TECHNICAL UNIVERSITY OF CRETE
ELECTRONIC AND COMPUTER ENGINEERING DEPARTMENT
TELECOMMUNICATIONS DIVISION

Custom Over The Air Programmable
Embedded Radios

by

Eleftherios Kampianakis

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DIPLOMA DEGREE OF

ELECTRONIC AND COMPUTER ENGINEERING

November 2011

THESIS COMMITTEE

Assistant Professor Aggelos Bletsas, Thesis Supervisor
Professor Konstantinos Kalaitzakis
Assistant Professor Ioannis Papaefstathiou

Abstract

This thesis develops hardware, middleware and software towards a custom
and low-cost remotely programmable radio network testbed. Such testbed is
envisioned as a tool for the telecom researcher to develop, deploy and debug
radio network projects and applications. To the best of the author’s knowl-
edge, this is the first attempt towards a radio network testbed, designed
and built in a Greek university from first principles. Key features of the
testbed include: simplicity of use, reliability and remote programmability.
Furthermore, each carefully designed wireless transceiver node enables envi-
ronmental sensing and personal computer interfacing at a relatively low cost
(€30 bill of materials for each transceiver assuming relatively small quanti-
ties), due to in-house design and fabrication. The proposed testbed consists
of various software and hardware components designed to facilitate experi-
mental work for the telecom engineer /researcher. Functional demonstrations
are presented, including remotely programmable relay networks as well as

medium access control networks.

Thesis Supervisor: Assistant Prof. Aggelos Bletsas
Telecom Lab, ECE Department, TUC.

Table Of Contents

Table of Contents
List of Figures
List Of Abbreviations

1 Introduction
1.1 Wireless Sensor Networks, a brief review
1.2 Prior art in the field

2 Hardware
2.1 Node specifications
2.1.1 MCU ...

2.1.2 Radiomodule

2.1.3 Printed Circuit Board Design

2.2 Extension Board (XTboard)
2.2.1 Description

2.2.2 Design Constraints

2.2.3 How to use the XThoard

3 Point to Point Communication and CSMA /CA Middleware
3.1 Reliable Data Transfer
3.1.1 Protocol Description
3.1.2 How to use Reliable Data Transfer

3.2 Carrier Sense Multiple Access with Collision Avoidance (CS-
MA/CA) ..
3.2.1 Protocol Description

Table Of Contents 4

3.2.2 How touse CSMA/CA (311

4 Over The Air Programmability Middleware
4.1 Important OTAP Definitions 351
4.1.1 In system programmable Flash memory 351
4.1.2 Compilation and download process 36
4.1.3 Intel Hex Code File 37
4.1.4 STARTUP.Ab1file 38
4.1.5 XXXX.Mb51file © .00 30
4.1.6 Interrupt vectors L. 39

4.2 Middleware developed 40
4.2.1 Bootloader 40
4.2.2 User application 41
4.2.3 Interrupt pseudo-vector 4]
4.2.4 Gateway Firmware Updater 611

4.3 How to use Over The Air Programming
4.3.1 Files needed and their description
4.3.2 Setting up the application to be bootload-able [l
4.3.3 Setting up and Installing the bootloader By

4.3.4 Using master firmware updater to program over the air [GS§]
4.3.5 Over The Air Programmed “Blinky” Demo (“Hello

World” example) oL (0]

5 Demos and applications (615
5.0.6 Application Description 67

5.0.7 Network debugging tool (638)

6 Conclusion and future/ongoing work (71l
6.1 Future/Ongoing Work [71]
6.2 Challenges during development 73]

6.3 Conclusion 74l

Table Of Contents 5

Appendices

A Gateway Code

B Blinky code rdrd

C Demo codes [RTl
C.1 LED Blinking K1l
C.2 Relay system with direction from node 6 to3 Rl
C.3 Relay system with direction from node 3to6 83]
C.4 Broadcast system R4l
C.5 CSMA/CA system 85
C.6 Demo code configuration library 801

Bibliography 87

List of Figures

2.1

2.2
2.3
24

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3

Printed circuit board (PCB) design and prototype of iCubes

V0.2, .
XTboard Layout
XTboard constraints figure.

XTboard on iCubes node in vertical position.

Packet structure.o oL
RDT Transmitter Finite State Maschine (FSM).
RDT Receiver Finite State Maschine (FSM).
CSMA Transmitter FSM.
CSMA Receiver FSM. oL

Programming 4 nodes with OTAP.
Programming 4 nodes with debug adapter.
Program execution control flow.
Interrupt servicing flow.
The program flow of the gateway firmware
Gateway file reception procedure through RS232 interface.
Compression of two characters into one byte.
The contents of flash memory, after the successful installation

of the interrupt handler, the bootloader and application.

Demo setup.
Relay demo presentation.

Sniffer functionality with relay system.

(14
16!

09

(055

0]

List Of Abbreviations

List Of Abbreviations

MCU
ADC
WSN
IC
CPU
OTAP
RSSI
0OS
RTOS
KB
FSK
MSK
SMD
SMT
SMA
PCB
CAD
AGC
CRC
RDT
LBT
CSMA/CA
IDE
Hex
FSM
EOT
EOF
LED
ISR
UHF
DIP

MicroController Unit

Analog to Digital Converter
Wireless Sensor Network
Integrated Circuit

Central Processing Unit,

Over The Air Programming
Received Signal Strength Indication
Operating System

Real Time Operating System

Kilo Byte (1024 Bytes)

Frequency Shift Keying

Minimum Shift Keying

Sourface Mount Device

Surface Mount Type
SubMiniature version A connector
Printed Circuit Board

Computer Aided Design
Automatic Gain Control

Cyclic Redundancy Check
Reliable Data Transmission
Listen Before Talk

Carrier Sense Multiple Access with Collision Avoidance
Integrated Development Environment
Hexadecimal

Finite State Machine

End Of Transmission

End Of File

Light Emitting Diode

Interrupt Service Routine

Ultra High Frequency

Dual In-line Package

Chapter 1
Introduction

1.1 Wireless Sensor Networks, a brief review

Nowadays the need for telecommunications at all levels has become critical
for all modern societies. To meet such need, new discoveries in all scientific
fields have been made, leveraging telecommunications at totally new levels.
One of the greatest achievements in the telecom field are the design of wireless
sensor networks (WSNs).

A WSN is a network consisting of a number of small units that can
communicate with each other and can sense environmental variables such as
temperature, luminosity, humidity e.t.c. Each such unit is called a node and
it consists of several parts.

To start with, every node requires a processing unit. For this purpose, a
micro controller unit (MCU) is utilized. More specifically, MCUs are devices
that can perform calculations, analog to digital conversions and interface
with each node’s peripherals. The characteristics that separate MCUs from
other processing units (e.g x86 CPUs) are the low power operation, the small
form factor and the extremely low cost (starting even from 2 cents).

Furthermore every WSN node utilizes a wireless radio communication
module. This module is controlled by the MCU in order for the node to act
as a transceiver of data from and to other nodes. Similarly to the MCU, the
radio module is of low cost, small and demands low power. It can be easily
seen that multiple nodes like the one described above can form a network.

Moreover, another important part of the WSN node is its power source,
which is usually a battery and/or an energy harvesting device (for example
a solar panel). Finally WSNs being sensor networks, make use of sensors in

order to extract data from the environment.

1.2. Prior art in the field 10

1.2 Prior art in the field

Wireless sensor networks is a technology that is under development for more
than 15 years. Therefore, a large number of implementations have been
presented so far. Cited bellow is a list| with a number of popular WSN

nodes:
1. Crossbow TelosB [17]
2. Crossbow Micaz/Mica2 |19
3. Memsic IRIS [5]
4. Memsic LOTUS [4]
5. ETH University BTnode [1§]
6. Coalesenses iSense [3]
7. Libelium Waspmote [2]

Our work in [21] provides a comparative study between the node described
in this thesis and commercial Micaz, Isense and BTnode. The comparison
regards features such as the battery life, wireless and wired connectivity
capabilities, programming environment, etc. According to the study, the
node developed (namely iCubeﬁ) competes with other WSN nodes, either
commercial or academic. A more extensive comparison between all referenced
node implementations is beyond the scope of this thesis.

Nevertheless, it could be noted that the wireless sensor network developed
is mainly focused in telecommunication research and education. More specif-
ically, software and hardware developed were engineered in order to be easily
used by a telecommunication engineer not specialized in embedded systems.
For this reason, all firmware was written in plain C and usage of complex
real time operating systems (RTOS) such as tinyOS [13] was avoided. More-

over, an MCU with a finely written manual was selected in order to facilitate

LA more comprehensive list of available wireless sensor nodes is cited in [6]
2The term “iCube” has been also used for an R&D Group [?] and a visualization
studio [?]

1.2. Prior art in the field 11

micro-controller familiarization, which at most cases is a crucial factor of de-
velopment delay. Finally, the remote programmability that was developed,
does not require the use of a RT'OS. This is a powerful feature of this work.

On the other hand, the nodes listed above focus mainly in sensing appli-
cations developed by embedded system engineers. For this reason, supported
functions such as remote programmability, are unavailable without the use
of a RTOS. This property is not desired by an engineer who is not familiar
with firmware development using the principals of embedded operating sys-
tems and embedded systems in general. Moreover, operating systems such
as tinyOS require complex installation procedures which add an extra delay
to the total development time of a project. Finally, the manuals of MSP430
and ATmega MCUs, utilized by most of the popular WSN nodes are not that
easily readable compared to the manual of the C8051F320 MCU, utilized in
the iCubes node (this work).

Chapter 2
Hardware

2.1 Node specifications

The node was developed as a project of the Analysis and Design(Synthesis)
of Telecom Modules course during the 2009 spring semester [20]. Below is a

brief description of the node specifications.

2.1.1 MCU

The microcontroller unit is the C8051F320 [11] from Silicon Laboratories [1].
It incorporates an 8051 core, a 10-bit Analog to Digital Converter (ADC),
two comparators, 2304 KB of RAM and 16KB of flash memory. The main
reason this MCU was selected is the finely written manual. This facilitates
the development of research programs as well as complex applications. More-
over, the 8051 instruction set is widely known, therefore making application
development easier. Finally C8051F320 is designed for low power operation

without compromising variety of peripherals, flexibility and battery life.

2.1.2 Radio module

The radio module is the Chipcon/TT CC2500 [12] transceiver. Its frequency
of operation is at the 2.4 GHz band with maximum transmit power of 1 dBm
and programmable rate up to 0.5 Mbps. It was selected due to its wide range
of tunable parameters regarding digital communication that can be easily set

by modifying specific control registers.

2.1. Node specifications 13

Listed below are some of the radio parameters that can be adjusted:

e carrier frequency and frequency channel (parameterized for frequency

hopping applications),
e transmission power,

e type of FSK modulation and respective frequency deviation (continuous
phase FSK i.e. MSK, is also supported),

e OOK modulation,

e variable rate and receiver filter bandwidth,

e number of preamble bits used for bit-level synchronization,

e number of bytes used for byte-level synchronization (sync word),

e receive signal strength indication (RSSI) activation and automatic gain
control (AGC),

e cyclic redundancy check (CRC).

2.1. Node specifications 14

2.1.3 Printed Circuit Board Design

The node was initially designed using two different development kits, a Chip-
con/TI CC2500EMK radio evaluation module, and a C8051F320DK MCU
development kit. The two development kits were interconnected using simple
wiring. Therefore, the first update of the node was the design of a custom
PCB. This way, the CC2500 radio IC and the C8051F320 MCU would be
placed on the same board and the whole node would have a smaller form
factor.

For the purpose of this design, Eagle , a free-license computer aided
design (CAD) software tool from Cadsoft was utilized. The design was based
on the previously mentioned development kits and the pins of the MCU were
routed to a pin header in order for extension boards to be accommodated. Fi-
nally, special attention was given to the minimization of the electromagnetic
interference (EMI). The PCB (design and prototype) is depicted in Fig. [2.1

(b) Printed circuit board (PCB) prototype with in-
stalled components.

Figure 2.1: Printed circuit board (PCB) design and prototype of iCubes v0.2.

2.2. Extension Board (XTboard) 15

2.2 Extension Board (XTboard)

2.2.1 Description

Once full functionality of the node was verified and debugged, there was
urgent need for several extensions and connectivity capabilities. Such exten-

sions were:
e Programmability using the Silabs USB debug adapter.
e Power supply using the Silabs USB debug adapter.

e Power supply using an external power source (e.g. C8051F320DK 9V
power supply).

e PC connectivity with an RS232 port.
e MCU pinout interface using standard low-cost 2 mm DIP headers.

The board was designed to meet the above needs. The architecture of
the design was based on the C8051F320 development kit. For this reason,

the hardware components below were utilized:

e National Semiconductors LM2937-3.3 for the voltage regulation from
the Silabs USB debug adapter 5V power, as well as the 9V DK power

supply [15].

e Sipex SP3223EY, a +3.0V to +5.5V RS-232 transceiver for the RS-232

connectivity [16].

In addition, for the connectivity of the RS232 interface, the power source and
the programming interface, an RS232 D-Sub connector, a power jack (barrel
type) and 2 mm headers were also utilized in the design respectively. Finally,
for the connection between the node and the extension board, a 25 pin SMT

male connector was used. The design scheme of the XThoard is presented in

Fig. 2.2

2.2. Extension Board (XTboard)

16

P NSOt W=

E B EEEEEES

4 5
EEEEEEEESR

]

25 pin SMT Connector (Bottom Layer).

P0.4 MCU PIN and UART TX pins.

P0.5 MCU PIN and UART RX pins.

Power Supply Selection (USB or Power Connector).

Power connector (5 to 15 VDC unregulated power adapter).

DB-9 connector for UARTO0 RS232 interface.
C8051F320 Pinouts.
DEBUG connector for Debug Adapter interface.

Figure 2.2: XTboard Layout

2.2. Extension Board (XTboard) 17

2.2.2 Design Constraints

Apart from the above specifications, the board was designed in order to meet
certain dimension constraints. Specifically, the limits of the interface board’s
dimensions were set by the node’s switch, bottom side, SMA and positioning

of the SMT 25 pin connector. For an explanatory image, see Fig. [2.3]

Constraint for

vertical set up Constraint due to
capability iCube 25 pin SMT
Connector

(Bottom Layer)

Constraintdue
to iCube SMA
connector

Constraint due to
iCube switch

Figure 2.3: XTboard constraints figure.

As seen in the picture, the XThoard had to be carefully designed, accord-

ing to the following constraints:

e The RS232 should be accessible when the iCube was set up in the
vertical position. That means that the RS232 connector could not be
placed at the left side of the PCB (Fig. [2.3).

e The length of the PCB should not exceed the limits set by the end of
the iCube on the left side (as seen in Fig. and the SMA connector
on the right side.

e The 25 pin SMT connector should be placed in a position convenient

for the design and accessible by the iCube.

Such constraints were simultaneously met with the design of Fig. [2.2| The
final outcome of the developed XThoard is depicted in Fig. [2.4]

2.2. Extension Board (XTboard)

18

herios 2011 ©
com Lab o
)

(a) XTboard printed circuit board
(PCB) prototype.

Figure 2.4: XTboard on iCubes node in vertical position.

2.2. Extension Board (XTboard) 19

2.2.3 How to use the XTboard

Below is a set of instructions, to make use of the capabilities offered by the

extension board. For a visualization of the XTboard components see Fig.

e RS232 connectivity:
— Use a jumper to short-circuit the P0.4 MCU pin and the RX SP322
pin.

— Use a jumper to short-circuit the P0.5 MCU pin and the TX SP322

pin.

— Connect the RS232 adapter to a PC and to the interface board.
e Power node using the 9V power supply:
— Use a jumper to short-circuit the input to the voltage regulator

and the power jack barrel connector output.

— Plug in the 9V power source into the connector.
e Power node using the Silabs USB debug adapter:
— Use a jumper to short-circuit the input to the voltage regulator

and usb power source.

— Plug in the debug adapter to the corresponding connector. A sign

is drawn on the PCB for the correct connection side.

— Connect to the device using the Silabs or Keil IDE.
e Programming interface using Silabs USB debug adapter:

— Plug in the debug adapter to the corresponding connector. There

is a sign drawn on the PCB for the correct connection side.

— Connect to the device using the Silabs or Keil IDE to download

code.

2.2. Extension Board (XTboard) 20

However, there are some particularities that the user has to look after.

Specifically:
e The power supply current should not exceed 15Volts.

e Only one power source between batteries and USB or SiLabs power
adapter must be used at a time. In the opposite case, current will flow

from the voltage regulator to the batteries.

e [f The SiLabs USB Debug Adapter in not connected according to the
shape drawn on the PCB, the MCU is at risk of being burned.

e To avoid dangerous current spikes, the node must be turned of during

the connection of any peripheral.

Chapter 3

Point to Point Communication
and CSMA /CA Middleware

A critical element in the development of a WSN testbed is the communication
between nodes, in terms of reliable data transfer, medium access control and
low power transmission/reception of data. To accommodate this, a set of

primitive software functions was developed.

3.1 Reliable Data Transfer

3.1.1 Protocol Description

One of the basic principles of a successful Over The Air Programmability
(OTAP) is the establishment of a reliable connection between the master
programming gateway and the slave node. Thus, such a connection was
designed for the purposes of the OTAP and of course for general purposes.
The algorithm for a Reliable Data Transfer link (RDT), was taken from the
work done in [22]. To begin with, in order to model the real wireless channel,

the following assumptions are made :

e The channel may flip bits in the transmitted packet (either data or

acknowledgement).
e A packet can be lost during transmission.

The purpose of the RDT algorithm is to transfer a packet as reliably as
possible through an unreliable channel. To begin with, the transmitter af-

ter sending a packet shall have knowledge of the packet’s good reception.

3.1. Reliable Data Transfer 22

For this reason the receiver sends back a special packet, also known as ac-
knowledgement (ACK). The transmitter waits for the ACK for a specified
time called Timeout. Listed below are the reasons why an ACK may not be

received by the transmitter :

1. The data packet was not received from the receiver, therefore the node
did not send an ACK.

2. The data packet had flipped bits and the error detection algorithm
rejected the packet on the receiver, and the node did not send an ACK.

3. The ACK arrived to the transmitter after the timeout expired.
4. The ACK was not received at the transmitter.

5. The ACK had flipped bits and the error detection algorithm rejected

the packet on the transmitter.

Each packet includes:
e The payload data (if it is a data packet).
e The packet sequence bit.
e A field that states if the packet is data or ACK.
e The source MAC address.
e The destination MAC address.

The packet size is tunable with the use of definitions placed in the RDT.h
file, namely RXBUFFER_SIZE and TXBUFFER_SIZE[]Fig. presents
the packet structure of the RDT algorithm.

ITwo separate buffers are needed for packet reception and transmission respectively.

3.1. Reliable Data Transfer 23

Source | Seq.

Figure 3.1: Packet structure.

In the emplemented RDT algorithm, if any of the above events occurs,
the transmitter resends the data packet and waits for ACK reception. There
is a limit regarding the number of times that the transmitter will resend
a data packet. This limit is defined in the RDT.h library of the code as
MAX_TRIES. When the number of retransmissions without receiving the
correspondingACKs exceeds this limit, the routine returns that the reliable
packet transmission was unsuccessful.

Furthermore, as seen above, each packet includes a sequence bit. The se-
quence bit is kept in a variable both at the transmitter and the receiver node.
Once the transmitter sends a data packet and receives the corresponding
ACK, it flips the sequence bit. Moreover, the receiver, after the transmission
of an acknowledgement also flips the sequence bit. This way, the packet se-
quence between transmitter and receiver is retained. The preservation of the
packet sequence is a way of handling the scenario of lost acknowledgements.
Once an ACK is lost, the ACK timeout timer of the data transmitter expires
and a data retransmission occurs. In this case, the receiver will receive a du-
plicate data packet. However, by utilizing a check on the sequence number
of the packet, the receiver will recognize the duplicate packet, send an ACK
with the same sequence number of the duplicate data packet and ignore the
latter. Thus, the transmitter will receive an ACK for the corresponding data
packet and the receiver will ignore the duplicate data packet, since the RDT
packet reception routine will return “false”. Fig. [3.2] and Fig. depict the

functionality of the RDT transmitter and receiver respectively.

3.1. Reliable Data Transfer

24

Wrong Address Y

OR Wrong Sequence
OR Wrong Type

—

User Application
called
send_packet_rdt
(Receiver_address)

v

Make Packet
(data,
seq#,
Receiver_address)

A4

Broadcast via unreliable
link

Wait to receive ACK
(seq#,

— Timeout | Tries = Tries +1

Transmitter_address)

ACK received on time
AND from correct receiver
AND seqg#=my_seq#

'

False

IF(Tries >
MAX_TRIES)

my_seg# = NOT my_seq#

Y

Return "Packet
Transmission
Successful"

True

Return "Packet
Transmission
Unsuccessful"

Figure 3.2: RDT Transmitter Finite State Maschine (FSM).

3.1. Reliable Data Transfer 25

User Application
called
rec_packet_rdt
(Transmitter_address)

A4

Receive packet via
unreliable link

l

IF(Type = data
AND Sender_adress =
Transmitter_address
AND Receiver_adress=
myAddress)

True
False

/

Return "Packet

IF

Reception _
Unsuccessful" (seq#=my._sea#)
False True
Send ACK(NOT seq) Send ACK(seq)
A
my_seg# = NOT my_seq#
\ 4 Y
Return "Packet Return "Packet
Reception Reception
Unsuccessful" Successful"

Figure 3.3: RDT Receiver Finite State Maschine (FSM).

© 00 N O Ot = W N

T
w NN = O

3.1. Reliable Data Transfer 26

3.1.2 How to use Reliable Data Transfer

There are basically two routines developed for reliable data transfer; one for

packet reception and one for packet transmission:
o receive_packet_rdt (BYTE from mac_address)
e transmit_packet_rdt(BYTE to mac_address)

The function prototypes are self explanatory. In order for the implemented
RDT protocol to be functional, the nodes that utilize it have to claim a special
network address. The address definition is stored in the RDT.h library under
the name MAC_ADDRESS. This definition is sent with every packet (data or
ACK) in the source address field which is one byte long.E] Therefore, packets
can be sent at a receiver of choice and the receiver can filter out packets from
multiple transmitters. An abstract example of the RDT routines developed

is given below:

//Receiver code
main () {
if(receive_packet_rdt (IX)){
//If a correct packet is received blink LEDI
LED1 = !LEDI;

//Here rxBuffer has the last data sent
telse(
//else blink LED2
LED2 = !|LED2;
}
}
}

2With the current settings, the maximum number of addressable nodes is 255.

© 00 N O Ot = W N

_ =
_ O

3.2. Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)27

// Transmitter code
main () {
if (send_packet_rdt (RX)){
//If a packet is transmitter successfully blink LEDI
LED1 = !LEDI;
telse(
//else blink LED2
LED2 — !|LED2;
}
}
}

The above code, if downloaded to both the test transmitter and receiver

would establish a reliable link between two nodes.

3.2 Carrier Sense Multiple Access with
Collision Avoidance (CSMA /CA)

3.2.1 Protocol Description

One of the fundamental communication protocols for the link layer in wire-
less networks is the Carrier Sense Multiple Access with Collision Avoidance
(CSMA/CA). The protocol described is a multiple access method that al-
lows several nodes which use the same transmission frequency channel to
transmit and share its capacity. For the developed CSMA/CA algorithm,
the following functionality is utilized:

At the transmitter side, the node listens for currently transmitted data
over the air. If data is being transmitted, the node enters sleep mode for a
random time interval. If the channel is clear, the node transmits the data,
initiates a timer to measure a timeout and waits for an ACK. If the timer
expires, the node enters sleep mode for a random time and resets the pro-
cedure. At the receiver side, the node is in receive mode and once a packet
is received, it listens to the channel for carrier power and once it is clear, it
sends back an ACK. The FSMs of the transmitter and receiver are depicted

3.2. Carrier Sense Multiple Access with Collision Avoidance (CSMA /CA)28

in Fig. 3.4 and Fig. [3.5] respectively. The type of protocols that try to trans-
mit when no packets are being transmitted simultaneously are called Listen
Before Talk (LBT).

Before the implementation of the CSMA/CA, algorithm took place, two
special functions had to be implemented: Carrier Sense function and Sleep

function. Their description follows:

Carrier Sense

As stated above, CSMA/CA is a Listen Before Talk (LBT) protocol. LBT
functionality is performed by using a carrier sensing capability, provided by
the CC2500 radio module. Carrier sensing is performed by setting up the
C(C2500 radio to measure the received signal strength at a selected frequency.
For the purpose of the CSMA algorithm implementation, a special function
was designed. The function, namely “channel_clear” has a boolean type
return value, used to indicate whether the channel is clear or not. For this
implementation, a timer is used, initialized once the function is called. If a
carrier with a detected RSSI level above a predefined threshold is detected
before the timer expires, the function returns FALSE, indicating a non clear

channel.

Low Power Sleep

Additionally, another property of the CSMA is the random duration, low
power sleep. For the purposes of low power sleeping, a special function was
developed. When it is called, all MCU peripheral states and the system clock
are saved in temporary functions. Followingly, all peripherals are shut down,
the system clock is configured to oscillate at its lowest frequency and the
MCU enters idle mode. Moreover, a timer is configured to expire based on
the time argument inserted in the sleep function. After the timer expires the
peripheral and the system clock states are set to their previous ones and the
MCU enters active mode. During sleep mode, the MCU consumes around
0.32 mA, when compared to the 11.5mA in active mode @ 24Mhz clock, is

three orders of magnitude lower.

3.2. Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)29

User Application
called
send_packet_csma

v

Make Packet
(data,
Receiver_address,seq)

l

Channel
Clear?

True

Broadcast Packet

Wrong Address
OR Wrong Sequence

OR Wrong Type Wait to receive ACK(seq,

Transmitter_address)

\4

Return "Packet
Transmission
Successful"

False

Timeout

False

Low Power Sleep for
random time

Tries = Tries +1

l

IF(Tries >
MAX_TRIES)

True

!

Return "Packet
Transmission
Unsuccessful"

Figure 3.4: CSMA Transmitter FSM.

3.2. Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)30

User Application
called
rec_packet_csma
(Transmitter_address,seq)

A

Receive packet via
unreliable link

IF(Type = data
AND Sender_adress =
Transmitter_address
AND Receiver_adress=
myAddress
AND seq#=my_seq#

True
False

/

Return "Packet

Channel

Reception Clear?
Unsuccessful"
True
Send ACK

v

Return "Packet
Reception
Successful"

Figure 3.5: CSMA Receiver FSM.

© 00 N O Ut = W N

[y
e}

© 00 N O Ot = W N

3.2. Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)31

3.2.2 How to use CSMA/CA

As with the RDT implementation, there are two different routines that are

utilized in order for packets to be transmitted or received. These are:
e transmit_packet_csma (BYTE receiver_address)
e receive_packet(BYTE transmitter_address)

Arguments in the functions are also the sequence number, the ACK timeout
and the carrier sensing timer timeout. An example code for the usage of the
CSMA/CA algorithm developed follows :

//Receiver code
main () {
if (MACADDRESS = RX){
if (receive_packet_csma (ACCEPT FROMALL)) {
//If a correct packet is received blink LED2
LED2 = !LED2;
//Here rxBuffer has the last data sent
}
}
}

//First transmitter code
main () {
if (MACADDRESS =— TX1){
if (send_packet_csma (RX)){
//If a packet is transmitter successfully blink LEDI
LED2 = !LED2;
}
¥
}

© 00 N O Ot = W N

3.2. Carrier Sense Multiple Access with Collision Avoidance (CSMA /CA)32

//Second transmitter code
main () {
if (MACADDRESS =— TX2){
if (send_packet_csma (RX)){
//If a packet is transmitter successfully blink LEDI
LED2 = !LED2;
}
¥
}

The abstract code above depicts the functionality of the functions devel-
oped. The receiver node calls receive_packet_csma with an input argument
ACCEPT_FROM_ALL. This definition is used in the implementation of the
receive packet function, in order to disable the transmitter filter. The nodes
with addresses TX1 and TX2 enter send_packet_csma() using as input ar-
gument the receiver’s mac_address. This way, multiple transmitters try to
access the same channel and once collision is detected, sleeping for random

time is initiated.

Chapter 4

Over The Air Programmability
Middleware

The major objective of this diploma thesis is the remote programmability of
the WSN. The normal procedure for programming one of the nodes require
physical contact with the node to be programmed.

Particularly, that means that the user needs to either move the node
from its position in the network and place it close to a computer to program
the node, or get the computer to a position close to the node where the
programming interface can be physically attached. The need for physical
contact between the programming interface and the node introduces crucial
application constrains. For example, if the node has to be set up on a location
with difficult or no human access, the node could be only programmed once,
resulting to non-updatable, error prone operation.

Moreover, the procedure for programming a wireless sensor network with
methods and devices that require physical contact is time consuming and
messy. As an example, the time required to program an iCube node using
the SiLabs debug adapter and the XTboard is about 15 to 17 secondsE]
Additionally, the movement of wiring and nodes and the repeated connection
and removal of the programming adapter can be a messy or even dangerous
procedure for node integrity. Fig. depicts the 4 connections required in
order to program 4 iCube nodes.

The solution to this critical problem was introducing the capability wire-
less network programming, or in other words Over The Air Programmed
(OTAP). OTAP is a method of distributing firmware to a sensor network

wirelessly, thus avoiding physical contact with network nodes. With the

!Personal experiences, timings may vary.

Chapter 4. Over The Air Programmability Middleware 34

OTAP utilization, a WSN can be programmed regardless of it’s physical po-
sition, and without the requirement of any movement, not even from the
engineer. Moreover, OTAP is a feature that greatly accelerates the project
developing process. That is because the average time for wireless program-
ming per node is about 2 to 3 seconds, thus decreasing the programming
even for one order of magnitude. Fig shows the setup of the wirelessly
programmed network. It can easily be seen that this is a “cleaner” and easier

to setup programming procedure.

Figure 4.1: Programming 4 nodes with OTAP.

e

Figure 4.2: Programming 4 nodes with debug adapter.

© 00 N O Ut = W N

—_ =
= O

4.1. Important OTAP Definitions 35

4.1 Important OTAP Definitions

Before introducing the main components required for the OTAP, some im-
portant definitions are quoted in order for the reader to be able to understand

all the aspects of this important procedure.

4.1.1 In system programmable Flash memory

The C8051F320 chip, utilizes a 16KBytes flash memory. The purpose of this
memory is to store both non-volatile data and the program code. The flash
memory can be written through the debug interface or by middleware with
functions in the FlashPrimitives.h C library. Specifically, the user, with the
appropriate use of the Flash Primitives functions can write middleware that
can alter the code stored in the Flash memory (code space) and execute it.
A simple pseudocode example of writing and executing code in-application

is depicted below:

//A random 8051 instruction bytecode
Instruction the_instruction = 0x12345678;

//The instruction’s address in flash
long instructionAddress = 0x1200;

//Write the instruction to flash memory

write_instruction_to_flash (the_instruction ,instruction_address);

//Ezecute instruction

jump instruction_address;

In the above abstract code, a byte array is declared, that an instruction
is represented in bytes. Then, the instruction is written in the flash memory

and executed using a jump command.

4.1. Important OTAP Definitions 36

4.1.2 Compilation and download process

The procedure with which a C program is downloaded in the code space of
the MCU memory and specifically the C8051F320, using the Keil PK51 [?]

tool chain, is the following:

1.

Preprocessing - The preprocessor handles the logic behind all the dash
(#) beginning directives of the program (Cx51 Compiler).

Parsing - A parse tree is created, a structure necessary for the transla-

tion step (Cx51 Compiler).

Translation - Assembly code object files are produced (Ax51 Assem-
bler).

. Linking - The object files produced by the assembler are linked together

in a single object executable file (BLx51 Linker).

Hex File Generation - At this point a Hex file generator produces the
Hex code that will be downloaded to the device. Consult section 1.3

for more info.

Download - The final object - executable file is downloaded to the MCU
using the Silabs USB debug interface.

The step that needs to be done wirelessly in order for the OTAP to be

successful is the final one, the Download.

4.1. Important OTAP Definitions 37

4.1.3 Intel Hex Code File

Hex code file is an ASCII file that is written in Intel Hex format. Intel Hex
format is a file format for transferring binary data information from and to
memories. The file contains hexadecimal values that encode a sequence of
data and their starting address offset. There are several subtypes of formats,
depending on the MCU architecture. The mentioned format applies to 8 bit
MCUs. An example follows :

start #ofbytes address type data checksum

A P U SN ~ N~ =
1. 7 0C 28ED 00 ECFO0A3SEDFO0A3EEF0A3EFF022 5HFE

2. :0C28F900ECF208EDF208EEF208EFF2221B
3. :0A2F43003098FDAF99C2987E00227D
4. :00000001FF

Every line is separated in the following parts:

@,”

e Character . start of line
e Characters 1 to 2 : number of bytes of data in the line.

e Characters 3 to 6 : the address for the line of data.

e Characters 7 to 8 : the record type (00 means data, 01 means EOF,
other types are not supported by 8 bit format).

e Characters 9 to last — 2 : data bytes to be written in flash.

e Last two characters are the checksum for every line.

4.1. Important OTAP Definitions 38

Provided the above info, the first line of the example is decoded as follows:

“.”
e

. start of line.

0C : the line has 12 bytes of data.

28ED : the data bytes are to be written in address 0x28ED.

00 : file not ended yet.

ECFOA3EDFOA3SEEFOA3EFF022 : data bytes to be written in the

above address.
e HE : Line checksum.

The above data could be sensor data from a data logging application or the
instructions in the MCU’s code space. Either way, they are fully described
by the format.

4.1.4 STARTUP.A51 file

The STARTUP.A51 is an assembly language file built by Keil, the Cx51
compiler manufactor, that provides the basis of a program start up routine.
Specifically the STARTUP.A51 file:

1. Clears DATA, PDATA and XDATA memory}
2. Sets up the reentrant stacks (if necessary).

3. Initializes C global variables.

4. Sets the Stack Pointer (SP).

5. Jumps to the MAIN C function.

All the above are necessary in order for a program initialization to be success-
ful. These steps are also necessary for an execution transfer between different

programs stored in the same code space (bootloader and application).

2For more information on 8051 memory types, consult Cx51 manual [?]

4.1. Important OTAP Definitions 39

4.1.5 XXXX.M51 file

The M51 file is a linker output file with information about the linking process
of a program. There is useful information contained in the file but basically
the information valuable for the OTAP process is the link map of the module.
In the link map, the following are quoted: the addresses of XDATA, DATA
data variables and CODE memory of the program’s functions, variables and
constants. It is useful for checking whether the setup of the application to be
downloaded and the bootloader are correct. For more information, consult
section “how to use OTAP”.

4.1.6 Interrupt vectors

When an interrupt occurs, the MCU saves its execution state and initiates
the execution of a code named “interrupt handler”. The interrupt handler is
mainly a piece of code that is executed whenever an interrupt occurs. The
memory address where the handler is saved is called an interrupt vector.
In the C8051F320 the interrupts are directed to the beginning of the code
space a.k.a code space address 0x000. For further information consult the
C8051F320 manual, interrupts section. As an example, if the external in-
terrupt 1 (INT1) occurs, the MCU will begin executing the code saved at
address 0x0013. After the interrupt handler finishes execution, the MCU
program counter is set to where the program stopped when the interrupt

occurred.

4.2. Middleware developed 40

4.2 Middleware developed

The OTAP project for the developed node is consisted out of four middleware

parts :
e The slave bootloader (installed in the node).
e The slave interrupt pseudo-handler (installed in the node).
e The slave user application (installed in the node, developed by user).

e The master firmware updater (installed in the gateway).

4.2.1 Bootloader

The bootloader is the middleware responsible for most of the work of the
OTAP. It is the middleware that receives the code wirelessly, writes it to flash
memory, checks its validity and starts the downloaded application. Moreover,
one of the most important characteristics of the loader is the ability to be
executed under any circumstances and application faults. That is possible
through a series of mechanisms that state the bootloader stable and always
executable. The program start is located in the code space address 0x100.
Described below are all of the important functions and capabilities of the
bootloader that make the OTAP possible.

Decode and download

Once started, the loader erases the predefined code space where the user
application will be stored. The next step is to wait for code to be received
wirelessly by using the receive_code() function. This is the function that
receives and decodes the incoming Hex file. Below is a brief piece of code in

order for the user to understand how this function works.

© 00 N O Ot = W N

W W W W W W W W W WK N NDNDDNDNDNDDNDDNDDN & = e e e
© 00 J O U = W N = O © 00 N O U i W N = O © 0 9 O U i W NN —= O

4.2. Middleware developed

41

do{
//ignore all characters until reaching the record mark field
while(¢ = get_key () != 7:7){;}

//get the record length

len = get_key () ;

//get the MSB of the starting
//address (offset field in HEX record)
offset = get_key();

//shift the wvariable in order to save the LSB
offset <<= §;

//get the LSB

offset |= get_key();

// get the record type

record_type = get_key ();

//check the record type

if(record_type != 0 && record_type != 1){
//if the record type is not walid
return CODENOT_VALID;

//init a flash pointer with the record’s offset
flash_pointer = offset

//write the data field of the hex file wuntil all data ends
for(i =0 ; i < len ;i++)
if (flash_pointer < LAST FLASH ADDRESS){
FLASH ByteWrite(flash_pointer++,get_key ()) ;
telse(
//if there is a try to write in a non wvalid address
return CODENOT_VALID;

//init a variable to check for checksum wvalidity from flash
flash_checksum = 0;
flash _pointer = offset ;
for(i =0; i < len; i++)
// add the data field stored in FLASH to the checksum

40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
95
96
57
o8
59
60
61
62
63
64
65
66
67
68
69
70
71

4.2. Middleware developed

42

flash_checksum += FlashByteRead(flash_pointer++);

// get the HEX record checksum field
checksum = get_key () ;

// add the remaining fields

flash_checksum 4= len;

// Take the shifted by 8 bits offset variable

// and add it to the flash_checksum

//This is done, in order to take only

//the 8 most significant bits of the wvariable
flash_checksum += (char) (offset >> 8);

// Mask the offset field in order to take the
// 8 least significant bits of the offset wvariable
flash_checksum 4= (char) (offset & 0x00FF) ;

// This is done because flash_checksum wariable
// is smaller than the offset wvariable and adding
// will lead to an overflow

flash_checksum += record_type;

flash_checksum 4= checksum ;

// wverify the checksum (the flash_checksum should equal zero)
if (flash_checksum != 0){

//if checksum is mnot walid

return CODENOT_VALID;
¥

twhile(record_type != 1);

//if EOF record type found return that code is wvalid
return CODE_VALID;

© 00 N O Ot = W N

— = = = =
=W NN = O

4.2. Middleware developed 43

The above code depicts the main functionality of the receive_code() func-
tion. To begin with, using this code, the Hex file is received character by
character and thus each line is fully decoded. Moreover, the code received is
stored in the addresses described in the “offset” field. Finally, a checksum-
type check is executed by reading the contents written in flash thus imple-
menting a test for flash corruption. In any case, if something interrupts the
above procedure, the byte stored in flash is already stated as not valid. For
example, if a power failure occurs, or a sudden reset for any reason, the boot-
loader will be the program to be executed and waiting for new code to be

downloaded and not the partially downloaded code.

Initialization and application boot

Mentioned above is that once the bootloader is started, a control code is
executed in order to verify the validity of the code currently in flash. This
code simply reads the validity variable from flash and if it is set, the user
application is executed. The execution of the code is done by using C function
pointers. A function pointer is a variable that points to the address of a
function. By using function pointers, it is possible to initiate a function
(or in this case a whole program) only by knowing the address where this
function is saved. The example below does exactly that (it is a code block

from the bootloader program):

//Declaration of function pointer to application

void (*_application_)();

//Raise the now_running_bootloader flag
PSW &= !10x02;

//Read the wvalidity byte of the code currently in flash
valid = FLASH ByteRead (CODE_VALID_ADDRESS) ;

J/If code is wvalid
//or the P1.3 attached button is not pressed
if (valid = CODEVALID && P1.3){

15
16
17
18
19
20
21
22
23

4.2. Middleware developed 44

// assign the function pointer
_application. = (void codex) APP_ADDRESS;

//raise the now_running_app flag
PSW |= 0x02;

// jump to the application i the flash
application ();

In the case above, a function pointer of a function with void type of
return and no arguments is firstly declared. Then, a general purpose bit
from one of the microcontroller’s registers is set in order for the interrupts to
be directed correctly (see “pseudo interrupt vector” section). Finally, if the
code is characterized valid, the function pointer is used in order to jump to
the application’s main(). The code above depicts the described functionality
and is executed upon every MCU reset.

Moreover one can observe a more hardcoded check using the MCU’s P1_3
port. If this port is short-circuited with the ground pin of the MCU on reset,
whatever the validity bit, the execution is transferred to the bootloader pro-
gram. This functionality gives the user the ability to initiate the bootloader
at will, even if the application has stalled infinitely. For a more explanatory
scheme, see Fig. [1.3|

The use of function pointers was selected instead of in line assembly
because the compiler that was used did not have such capability (or at least in
a user friendly way). The Cx51 manual is equipped with further information

about function pointers.

4.2. Middleware developed 45

Hex file transfer

In order for the code file to be transferred, a fast and reliable data link must
be established between the programming gateway and the node with the
installed bootloader. This is achieved by several means. To begin, the link
between the gateway is made reliable by utilizing RDT protocol (See RDT
section for more information), thus every packet is acknowledged and there

is no possibility for a packet to be duplicated or unsent.

/

A

Execute Bootloader

Fa

True
\

Wait For a HEX File
To Be Downloaded

Execute User
Y Application

Hex download -
complete Application
Ended Operation
OR Need for Update

\4 \4
FlashWrite FlashWrite(CODE_VALID
(CODE_VALID = 1) =0)

Figure 4.3: Program execution control flow.

© 00 J O Ot = W N

e e S e S e T T
0 N O Ut =R W N = O

4.2. Middleware developed 46

Furthermore, with the ability of the CC2500 radio to apply a CRC check
on every packet, data reception has but a tiny possibility to be faulty. But
then, there is always the checksum of every line, utilized in the receive_code
function to cover even that possibility. In addition, every packet contains a
variable size buffer of characters that are returned in the correct order by the

get_key() function. Below, the aforementioned function is quoted:

//if the whole buffer has been used by the
//receive_code () function
if (rxbuffer_counter >= BUFFERSIZE || init){

//receive a packet from the gateway
receive_packet_rdt (OTAP.GATEWAY) ;

//reset the index counter for the receive buffer
rxbuffer_counter = INDEX RX DATA START;

//variable that is set for the first exzecution of the function
//in order for the first packet to be received

init = 0y

//return the buffer and increment the index counter

return rxBuffer [rxbuffer_counter++];

}

With a quick view on the above code, it is understandable that the program
receives packets from the gateway and returns a series of characters until
the end of each packet. Then, a new packet is received and the process is
reset. This is a standard synchronization method with a buffer that is used

for numerous applications.

4.2. Middleware developed 47

4.2.2 User application

The user application is the code to be downloaded using the bootloader. The
bootloader, as stated above is responsible to jump to this address in order
to begin the program execution. The application code has almost no limi-
tations regarding functionality, meaning that every module of the MCU can
be used, as if the bootloader does not exist. The two programs are executed
completely independently. In order to make the application downloadable,
the user must set the application code to begin from an address declared
APP_ADDRESS in the “bootloader.h” library (default value 0x1000). In
addition, the user has to set up the interrupt vectors to begin at address
APP_ADDRESS and set up the STARTUP.A51 file to jump to the address
APP_ADDRESS in order for the main function to start (more information
in “how to use OTAP” section).

There are certain limitations regarding the memory use of the applica-
tion. First and foremost, the application, should not overwrite the boot-
loader code in any way. The address where the loader is saved is stated in
the corresponding .Mb51 file. If a flash write occurs to the bootloader code
space, the download operation would be stated error prone and the whole
system would be faulty and difficult to debug. Furthermore, the application
should not write to a flash address beyond LAST_FLASH PAGE (default
value 0x3BFF) as declared in the bootloader.h library. In this memory bank
valuable information is stored, such as the MAC_ADDRESS of the node and
the code validity bit. Finally, taking into account the previous limitations,
the amount of flash memory available for application code is limited to 11263
Bytes (and not 16KBytes) due to the fact that the application code starts in
address 0x1000 and ends at most at 0x3BFF. Of course this is a minor draw-
back because the typical application memory size varies from 2 to 6 KBytes
and at most 10 KBytes of code.

To conclude, a piece of code must be added into the application which,
when executed, initiates the bootloader. That way, the OTAP process can
be initiated without physical contact with the node. For example, the node

could be programmed in such way, that when a special packet is received the

U = W NN =

4.2. Middleware developed 48

bootloader is started, in order for a new application to be downloaded. The
code sequence with which the bootloader is started, within the application

code is shown :

//Write to the flash memory that the code is not valid

FLASH ByteWrite (CODE_VALID_ADDRESS, CODENOT_VALID);
//Software reset
RSTSRC = 0x10;

When the above code is executed, the node execution is transferred in
OTAP mode and awaits for a program to be downloaded wirelessly. The
first instruction unsets the validity of the code. Therefore, upon reset, the
bootloader, after checking this variable’s value, is initiated (for more info
check the bootloader section). This way, the code execution can be trans-
ferred from the application to the bootloader and a new program can be

downloaded.

4.2.3 Interrupt pseudo-vector

As quoted in the interrupt vector section, when an interrupt occurs, the
MCU automatically jumps to the corresponding interrupt vector. In the case
of the particular OTAP project, when an interrupt occurs, the execution is
transferred to a program that selects whether to direct the interrupt to the
bootloader, or to the downloaded user application interrupt service routine.
The program is named interrupt pseudo-vector, because it is not actually
an interrupt vector but a control program in order for the interrupts to be
directed correctly. The selection of which program’s ISR will be executed is
done by using the “F1” bit from the C8051F320 register “PSW”. If this bit
is set, the application is the one that is currently running and the interrupt
is directed to it, otherwise, it is handled by the bootloader. A code part of

the pseudo-vector is depicted below:

© 00 N O Ot = W N

I I N R T e T e T e T e T e T T
N = O © 00 3 O Ut = W NN = O

4.2. Middleware developed 49

;DownLoader base address
DnlBase Equ 0100H
;Application base address
AppBase Equ 1000H

;Start Loader
CSEG AT 0
Ljmp DnlBase

JINTO — External Interrupt

CSEG AT 3

JB PSW.1 ,InterruptVO0
Ajmp DnlBase+(3)
InterruptVo:

Ljmp AppBase+(3)

;70 — Timer 0 Interrupt
CSEG AT 8x1+3

JB PSW.1 ,InterruptVl1
Ajmp DnlBase+(11)
InterruptVil:

Ljmp AppBase+(11)

The above assembly code initializes two variables that store the memory
addresses of the bootloader and the application. Followingly, it vectors the
reset interrupt to the bootloader, in order for the bootloader to run upon
every reset and check whether or not to start the application in the code
space. Finally, all the other interrupts are vectored according to the PSW.1
bit. If it is set, the program jumps to the application interrupt vectors, while,
if not, to the bootloader. With that simple piece of code, the interrupts
are vectored correctly independent of which program is currently running.
Fig. explains this functionality

4.2. Middleware developed

20

Interrupt
Occurance

MCU Jump To
Hardware Defined
Int Handler

Interrupt Serviced
by Custom
Interrupt Handler

True False

S

Interrupt Interrupt

Serviced By
Bootloader

Serviced By

User Application

Figure 4.4: Interrupt servicing flow.

4.2. Middleware developed 51

4.2.4 Gateway Firmware Updater

The gateway is the device that is responsible for transferring programs wire-
lessly to the WSN nodes. The developed program flow is fairly simple. To
begin, the gateway’s flash memory is reset, in order for the previously writ-
ten program to be erased. Followingly, the user is prompted via the RS232
interface to insert an Intel Hex file. Then the user is prompted to insert the
addresses at which the program will be send wirelessly. Finally the inserted
Hex file is transmitted to the selected nodes. The gateway program flow is
depicted in Fig 4.5

> Reset

\ A
Erase
previously
saved

proiram

Wait to
receive new
Hex file

4

Read node
address from
user input

\ 4

Transmit hex
to given node
address

Figure 4.5: The program flow of the gateway firmware

The features that the firmware of the gateway must have are: the file
transfer reliability, the low file transfer time and the capability to save large

programs in its flash memory. These features were embedded to the devel-

4.2. Middleware developed 52

oped firmware with the utilization of a series of mechanisms and techniques.
The following section summarizes the functionality of the programming gate-

way.

PC to Gateway Hex file download

One of the most important functions of the gateway is the download process
of the Hex file, from the PC to the gateway’s flash memory. The communi-
cation interface used is the standard RS232. The file is sent using a terminal
application like Hercules, or Windows Hyper Terminal.

To begin with, when the device is reset, the user is prompted to input an
Intel Hex file. Once the user sends the file via the terminal and the first byte
of the file is received by the gateway, a timer is started. This timer is used
in order for the end of file reception to be noticed. Specifically, after every
byte is received from the PC, the timer is reset, thus an interrupt marks
that enough time has passed before the last byte reception, which in turn
means that the file transmission is over. Figure depicts the described
functionality:.

This technique was used because, it is not a good practice to define an
escape character (for example EOT) in order to mark the end of the file .
That is because, theoretically, the intel Hex file could contain any character,
at any place (including the EOT). On the other hand with the technique
applied in this thesis, there are no limitations as to which characters the file
contains. To conclude, this is the best technique in to download any generic
file to the MCU’s flash memory.

4.2. Middleware developed 53

C receive_file() called)

\ 4

Receive a
»| char from
RS232
Y
) Timer
Start timer Interrupt

A4

return 1(At this point
the file is saved in
GW's flash)

Compress two
chars to one byte

Figure 4.6: Gateway file reception procedure through RS232 interface.

Hex file compression

The size of the C8051F320 flash memory is 16KBytes. The size of the
firmware updater is 3.9 KBytes. Thus, only about 12KBytes are left for
the Hex file storage in memory.

Given that a typical Hex file of an application with code size about 3
KBytes is 8KBytesE|, a code size constraint appears.

The solution is to somehow compress the file. The Intel Hex format
describes every byte of data saved in memory using two characters for each
byte. For example byte O0xFE is described by the characters 'F’ and "E’.
Therefore in the MCUs flash memory, instead of one byte of data, two are
saved, more specifically, instead of the byte OxFE, the bytes representing
characters 'F’ and 'E’.

The easy solution for this problem is to save the translation of each byte

3The increase in size is due to the extra fields added to the Hex file. For more info see
“Intel Hex Code File” section

4.2. Middleware developed 54

from ASCII characters to actual binary data. To begin, once a character
is received from the RS232 interface, it is converted to its representation as
an integer number with the utilization of the tolnt() function. For example,
the character ‘F’ is converted to the number 15 and the string “FE” to the
number 254. The number 254 can be stored in a variable that is 8 bits
long, whereas the string “FE” needs 16 bits of memory space. After the
received character is converted, a counter indicating the number of received
characters is incremented(in Fig. it is named byte_num). If the counter
value is an even number, the converted character is saved to the lower 4 bits
of an 8 bit buffer and if it is odd, to the higher 4 bits. The separation is done
by dividing the counter with 2 and taking the remainder. If it is zero, the
counter is an even number, otherwise it is an odd number. This way, pairs of
characters are saved in the correct order and only one byte instead of two is
used, thus a 2:1 compression ratio is achieved. After each pair is compressed,
the buffer that stores the converted number, is saved to the flash memory,
and the procedure is repeated until the end of the file.

With the Hex file compression utilization, the file storage capability of
the gateway is virtually doubled and therefore, more complex and larger
programs can be stored and transferred wirelessly to the WSN. Figure
depicts this functionality.

4.3. How to use Over The Air Programming 55

receive_file() called

Receive Char |«

A

byte_num++

if(byte_num % 2 =1)
False True

¢ {

| Write 4 higher bits Write 4 lower bits |

v

Write Byte to
Flash

Y

return 1(At this point
True the file is saved in
GW's flash)

File

False completed?

Figure 4.7: Compression of two characters into one byte.

4.3 How to use Over The Air Programming

From the beginning of the OTAP project, one of the major goals was to make
the whole procedure as easy as possible. If somehow, the user had to deal
with a complex procedure during the wireless download of every program,
the whole project would be characterized unsuccessful. Instead, the OTAP
is very user friendly both to install and use. Below are the instructions in
order for all the components of the OTAP to be installed on a C8051F320/1,
using either Keil IDE or Silabs IDE.

4.3. How to use Over The Air Programming 56

4.3.1 Files needed and their description

The OTAP project consists of a number of source files that are necessary for

a succesfull compilation and operation. The files are separated in 3 different
folders:

e The common_libs folder, which is used for the firmware updater and

the bootloader libraries and source files.

e The “bootloader” folder is used for the libraries and the source file

containing the main() function of the bootloader.

e The firmware_updater folder which is used for the libraries and the

source file containing the main() function of the firmware updater.

4.3.2 Setting up the application to be bootload-able
1. Write the application code, as normal.

2. Relocate the code of the application as per the corresponding the boot-
loader.h, APP_ADDRESS definition (default 0x1000). Do this by us-
ing the CODE(“address”) directive. For example, for the default set
up linking command would be :

“BL51.EXE TEST_APPLICATION.obj, TO application CODE (1000H)”

In Keil uVision IDE from main menu goto: Project — Options
for Target — “BL51locate” tab — Change the “Code” textfield to
APP_ADDRESS value(default 1000H).

In Silicon Labs IDE : from main menu goto: Project —Tool Chain
Integration— “Linker” tab — “Customize” button — Change the “Code
Address” textfield to APP_ADDRESS value(default 0x1000).

3. Include in the application’s compilation files the STARTUP.A51 file.
Keil strongly recommends that every program should include this file,

in uVision and SiLabs IDEs this is done automatically. The file is lo-
cated at $KeilCompilerInstallationFolder$\C51\LIB\STARTUP.A51.

4.3. How to use Over The Air Programming 57

4. Edit the line of the STARTUP.A51 file from:

CSEG AT 0

?CSTARTUP: LJMP STARTUP1

to:

CSEG AT 1000H ; (default value)
?CSTARTUP: LIMP STARTUP1

With the above set up, once a jump is executed to address 0x1000,the
application is initialized and started(see section STARTUP.A51 for

more information).

5. Instruct the compiler to generate interrupt vectors at the APP_ADDRESS
address. Use either the compiler directive INTVECTOR(APP_ADDRESS)
or an inline directive using #pragma iv(APP_ADDRESS).

In Keil’s uVision IDE from main menu goto : Project — Options
for Target — “C51” tab — Tick the “Interrupt vectors at address” box
— fill the corresponding textbox with APP_ADDRESS value (default
0x1000).

In Silicon Labs IDE : from main menu goto : Project — Tool Chain
Integration— “Compiler” tab — “Customize” button — add to “Com-
mand Line” text field the directive INTVECTOR(APP_ADDRESS)
value(default 0x1000).

6. Export the application’s Hex file:
In Keil’s uVision IDE from main menu goto :Project — Options for
Target — “Output” tab — Select “Create executable” — Select create
HEX file, with HEX-80 format.
In Silicon Labs IDE : from main menu goto : Project — Target
Build Configuration — Select “Generate Hex file” —
The hex file output by this procedure is the one to be downloaded using

the master firmware updater.

4.3. How to use Over The Air Programming 58

All the above may seem like a lot of work to be done. On the contrary, the

whole procedure does not take more than a minute and it has to be done

only once per project.

4.3.3 Setting up and Installing the bootloader

1.

6.

7.

In the bootloader.h library set up the MAC_ADDRESS field. This is
the node’s mac address in order to receive the Intel Hex file from the

gateway.

. Include STARTUP.A51 into the code files.

. Set up the STARTUP.A51 to jump to address 0x100.

Select a MAC_ADDRESS from 0 to 255 in library Link.h.
Set up the interrupt vectors to begin at address 0x100.
Compile the bootloader.

Download the executable.

Once all the above are done, the WSN node is ready to receive code

wirelessly. Upon reset, the bootloader is executed and waits for code to be

received.

4.3.4 Using master firmware updater to program over

4.

5.

the air

. Compile and download the firmware updater to a RS232 interface com-

patible node.

. Connect the gateway to a working RS232 connector.

Open a COM terminal (for example Hercules or Hyper Terminal).
Turn on the device.

Insert the application’s Intel Hex file to the COM terminalE]

4In Hercules, right-click—Insert file. In Hyper Terminal use the “send” button

4.3. How to use Over The Air Programming 59

6. Select a range of MAC addresses for the code to be downloaded. For
example an input of 3 to 5 will download the saved program to the
nodes with MAC addresses 3 to 5 starting the download from number
3. If the user wants to deliver the application only to node 5, number

5 shall be inserted twice etc.

7. If the message is : “Download completed successfully” then the target
node was programmed successfully. Otherwise, programming was not
successful. If the programming is not successful then the node shall

reset after a timeout and wait for new code download.

Depicted in Fig. [4.8]is the organization of the flash memory contents after the
successful installation of the OTAP components, and an application through
the bootloader.

0x00
Interrupt Handler

0x100

Bootloader

0x1000
User Application

0x3BFF
Information Block

(MAC_ADDR,CODE_VALID)

Figure 4.8: The contents of flash memory, after the successful installation of
the interrupt handler, the bootloader and application.

4.3. How to use Over The Air Programming 60

4.3.5 Over The Air Programmed “Blinky” Demo

(“Hello World” example)

This section will cover the setup and installation of all the OTAP compo-

nents described above, including a simple bootload-able application. The

application’s functionality is the blinking of one of the node’s LED.

Interrupt pseudo-vector setup

1

2.

10.

11.

12.

13.

Start Keil uVision IDE.
Create a new project named “interrupt_vector_project”.

Select from the database the C8051F320 MCU from Silicon Laborato-

ries.

. Click no to the pop up menu with the question: “Copy Standard 8051

Startup Code to Project Folder and Add to Project?”.
Copy the “Interrupt_handler.a” file in the project folder.
Expand the folder “Target 1”7 in the Project Workspace.

Right click the “Source Group 1”7 folder and select the “Add files to

Group” option.

From the drop down menu “Files of type” select “Asm Source files”.

. Add the “Interrupt_handler.a” file which is included with the files of

this thesis.
Close the file explorer.
Build the target using the corresponding button.

Connect a device utilizing the C8051F320 MCU using the SiL.abs Debug
Adapter.

Download the code.

4.3. How to use Over The Air Programming 61

Bootloader

1.

10.

11.

Without closing the Keil uVision IDE instance created for the interrupt

vector setup, open another instance of the IDE.

. Create a new project named “Bootloader_project”.

Make sure that the project will be saved in a folder other than the

Interrupt vector’s project folder.

. Copy all the files included in the “common_libs” and the “bootloader”

folder in the project folder.

. With the same steps as above, add all the files that where included in

“common_libs” folder except:

e ‘“receive_packet_csma.c”
e “send_packet_csma.c”
e “sleep.c”

e “channel_clear.c”

. Add all the files that where included in the “bootloader” folder.

Set up the MAC address of the node (constant MAC_ADDRESS in
Link.h library) to be the value 1.

. Relocate the code of the bootloader:

From the main menu, go to: Project — Options for Target — “BL51locate”
tab — Change the “Code” textfield to 100H.

Copy the STARTUP.A51 file into the project folder. The file is located
at $KeilCompilerInstallationFolder$\C51\LIB\STARTUP.A51.

Add the STARTUP.A51 to the project files.

Edit the line of the STARTUP.A51 file from:

4.3. How to use Over The Air Programming 62

12.

13.

CSEG AT 0

?7CSTARTUP: LIMP STARTUP1
to:

CSEG AT 100H ;
?7CSTARTUP: LIMP STARTUP1

Set up the interrupt vectors:

From main menu go to : Project — Options for Target — “C51” tab
— Tick the “Interrupt vectors at address” box — fill the corresponding
textbox with the value 0x100.

Download the code. In the pop up menu with the question:
“Erase memory contents” select NO. If the contents of the flash

memory are erased, the interrupt pseudo-vector must be reinstalled.

Application

1.

Without closing the Keil uVision IDE instance created for the interrupt

vector and the bootloader setup, open another instance of the IDE.
Create a new project named “Application_project”.

Create a new text file using a text editor and copy the code cited in

the appendix.
Save the file under the name “Bootloadable Blinky.c”.

Copy the file into the project folder.

4.3. How to use Over The Air Programming 63

10.

11.

12.

Copy the files listed below from the “common_libs” folder into the
project folder:

e “compiler_defs.h”

“C8051F320_defs.h”

“FlashPrimitives.h”

“F'320_FlashPrimitives.c”

. Add the above files to the compilation list, using the steps described

above.

Relocate the code of the application:

From the main menu, go to: Project — Options for Target — “BL51locate
tab — Change the “Code” textfield to 1000H.

Copy the STARTUP.A51 file into the project folder. The file is located
at $KeilCompilerInstallationFolder$\C51\LIB\STARTUP.A51.

Add the STARTUP.A51 to the project files.

Edit the line of the STARTUP.A51 file from:
CSEG AT 0

7CSTARTUP: LIMP STARTUP1

to:

CSEG AT 1000H ;

7CSTARTUP: LIMP STARTUP1

Set up the interrupt vectors:

From main menu go to : Project — Options for Target — “C51” tab
— Tick the “Interrupt vectors at address” box — fill the corresponding
textbox with the value 0x1000.

4.3. How to use Over The Air Programming 64

13. Export the application’s Hex file:
From the main menu go to: Project — Options for Target — “Output”
tab — Select “Create executable” — Select create HEX file, with HEX-
80 format.

Y

14. Build the project using the corresponding button. The “Application_project.hex’
hex file is the one to be downloaded using OTAP.

Chapter 5

Demos and applications

For better understanding of the telecommunication testbed capabilities, a
number of demo code examples have been developed. To begin with, the
bootloader and the interrupt handler must first be installed in each of the
four iCubes. The procedure is described in section “Setting up and installing
the bootloader”. In order for the demo to be ready “out of the box”, MAC
addresses from 3 to 6 must be selected for 4 iCubes in a way that every node

will have a unique address. A picture of the setup is depicted in Fig. [5.1

Figure 5.1: Demo setup.

Chapter 5. Demos and applications 66

Moreover, the gateway firmware must be installed to a device utilizing
the C8051F320/1 (such as the iCube or the C8051F320DK) and connected
to a PC running a UART terminal. The host PC must have the Keil 8051
toolchain installed. In section “Setting up the application to be bootload-
able”, the steps in order for the demos to be bootload-able are listed.

Code-wise, the demo.c and demo_config.h are the main files of the demo.
The functionality of the demos is contained in the demo.c file. The code
utilizes the preprocessor by using the “#ifdef” instruction, in order to select
one out of 5 different demo applications. The selection is made by uncom-
menting the corresponding line in the demo_config.h library. This way code
size optimization is achieved. Furthermore, the demo application is designed
in a way that the user will be required to compile and install only once for
each demo.

Finally, a technique is presented in order for the application to enter
bootloading mode under all circumstances. For this purpose, a timer is
utilized (specifically, timer3). The timer is initiated to interrupt every half a
second. Then, the application is responsible to count the interrupts and select
a threshold (TIMEOUT_RESET) after which it executes the bootloader.
This way, even if the application has entered an endless loop or even crashed,
OTAP will always be available, either from the normal application procedure,
or from the timer3 interrupt handler (which in some demos below is selected

as the only way to enter bootloading mode).

Chapter 5. Demos and applications 67

5.0.6 Application Description

A brief description of the six different demos is depicted below.

Led blinking (“Hello World”)

This is a simple LED blinking application. After all the initializations, the
system enters a “for loop” with iterations selected from the ITERATIONS
definition. Furthermore, a wait interval between each blinking is selected us-
ing the WAIT_TIME definition. After the iterations have surpassed, the ap-
plication enters the bootloading mode by using the ENTER_BOOTLOADER
macro, defined in bootloading essentials.h. The results of the application
with a default set up of the iCube would be for the LED to blink for a num-
ber of times described in ITERATIONS and enter bootloading mode. This

demo is selected by uncommenting the line “#define LED” in demo_config.h.

Bidirectional relay system

The purpose of this application is the demonstration of the simplicity with
which a reliable multihop system that can transfer data from one point to
another. The simplicity is referred in terms of code, because the multi-
hop WSN code in this example requires mainly 40 lines of code, since RDT
routines are already developed. Once the application is downloaded in all
four iCube nodes, a blinking LED from every iCube node, indicates the
data direction from the first set up node to the last one (RIGHT_RELAY
and LEFT_RELAY utilize opposite directions). After a number of timer3
interrupts have occurred, the application executes the macro to return to
bootloading mode. The selection of the demo is done by uncommenting ei-
ther the line “#define RIGHT_RELAY” or the “#define LEFT_RELAY” in
demo_config.h. Figure depicts a relay demo execution. One can observe
the packet propagation through the relays, since for every successfull packet

transmission a LED is turned on.

Chapter 5. Demos and applications 68

Figure 5.2: Relay demo presentation.

Broadcast system

A typical system in WSNs consists of a set of nodes that receive data and a
node that transmits data. This demo is depicting exactly this configuration.
The broadcast node is selected from the BROADCAST _NODE definition.
Following, the download of the program the broadcast node starts transmit-
ting packets to the receivers. The transmitter and the receiver blink different
LEDs in order to be separated visually. Selection of this demo is done by
uncommenting the line “#define BROADCAST”.

Multiple Access (CSMA/CA) System

Another typical scenario for WSNs is when multiple transmitters engage
transmiting to the same receiver. For this scenario, a CSMA/CA algorithm
is typically utilized. The application that was developed for demo purposes
uses three of the four iCubes as transmitters to a single receiver. All trans-
mitters as well as the receiver utilize the CSMA functions described in section

“Carrier Sense Multiple Access with Collision Avoidance”. Transmitter-side,

Chapter 5. Demos and applications 69

packets are being send between random time intervals. After a succesfull
packet transmission has been achieved (acknowledgement received), a LED
blinking occurs. Receiver-side, the node is always in receive mode and ac-
cepts packets from all mac addresses and returns ACKS to the corresponding
nodes while blinking a LED when a reception was succesful. The performance
of the demo is not optimal because timeout fine tuning was not performed

as this code is only a proof of concept demo for the OTAP.

5.0.7 Network debugging tool

During the development of the telecommunication testbed, there was need
for recording and logging the packet streams throughout the network. For
the purposes of this task, firmware for packet sniffing was developed. With
the utilization of the packet sniffer, the packet flow can be recorded, thus the
telecommunication engineer is reinforced with a valuable network debugging
and data logging tool.

The functionality of the sniffer is fairly simple. The WSN node equipped
with the sniffer firmware, utilizes the primitive function of packet reception
in order to receive every transmitted packet of the network. The packet
information is saved in an array. Particularly, the type, the transmitter and
receiver of the packet are stored and presented to the user for further analysis.

Followingly, the instructions for the operation of the packet sniffer are
depicted. To start with, the user must first install the firmware to a WSN
node capable of communicating with a PC using a RS232 interface. After
the installation, and the initialization of the sniffer node, the user will be
prompted to start the packet reception by sending a special character through
the interface (default is ‘b’). At this stage the user should start the operation
of the network and begin the packet sniffing. If a number of packets defined
in PACKET _BUFFER_SIZE definition are received, or user inserts character
‘s’, the packet sniffing is stopped and the information of the collected packets
are presented to the user. Below, an example of the printouts of the network
debugging tool is depicted:

Fig. depicts the sniffer printouts after the successful reception of 10

Chapter 5. Demos and applications

70

packets from the relay system described in the demo section. The packet

flow is easily observable from the node with address 3 to 6 as well as the

acknowledgement exchange throughout the procedure.

o NN % Hercules SETUP utility by HW-group.com

LUDP Setup Serial TCP Client | TCP Server | UDP | TestMode About
Received/Sent data

————————— Wirelessly Programmed Network Sniffer-------

Press 'b' to begin packet sniffing
Packet sniffing started!\n
Press 's' to stop..

Results :

1. DATA : 3->14
2. ACK : 4->3
3. DATA : 4->5
4, ACK : 5->4
5. DATA : 5->6
6. ACK : 6->5
7. DATA : 3->4
8. ACK : 4->3

Ne}

DATA : 4->5

10. ACK : 5->4

ACK PACKETS : 5

DATA PACKETS : 5

Press any key to reset...

Modem lines
@co @Pr @ DSR @ CTs
Send
v HEX
HE
HE

Figure 5.3: Sniffer functionality with relay system.

Sernal
Mame

Baud

Data size
Parity
Handshake

Mode

x Close

Hw'g P update

HIWDsroup

vwrw. HUW-group.conm

Hercules SETUP stility
Yerzsion 3.2.3

Chapter 6

Conclusion and future/ongoing

work

6.1 Future/Ongoing Work

For this thesis, a OTAP methodology was developed from scratch. The main
components developed throughout the thesis are the Over The Air Program-
ming capability, the XTboard, the Reliable Data Transmission routines and
the programs that demonstrate the testbed potential.

There is a lot of ongoing and future work in order for the WSN under
development to be an even more competitive product compared to prior art.
The projects that are either programmed for future work or currently under

development are summarized below.

iCube2

The iCube?2 is a future project that involves the design and implementation
of a new wireless sensor network node. The new node will consist of a more
advanced and lower power consumption MCU, which utilizes modules such
as a Real Time Clock that provide the engineer with further functionalities

and capabilities.

6.1. Future/Ongoing Work 72

Ultra low power OTAP

Currently, Over The Air Programming is a fairly high power consuming pro-
cedure. Speciffically, when the node is receiving code wirelessly consumes
around 80mW of power. The power consumption of the process can be
reduced to the order of a few hundreds microwatts by utilizing “Wake On
Radio”, “Periodic Sleep” and other techniques for minimizing the power con-
sumption of a WSN node. Such techniques shall be applied to the OTAP in
the future.

Multihop OTAP

The developed OTAP is currently capable of programming nodes that are
within the range of the gateway, i.e within one hop. This is a critical con-
straint for a wirelessly programmed WSN. For this reason, multihop OTAP
capability is currently under development in order to overcome this con-
straint. Multihop OTAP will be based on the same principles with the one
already developed, with the addition of a packet routing or flooding technique

that will enable the programming of nodes with no access to the gateway.

Energy Harvesting

Energy harvesting is the process with which energy derived from external
sources is captured, and stored into energy containers such as batteries or
ultra capacitors. Such energy sources are the sun rays, the wind or even RF
power from ambient signals (such as UHF). For the exploitation of these envi-
ronmental energy soirces, special modules are currently under development.
The modules include boost converters [7], rectennas [8], custom wind-mills [9]

and utilization of advanced energy storage solutions, such as those in [10].

6.2. Challenges during development 73

6.2 Challenges during development

During the development of all the above middleware and hardware there were
certain problems. Some were critical for the development process and others
minor. Both are stated below.

The most important of the problems was the lack of a usable debug-
ger for networking applications. The debugger provided by Silicon Labs,
unfortunately is neither easy to use nor capable of debugging networking
applications. Therefore all the debugging procedures where done utilizing
LED blinking, oscilloscopes and UART printouts (which for most bugs do
not work). The above debugging tools are clearly not sufficient for a devel-
oper that needs to know exactly what is happening with interrupts and the
contents of the flash memory in real time while packets are being received
and sent wirelessly.

Another critical challenge was the lack of the the fact that OTAP appli-
cation was developed from ground up using custom primitive functions and
trial-and-error practices. This process helped a lot to educate the author and
to develop an application that is fresh and easily updatable.

Moreover, from the beginning of the OTAP project, a challenge was to
set up three different applications to be installed in the same memory. For
the purposes of this challenge, the whole project was separated into three
different Keil uVision IDE sub-projects which were edited and installed si-
multaneously. This means that three different projects had to be debugged,
set up and installed as one. If one of these was buggy, everything failed.
For example, if the pseudo-interrupt vector did not redirect the interrupts
correctly, then a difficult to find bug would appear either on the bootloader,

or in the application.

6.3 Conclusion

The telecommunication testbed developed is a high quality engineering tool
for the fast deployment of research projects and applications. The capability
of remote WSN programming is available through a simple installation and
deployment process, thus providing the engineer the ability to update the
network within seconds. Moreover, the XThoard is an essential interfacing
tool for the iCubes node in order for the latter to be transformed to a fully
functional sensor node capable of transferring data to a PC. Finally, the
demos described in section “Demos and Applications” speed up the learning

process of the tool and are used to demonstrate the capabilities of the testbed.

© 00 N O Ot = W N

CLO W W RN N DN DD DNDDNDDNDDNDDNIDN = = = s s
N = O © 00 3 O UL i W NN = O © 00 ~J O U i W N = O

Appendix A

Gateway Code

75

void main (void){

// Initialization routines called here.

Init_mcu_and_peripherals () ;

//Delete the previous program from gateway memory

erase_flash () ;

puts (”? Insert HEX_:");
// Call receive_file , which is the file
// reception and compression function
if(receive_file ()){
puts (”Done”) ;
telse{
puts (”Error_on.file .reception\nRestarting...”);
halWait (60000) ;
halWait (60000) ;
RSTSRC = 0x10;

// Read the address range of
// the nodes that will receive the file

puts(” Insert _.mac.address_of_the_first._node_to_transmit.:.”);

from = getchar () — 48;
puts (” Insert _mac_address_of_the_last_node_to_transmit._:.”);
to = getchar () — 48;

// If from > to then send from large address to small
if (from > to){

step = —1;
lelse if(from < to){

step = 1,

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
93
o4
%)
56
57
58
99
60
61

Appendix A. Gateway Code

76

telse{
step = 1,

puts ("\nTransmitting.file .”);
for (node.num = from //
; node_num != to+step //

; node_num = node_num+step){

// printout
putchar (node.num + 07);

putchar(’\n’);

// Here transmit_file is called

// This function wutilizes the RDT functionality

if(transmit_file ((UINT8)node_num)){
puts (?\nTransmition_Success!”) ;
telse{
J/If transmission failed , reset
puts ("\nTransmit _Failed!\n”) ;
RSTSRC = 0x10;

// If all nodes have received the file
puts (”\nResetting ...\n”);
RSTSRC = 0x10;

reset

© 00 N O Ot = W N

CLO W W RN N DN DD DNDDNDDNDDNDDNIDN = = = s s
N = O © 00 3 O UL i W NN = O © 00 ~J O U i W N = O

7

Appendix B

Blinky code

//
// F320_Blinky.c

//
// This program flashes the green LED on the

//C8051F32x target board.

// After the LED blinking the node ezxecution is transfered
// in bootloading mode.

//
// Includes

//

#include ”../common_libs/compiler_defs.h”
#include 7 ../ common_libs/C8051F320_defs.h”
#include ”../common_libs/F320_FlashPrimitives.h”

//
// Global CONSTANTS

//

#define UPDATER_ADDRESS 0x100
#define CODE_VALID_ADDRESS 0x3BFF

// LED1="1" means ON
SBIT(LED1, SFR.P2, 7);
// LED2="1" means ON
SBIT (LED2, SFR.P2, 6);

//
// Function PROTOTYPES

//

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
93
o4
%)
56
57
58
99
60
61
62
63
64
65
66
67
68
69
70
71

Appendix B. Blinky code

78

void SYSCLK_Init (void);
void PORT_Init (void);
void halWait (int timeout) ;

//
// MAIN Routine

//

void main (void)
{
int 1i;
// Disable watchdog timer
PCAOMD &= ~0x40;
//raise the now_running_app flag
PSW |= 0x02;
// Initialize system clock
SYSCLK_Init () ;
// Initialize crossbar and GPIO
PORT_Init () ;

while (1){

while (1){;}

for(i =0; i < 25 ; i++)4
halWait (40000) ;
LEDI — !LEDI:

}

//Unset the code wvalidity bit

FLASH_ByteWrite (CODE_VALID_ADDRESS , 0);

//Soft reset
RSTSRC = 0x10;

72
73
74
(0]
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

Appendix B. Blinky code

79

}

// Delay function
void halWait (int timeout) {
do {

SN e e N N N N N N N N N N

} while (——timeout) ;

Y// halWait

//
// SYSCLK_Init

//
void SYSCLK_Init (void)

{

// Configure internal oscillator for
OSCICN = 0x80;

// Enable missing clock detector
RSTSRC = 0x04;

//
// PORT._Init

//
void PORT_Init (void)

{

// Enable P2_6 as a push—pull output
P2MDOUT |= 0x40;

111
112
113
114
115
116
117
118
119
120

Appendix B. Blinky code

80

// Enable P2_7 as a push—pull output
P2MDOUT |= 0x80 ;

// Enable crossbar and weak pull—ups
XBR1 = 0x40 ;

//
// End Of File

//

© 00 N O Ot = W N

—
o

© 00 N O Ut = W N

=
o= O

81

Appendix C
Demo codes

C.1 LED Blinking

#ifdef LED
#define SPAM_WAIT 20000
#define ITERATIONS 100
#define TIMEOUTRESET 1000
for (i = 0 ; ¢ < ITERATIONS ; i++)
halWait (SPAM_WAIT) ;
BLINKG ;
}
START BOOTLOADER() ;
#endif

C.2 Relay system with direction from node
6 to 3

#ifdef RIGHT RELAY

#define SPAM_WAIT 30000

#define TIMEOUTRESET 700
while (1){

if (mac = TX1){
//SPAM_WAIT*6 results in an overflow
//thus 6 calls of halWait are used
halWait (SPAM_WAIT
halWait (SPAM_WAIT
halWait (SPAM_WAIT
halWait (SPAM_WAIT

?

)
)’.
).
)

)

)

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1

C.2. Relay system with direction from node 6 to 3

82

halWait (SPAM_WAIT) ;

halWait (SPAM_WAIT) ;

if (RDTsend_packet_rdt (RX1)){
ONG ;
halWait (SPAMLWAIT) ;
OFFG6 ;

if (mac = RX1){
if (RDTreceive_packet_rdt (TX1,20)){
halWait (SPAM_.WAIT) ;
if (RDTsend_packet_rdt (TX2)){
ONG ;
halWait (SPAM_WAIT) ;
OFF6;

if (mac = TX2){
if (RDTreceive_packet_rdt (RX1,20)){
halWait (SPAM_.WAIT) ;
if (RDTsend_packet_rdt (RX2)){
ONG ;
halWait (SPAM_WAIT) ;
OFF6;

if (mac = RX2){

if (RDTreceive_packet_rdt (TX2,20)){
halWait (SPAM_WAIT) ;
ONG6 ;
halWait (SPAM_WAIT) ;
OFF6;

92
53
54

© 00 N O Ot = W N

WO N NN N NDNINDNDN B = 1 o = e
S © 0 N O TR W N = O W0~ WN = O

C.3. Relay system with direction from node 3 to 6

83

}

}
#endif

C.3 Relay system with direction from node

3 to6

#ifdef LEFT RELAY
#define SPAM WAIT 30000
#define TIMEOUTRESET 700

while (1){

if (mac = RX2){

halWait (SPAM_WAIT)
halWait (SPAM_WAIT) ;
halWait (SPAM WAIT) ;

()

()

)

)

halWait (SPAM_WAIT
halWait (SPAM_WAIT
halWait (SPAM_WAIT) ;

if (RDTsend_packet_rdt (TX2)){

?

’

ONG6;

halWait (SPAM WAIT) ;

OFF6 ;
telse{

// P2.7 = IP2.7;
}

if (mac = TX2){
if (RDTreceive_packet_rdt (RX2,20)){
halWait (SPAM_WAIT) ;
if (RDTsend_packet_rdt (RX1)){
ON6;
halWait (SPAM_WAIT) ;
OFF6;

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
o1
92
93
54
95
56
o7

0 N O U e W N =

C.4. Broadcast system

84

if (mac = RX1){

if (RDTreceive_packet_rdt (TX2,20)){
halWait (SPAM.WAIT) ;
if (RDTsend_packet_rdt (TX1)){
ONG ;
halWait (SPAM_.WAIT) ;
OFF6;

if (mac = TX1){

if (RDTreceive_packet_rdt (RX1,20)){
halWait (SPAM_WAIT) ;

ONG6,
halWait (SPAM_.WAIT) ;
OFF6;
}
}
}
#endif

C.4 Broadcast system

#ifdef BROADCAST

#define SPAM WAIT 45000
#define TIMEOUTRESET 700
#define BROADCASTNODE TXI1
#define TIMEOUTRX 250

if (mac = BROADCASTNODE) {

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

© 00 N O Ot = W N

e T o T e S S G SOy S
0O J O U = W N = O

C.5. CSMA/CA system

85

txBuffer [INDEX_TXISACK] = 0;
txBuffer [INDEX_ TX FROM MAC] = mac;
txBuffer [INDEX.TX TOMAC] = 255;

}
while (1){

if (mac = BROADCASTNODE){
halRfSendPacket (txBuffer ,sizeof (txBuffer)) ;
BLINKT ;
halWait (SPAM_WAIT) ;
telse{
if (halRfReceivePacket (rxBuffer ,&length ,TIMEOUTRX)) {
BLINKS6 ;

#endif

C.5 CSMA/CA system

#ifdef CSMA

#define TIMERRELOAD 100
#define CSTIMEOUT 6
#define ACK.TIMEOUT 10
#define UNTIL RECEPTION 0
#define TIMEOUTRESET 700
#define RECEIVER TX1
#define PRINTOUT

#define RAND.ON

if (mac = RECEIVER){

if (receive_packet_csma (1,ACCEPTFROM_ALL,10,CS.TIMEOUT)){
BLINKY7,

19
20
21
22
23
24
25
26
27
28
29
30

© 00 N O Ot = W N

T N T O T o T e T v T S SR SO St
= O © 00 J O Ut = W N = O

C.6. Demo code configuration library

86

telse{
if (send_packet_csma (\
RECEIVER, \
TIMER RELOAD, \
CS_TIMEOUT, \
ACK.TIMEOUT, \

)4

#endif

halWait (10000 ((BYTE)rand ())) ;
BLINKG6

C.6 Demo code configuration library

//DEMOS

//Uncomment one at a time
//#define LED

//#define RIGHT-RELAY
//#define LEFT_RELAY
//#define BROADCAST
//#define ENDLESS.LOOP
//#define CSMA

#define
#define
#define
#define
#define
#define

BLINK7 P26 = P26
BLINK6 P2.7 = P2.7
ON7 P26 =1
ON6 P27 =1
OFF7 P26 = 0
OFF6 P27 = 0

//uncomment to enable printouts
//MISC SETUP
//#define PRINTOUT

87

Bibliography

[10]

[11]

Silicon Laboratories homepage. http://www.silabs.com.

Waspmote mote datasheet. http://www.libelium.com/

documentation/waspmote/waspmote-datasheet_eng.pdf.

Isense mote datasheet. http://www.coalesenses.com/download/
data_sheets/DS_CM30X_1vO.pdf.

Lotus mote datasheet. http://www.memsic.com/support/
documentation/wireless-sensor-networks/category/
7-datasheets.html?download=186%3Alotus.

Iris mote datasheet. http://www.memsic.com/support/
documentation/wireless-sensor-networks/category/
7-datasheets.html?download=135}%3Airis.

List of wireless sensor nodes. http://en.wikipedia.org/wiki/List_

of _wireless_sensor_nodes#List_of_sensor_nodes.

Boost converter definition. http://en.wikipedia.org/wiki/Boost_

converter.
Rectenna definition. http://en.wikipedia.org/wiki/Rectenna.

Custom windmill url. http://www.telecom.tuc.gr/~aggelos/
teld412_fall2010/project4.html.

Infinity batteries homepage. http://www.infinitepowersolutions.

com/products/thinergy.

Silabs ”C8051F320/1” manual. http://www.silabs.com/Support
20Documents/TechnicalDocs/C8051F32x . pdf.

http://www.silabs.com
http://www.libelium.com/documentation/waspmote/waspmote-datasheet_eng.pdf
http://www.libelium.com/documentation/waspmote/waspmote-datasheet_eng.pdf
http://www.coalesenses.com/download/data_sheets/DS_CM30X_1v0.pdf
http://www.coalesenses.com/download/data_sheets/DS_CM30X_1v0.pdf
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=186%3Alotus
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=186%3Alotus
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=186%3Alotus
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=135%3Airis
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=135%3Airis
http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-datasheets.html?download=135%3Airis
http://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes#List_of_sensor_nodes
http://en.wikipedia.org/wiki/List_of_wireless_sensor_nodes#List_of_sensor_nodes
http://en.wikipedia.org/wiki/Boost_converter
http://en.wikipedia.org/wiki/Boost_converter
http://en.wikipedia.org/wiki/Rectenna
http://www.telecom.tuc.gr/~aggelos/tel412_fall2010/project4.html
http://www.telecom.tuc.gr/~aggelos/tel412_fall2010/project4.html
http://www.infinitepowersolutions.com/products/thinergy
http://www.infinitepowersolutions.com/products/thinergy
http://www.silabs.com/Support%20Documents/TechnicalDocs/C8051F32x.pdf
http://www.silabs.com/Support%20Documents/TechnicalDocs/C8051F32x.pdf

Bibliography 88

[12]

[18]

[19]

[21]

22]

Texas instruments ”CC2500” manual. http://www.ti.com/lit/ds/
symlink/cc2500.pdf.

Tinyos rtos homepage. www.tinyos.net!.
Eagle pcb design software homepage. http://www.cadsoftusa.com/.

National instruments "LM2937” manual. http://www.national.com/
mpf /LM/LM2937-3.3.html#0verview.

Sipex 7SP3223” manual. http://www.datasheetcatalog.org/
datasheet/sipex/SP3243CT.pdf.

Telosb mote datasheet. http://www.willow.co.uk/TelosB_
Datasheet.pdf.

Btnode mote datasheet. http://www.btnode.ethz.ch/pub/files/
btnode_rev3.22_productbrief.pdf.

Micaz mote datasheet. http://www.openautomation.net/

uploadsproductos/micaz_datasheet.pdf.

A.Bletsas, A. Vlachaki, E. Kampianakis, G. Sklivanitis, J. Kimionis,
K. Tountas, M. Asteris, and P. Markopoulos. Building the low-cost
digital garden as a telecom lab exercise. [EEE Pervasive Computing,

Accepted. to appear in 2012.

A. Bletsas, A. Vlachaki, E. Kampianakis, G. Sklivanitis, J. Kimionis,
K. Tountas, M. Asteris, and P. Markopoulos. Towards precision agricul-
ture: Building a soil wetness multi-hop wsn from first principles. April
2011. Second International Workshop in Sensing Technologies in Archi-
tecture, Forestry and Environment(ECOSENSE) 2011.

James F. Kurose and Keith W. Ross. Computer Networking. Addison-
Wesley, Reading, Massachusetts, 2010.

http://www.ti.com/lit/ds/symlink/cc2500.pdf
http://www.ti.com/lit/ds/symlink/cc2500.pdf
www.tinyos.net
http://www.cadsoftusa.com/
http://www.national.com/mpf/LM/LM2937-3.3.html#Overview
http://www.national.com/mpf/LM/LM2937-3.3.html#Overview
http://www.datasheetcatalog.org/datasheet/sipex/SP3243CT.pdf
http://www.datasheetcatalog.org/datasheet/sipex/SP3243CT.pdf
http://www.willow.co.uk/TelosB_Datasheet.pdf
http://www.willow.co.uk/TelosB_Datasheet.pdf
http://www.btnode.ethz.ch/pub/files/btnode_rev3.22_productbrief.pdf
http://www.btnode.ethz.ch/pub/files/btnode_rev3.22_productbrief.pdf
http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf
http://www.openautomation.net/uploadsproductos/micaz_datasheet.pdf

	Table of Contents
	List of Figures
	List Of Abbreviations
	Introduction
	Wireless Sensor Networks, a brief review
	Prior art in the field

	Hardware
	Node specifications
	MCU
	Radio module
	Printed Circuit Board Design

	Extension Board (XTboard)
	Description
	Design Constraints
	How to use the XTboard

	Point to Point Communication and CSMA/CA Middleware
	Reliable Data Transfer
	Protocol Description
	How to use Reliable Data Transfer

	Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA)
	Protocol Description
	How to use CSMA/CA

	Over The Air Programmability Middleware
	Important OTAP Definitions
	In system programmable Flash memory
	Compilation and download process
	Intel Hex Code File
	STARTUP.A51 file
	XXXX.M51 file
	Interrupt vectors

	Middleware developed
	Bootloader
	User application
	Interrupt pseudo-vector
	Gateway Firmware Updater

	How to use Over The Air Programming
	Files needed and their description
	Setting up the application to be bootload-able
	Setting up and Installing the bootloader
	Using master firmware updater to program over the air
	Over The Air Programmed ``Blinky" Demo (``Hello World" example)

	Demos and applications
	Application Description
	Network debugging tool

	Conclusion and future/ongoing work
	Future/Ongoing Work
	Challenges during development
	Conclusion

	Gateway Code
	Blinky code
	Demo codes
	LED Blinking
	Relay system with direction from node 6 to 3
	Relay system with direction from node 3 to 6
	Broadcast system
	CSMA/CA system
	Demo code configuration library

	Bibliography

