy.

- {(Hu)z
5
where v is the eddy viscosity calibrated to describe energy dissipation in breaking pro-
cest, {Hu), is used as the indicator, to determine the eddy viscosity. Using this indi-
cator we better detect stationary or slow-moving hydraulic jumps. Ify, U5 are the flow
speeds at the onset and termination of the wave-breaking process [4].
The idea behind the approach proposed in [2] is that Boussinesq equations degen-
erafe into MSWE as dispersive terms become negligible compared to nonlinear terms.

R =[s{Hul],, with v=—BH|Hul, ad B=1 (10
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Hence, a criterion is introduced to determine the domain where the nonlinearity prevails
end the NSWE are solved. Using the Froude number and after some computations [2]
the value of ¢ = A/d is chosen Lo be the criterion to switch from Boussnesq equations
o NSWE, where A is the wave's amplitude. Consequently in each cell we check ¢, if
¢ < (L8 Boussinesy equations are solved, otherwise the dispersive terms are switched
off and the NSWE are solved.

3 Numerical tests and results

We first consider the standard test of a solitary wave propagation over a flat boftom.
The wave should maintain its shape, speed and amplitode as it wravels, due to an exact
balance between the nonlinear and dispersion terms. Two solitary waves of different
amplitudes A/ = 0.1, Afd = 0.3 were considered. Their initial set-up of the problem
can be found in [5] and [6], Fig. | shows the surface profile for the first wave for both
maodels, For Nwogu's formulation a slightly higher wave wis formed, which propagated

: 0 i E
i ]'J' . 3 1 _

H = @ om m omom o= oamom L - R R O W om W W
a0 -

Fig. 1. Water surfuce profile of the solitary wave (4/d = 0,1) propagating down a channel af
times ¢ = 0, 50,100, 1508 for Nwegu's (eft) and Madsen and Sorensen's (right) formulation.
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Fig. 2. Comparison of the solitary wave A/ = 0.1 {left) and A/d = 0.3 fright) shape at ¢ = 403
and £ = 160k, for Nwog's (up) and Madsen and 55 ‘s (dewn) for ),

with a constant shape and amplitude. For the MS formulation a traan of small waves was
formed which is soon left behind and the wave changes shape becoming widzr and less
nall but after some time the wave's shape was stabilized and reached a numerical per-
manent form. A comparison of the normalized numerical and analytical wave solutions
iis given in Fig. 2.
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Fig. 1. Head-on collision of two solitary waves

The second case is the counter-propagation of two symmetric solitary waves. Two
solitary waves with an equal initial hight of A,/d = 0.3 are placed in positions £/d = 35
and x/r = 265, The initial wave surface elevation and velocity can be found in [5] for
Nwops"s equations and in [2] for the MS formulation, Azxfd = 0.1, d = 10 and
CFL = 0.2 Fig. 3 shows the surface profiles at times £/ g/d = 0, 56.6%, 101.2. 204
The initial waves undergoes an evolution and two slightly higher solitary waves are
formed, which propagate with a constant amplitede Afd = 0.3135 until the collision.
AL time t+/g/d = 101.2 the wave gets its highest pick A/d = .66 for Nwogu's
formulation and A/d = (0L.69 for that for MS one. After the collision the numerical
solution hag a small phase sift compared o the analytic one. We note that after the
head-on collision of the waves small amplitude dispersive wmils were developed, The
dispersive tails are more intense for the MS model due to the discrepancy between the
amalytical solution given as input to the model.

The next problem presented here compares numerical and experimental results of
the: runugp, rindown and wave breaking of a solitary wave on a plane beach. Synolakis
{see [T] for details) presented a series of surface profiles from his runup experiments for
a beach of slope 1 : 19.85 with Afd = 0.28 mitally. The wave broke strongly during
both the runup and the rundown, We used CFL = 0.4 and Az = 0.2. while Breaking
maodel (14} was applied for both Boussinesq models. Fig. 4 presents the series of the
surface profile for Nwogu's, Madsen and Strensen’s and the NSWE. Both Boussinesg
models reproduce the shoaling process up to f+/g/H = 20 against the NSWE which
don't include dispersive terms to balance the nonlinear effects. The models showed &
minor discrepancy with the experimental data at #/g/H = 45 when a hydraulic jump
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begins to develop from the drowdown but computed results fully recovered in later
times.

Fig-4. Solitary wave ranup om a plane beach, A/d = 0.28, st £ Fof H = 15,0, 30, 45, G0, 80,

The final two experimental test cages, presented in [4], are on solitary wave trans-
formation over idealized fringing reefs (the second case includes a fore reef slope) and
examine the model’s capability in handling nonlinear dispersive waves together with
wave breaking and bore propagation, For both tests Tonneli's breaking model was used
for the MS equations and breaking model (10) for Nowgu's equations. The first case
involves a steep solitary wave of 4/d = 0.5 and the second one a wave of Afd = 0.3,

In the first case the wive begins to skew as it propagates through the shore, steepens
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Fig. 5. Solitary wave over a dry reef, 4/d = 0.5 and slope 1 : 5, for NSWE (cyan), MS [Klee)
and Nowgw's equations (hlack),  times t = 2.48, 9 83, 7 085, Circles denote measured dafa.
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Fig. 6. Solitary wase over an exposad reef crest, 4/d = 03 and 1 = 12 slope, for NLSWE (cyan),
MS (blue) and Nowgu’s equations (black], of times ¢ = 6,82, 13,02, 48045

at the front but does not form a plunging breaker over the steep slope. From Fig. 5, it
15 obvious that NSWE can ot reproduce the wave transformation until it reaches the
shore. As the wave propagates on the shore the three models coincide due to the fact
thar the dispersive terms become zero and the Boussinesq models tums into shallow wa-
ter equations. Fig. 6 shows the results from the second test case where the Boussinesg
models have a exhibit a superior performance than the NSWE at later times.
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