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Land Classification Using Remotely Sensed Data:
Going Multi-Label

Konstantinos Karalas, Grigorios Tsagkatakis, Michalis Zervakis, and Panagiotis Tsakalides

Abstract—Obtaining an up-to-date high resolution description
of land cover is a challenging task due to the high cost and labor
intensive process of human annotation through field-studies. This
work introduces a radically novel approach for achieving this
goal by exploiting the proliferation of remote sensing satellite
imagery, allowing for the up-to-date generation of global-scale
land cover maps. We propose the application of multi-label
classification, a powerful framework in machine learning, for
inferring the complex relationships between acquired satellite
images and the spectral profiles of different types of surface
materials. Introducing a drastically different approach compared
to unsupervised spectral unmixing, we employ contemporary
ground-collected data from the European Environment Agency to
generate the label set, and multispectral images from the MODIS
sensor to generate the spectral features, under a supervised
classification framework. To validate the merits of our approach,
we present results using several state-of-the-art multi-label learn-
ing classifiers and evaluate their predictive performance with
respect to the number of annotated training examples, as well as
their capability to exploit examples from neighboring regions or
different time instances. We also demonstrate the application of
our method on hyperspectral data from the Hyperion sensor for
the urban land cover estimation of New York city. Experimental
results suggest that the proposed framework can achieve excellent
prediction accuracy, even from a limited number of diverse
training examples, surpassing state-of-the-art spectral unmixing
methods.

Index Terms—Remote sensing, pattern classification, satellite
applications, land cover, unmixing, data processing, MODIS, time
series, CORINE.

I. INTRODUCTION

LAND cover analysis aims at monitoring and mapping
the geobiophysical parameters of the Earth’s surface, a

process critical in environmental and urban sciences studying
the ever-changing evolution of our planet [1]. The charac-
terization of the natural resources and their dynamics is the
singular most important way of providing sound answers to the
greatest environmental concerns of humanity today, including
climate change, biodiversity loss, as well as pollution of water,
soil and air. These vital needs mandate an increased effort in
creating accurate and timely high spatial resolution land cover
maps. Despite the urgency, such endeavors are hindered by
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various constraints, the most prominent of which is the labor-
intensive manual process of collecting ground-based data from
field surveys. To that end, remote sensing systems represent a
major resource for monitoring global-scale variations in land
cover [2], where high resolution imaging sensors retrieving
optical, radar, multispectral, and hyperspectral data, are being
employed to achieve this demanding objective.

During the remote sensing mapping procedure, a classifi-
cation technique has to be applied in order to annotate the
acquired pixels with additional metadata. In typical satellite
image classification [3], especially in situations where multiple
spectral bands are acquired, each pixel is restricted in its
characterization to a single class from a set of two or more
mutually exclusive classes [4]. Unfortunately, this approach
is guided by an assumption that is often violated in real-life
scenarios where airborne and spaceborne imagery pixels are
simultaneously characterized by multiple classes/labels. This is
due to the mixing of multiple signals, a phenomenon attributed
to the physical properties of light, the interactions of photons
with matter and the atmosphere, and the characteristics of the
acquisition process [5]. Consequently, single class assignment
is unrealistic and can lead to map ambiguities.

State-of-the-art methods try to address this problem by a
process known as spectral unmixing [6], which is able to
distinguish different materials contributing to a pixel. Despite
the importance of the unmixing methods, the majority of the
proposed approaches rely on extremely limited and outdated
hand-labeled datasets, such as the Cuprite mining district data.
A consequence of the lack of real data is that typically one
artificially applies a theorized forward mixing process and
tests the capabilities of the proposed algorithm on performing
the inverse process [7]. The utilization of simulated/synthetic
data can provide some intuition regarding the merits of each
approach, however, it makes generalization of the behavior of
these algorithms very difficult when they are applied under
real conditions [8].

In this work, we propose a novel approach for modeling the
relations between spectral pixels and ground characteristics
through the introduction of multi-label learning [9], a pow-
erful supervised machine learning paradigm. Departing from
traditional single-label classification, in multi-label learning
each sample is associated with multiple labels simultaneously.
More importantly, the labels are also ranked according to their
relevance to the given sample [10], a premise that is appealing
for remote sensing applications.

We claim that multi-label learning can provide valuable
information on remotely sensed data, especially in the case
of land cover estimation, where the heterogeneity of different
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Fig. 1: Visual illustration of the multi-label classification process with remotely sensed data. A multi-label training set is
generated by annotating multispectral satellite imagery with ground-sampled labels at higher spatial resolutions. Up-to-date
land cover predictions are made through the use of multi-label classifiers that produce “multi-label confidence maps” encoding
the presence of specific types of land cover.

regions introduces significant mixing of the corresponding
signals. Compared to typical spectral unmixing, the proposed
multi-label approach offers numerous advantages. In multi-
label learning, one does not have to assume prior generating
processes, in contrast to unmixing algorithms which rely on
the expected type of mixing [11] and on the presence of pixels
containing a single material, an assumption that is neither
trivial nor universal. Moreover, multi-label classification em-
ploys a wide range of performance evaluation measures [10]
which can provide a detailed characterization of the procedure
from various viewpoints, whereas unmixing, being in principle
an unsupervised procedure, has a limited number of well
established performance quantification metrics and largely
relies on the visual interpretation of abundance maps. Finally,
the multi-label community has recognized that exploiting the
dependencies between related labels and samples during the
classification process is critical in order to improve prediction
performance [12]. Thus, most of the state-of-the-art algorithms
take into account such correlations, typically implicitly, in
contrast to unmixing methods. All in all, multi-label classi-
fication can be thought as an alternative model to single-label
classification for remotely sensed data, while in parallel it can
provide supplementary solutions to the tasks of unmixing.

II. REASSESSING SATELLITE IMAGE CLASSIFICATION

Interestingly, there is a plethora of large unlabeled remote
sensing datasets which remain unexploited, an issue which has
fueled a lot of research around the identification of the optimal
ways to utilize such data. One main obstacle is the problem
of scale incompatibility. Whereas field-based measurements
can be conducted at meter scales, distance to the ground and
motion of the moving platforms are directly responsible for
the considerably lower spatial resolution of remote sensing
imagery. This spatial scale incompatibility between field-based
and satellite-based sampling inevitably hinders the exploitation
of the acquired measurements. On the other hand, despite

their lower resolution, airborne and spaceborne platforms can
provide imagery at significantly high temporal sampling rates,
as more and more of these platforms are in flight and in orbit
around the Earth.

Our proposed scheme, based on a multi-label learning
concept, manages to jointly model ground-based land cover
data and multispectral satellite imagery of different spatial
resolutions into composite useful representations. This way,
we provide a genuine answer to the scale incompatibility
problem which arises naturally through the sampling proce-
dure. More specifically, we combine data from the CORINE
Land Cover (CLC) maps of 2000 and 2006 compiled by
European Environment Agency (EEA) [13] at 100m2 spatial
resolution, corresponding to the European environmental land-
scape annotated by experts, with satellite data products from
the MODIS database [14] at 500m2 spatial resolution. Due
to this difference in scale, each multispectral pixel may be
associated with multiple labels, leading to the case of multi-
label annotation.

The multi-label learning framework has attracted consid-
erable attention in the literature over the last decade due to
its numerous real-world applications [15]. Traditionally, it is
applied in text [16], audio [17] and image classification [18],
where a document could belong to several topics, a music
song could fit to different genres, and an image could be
annotated by many tags, respectively. One of the main chal-
lenges in multi-label learning is how to effectively utilize the
correlations among different labels during classification [12].
In order to conceptually understand the significance of label
dependencies, one can think of two images with a blue back-
ground depicting a ship and an airplane. Distinguishing these
two images based solely on the color features is a challenging
task for a classifier, since both contain large regions with blue
color. However, if the system is confident enough that the
image should be annotated with the “airplane” label, then it
is more likely that the blue regions of the image should be
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annotated with “sky”, rather than “sea”.
According to the proposed learning approach, the output

of our (software) system corresponds to the predicted labels
of a testing area together with their ranking, combined in
an informative visualization graph termed “the multi-label
confidence map”. A high level overview of our proposed
learning model is depicted in Fig. 1. In a nutshell, the key
contributions of the proposed system are the following:

• the formulation of an efficient approach for the combina-
tion of high spatial resolution land cover data with low
spatial resolution satellite images.

• the development of an architecture capable of using up-
to-date remote sensing data and produce land cover maps
with minimal labor-intensive hand-operated labeling.

• the systematic evaluation of state-of-the-art multi-label
classification approaches on a novel and highly complex
dataset.

• potential use of alternative modalities for extending the
scheme to various sources of data, in addition to multi-
spectral and land cover examined mainly in this work.

To the best of our knowledge, this is the first work which
applies a multi-label classification scheme in remote sensing
data, an approach that can effectively address the issues that
naturally arise due to the multiple scales of the data, without
requiring the explicit and often unrealistic modeling of the
underlying generative processes. A key benefit of our method
is the generation of accurate and up-to-date high resolution
land cover maps, obtained through a new labeled dataset
composed of freely available real data which can leverage the
abundance of satellite imagery. The complete dataset will be
available online.

The rest of this paper is structured as follows. Section III
provides an overview of the related state-of-the-art. Section IV
presents the multi-label classification methods considered in
this work, whereas Section V exposes the datasets that are
employed together with the experimental setup and the eval-
uation metrics. Section VI reports the experimental results,
while conclusions and extensions of this work are presented
in Section VII.

III. STATE-OF-THE-ART

A. Remote Sensing Mapping and Classification

Since the 90’s, satellite data have been extensively used for
land cover mapping and classification. Land cover datasets
have gained considerable attention since they provide a crit-
ical input for ecological and socioeconomic models at local,
regional, and global scale. The most established such datasets
include the Global Land Cover 2000, the GlobCover, and
the MODIS land cover product which provide a global map-
ping [19], whereas the CORINE project [20] encompasses
data for the European continent. Each dataset is prepared
using different sources, classification algorithms, methodolo-
gies or even spatial resolution, leading in many cases to
areas of uncertainty [21]. All of the above datasets have
been investigated with a plethora of typical [22] as well as
more sophisticated classification methods [23]. Notable among

them, Support Vector Machines (SVM) exhibit very good clas-
sification performance of airborne and satellite imagery with
limited training dataset, especially by incorporating composite
kernels [24].

Apart from the learning algorithms, considering the sensors
that are employed in the process is also of crucial importance
for the quality of the features and thus the construction of
the land cover maps and classification. There are two main
categories of optical remote sensing systems: multispectral
imaging devices which typically acquire 5 to 20 spectral
bands, and hyperspectral ones which can acquire hundreds
of spectral bands. Nevertheless, it has to be underlined that
except for spectral information, the spatial, temporal as well
as radiometric resolution properties of the sensor determine
dominantly the success of classification [25]. Note that a
higher spatial resolution generally implies a smaller coverage
area of the system [26].

One of the first sensors that provided multispectral satellite
data at a large scale was the NOAA’s AVHRR instrument,
which triggered many studies on land cover discrimina-
tion [27]. More recent and broadly used medium resolution
remote sensing systems include PROBA-V on SPOT, TM
and ETM+ on Landsat, and MODIS onboard Terra and Aqua
satellites [14]. In order to compensate for the coarse resolution
provided by these multispectral instruments, the use of time
evolution of surface reflectance (time series) has proven to be
valuable and thus it is adopted in most relevant studies [28].
On the opposite side, the most explored hyperspectral remote
sensing scenes which are appropriate for supervised classifi-
cation (containing ground-truth tables) were gathered by the
AVIRIS (e.g., Indian Pines, Salinas Valley, Kennedy Space
Center) and the ROSIS (e.g., Pavia Center, Pavia University)
airborne sensors, which generate 224 and 115 contiguous
spectral bands, respectively [29].

B. Spectral Unmixing

Under normal operating conditions, in remote sensing imag-
ing systems each pixel (spectral vector) captures and encodes
a multitude of signals. More precisely, on one hand nonlinear
mixing of signals occurs when the light scattered by multiple
materials in the scene is reflected of additional objects, as well
as when two surrounding materials are homogeneously mixed.
On the other hand, even in the ideal case where the incident
light interacts with a single material, linear mixing occurs due
to the instrumentation and various sources of noise [11].

Given the mixing of signals, there is a compelling need
for a process that can separate the pixel spectra into a
collection of pure materials, called endmembers. Spectral
unmixing [6] aims at calculating the number of the end-
members, distinguishing their spectral signatures, and estimat-
ing their fractional abundances (i.e., the proportion of each
endmember’s presence) in each pixel [11]. Typical spectral
unmixing methods introduce certain assumptions regarding
the mixing process, where the Linear Mixing Model (LMM),
despite its simplicity, has been very successful in this context.
Furthermore, due to the physical aspects of the data acquisition
process, the unknown fractional abundance vector for a given
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pixel is assumed to adhere to the Abundance Non-negativity
Constraint and the Abundance Sum-to-one Constraint.

In order to decompose a mixed pixel spectrum, there exist
two major classes of endmember extraction algorithms: the
geometrical and the statistical. The geometrical approaches
exploit the fact that mixed pixels lie inside a simplex. They
are further divided into two subcategories: the pure pixel
based, which assume that there is at least one pure pixel
per endemember in the training data, e.g., N-FINDR [30] and
Vertex Component Analysis (VCA) [31], and the minimum
volume based, which do not introduce such a prerequisite but
seek to minimize the volume of the simplex, e.g. Simplex
Identification via Split Augmented Lagrangian (SISAL) [32].
In the statistical methods, the abundance fractions are modeled
as random variables and the spectral unmixing is formulated as
a statistical inference problem. These include the Independent
Component Analysis, which has been criticized due to the fact
that the abundance fractions associated to each pixel are not
statistically independent [33], and Bayesian approaches [34],
which have a high computational complexity.

The abundance estimation part comprises the last step of
the unmixing process. It can be solved via classical convex
optimization methods, such as the Constrained Least Squares,
which in this context minimizes the total squared error under
the abundance non-negativity constraint, as well as the Fully
Constrained Least Squares, which adds the abundance sum-
to-one constraint to the constrained least squares problem.
Meanwhile, sparse regression approaches have become popu-
lar, such as the the Sparse Unmixing by variable Splitting and
Augmented Lagrangian (SUnSAL) [35], where sparse linear
mixtures of spectra are investigated in a fashion similar to
that of Compressed Sensing [36]. More recently, effort has
been given to study nonlinear mixing models in order to
handle specific kinds of nonlinearities, such as the Polynomial
Post-Nonlinear Mixing Model (PPNMM) and its associated
unmixing algorithm based on the subgradient method proposed
in [37].

IV. MULTI-LABEL CLASSIFICATION

Intense research by the machine learning community has
produced a large number of multi-label classification ap-
proaches, e.g., [9], [10]. Existing approaches can be broadly
divided into three categories: problem transformation, algo-
rithm adaptation, and ensemble methods [38].

The intuition underlying problem transformation methods,
is to decompose the original multi-label learning problem
into a set of smaller and easier-to-learn binary classification
problems to obtain a solution through well-established learn-
ing architectures. On the other hand, algorithm adaptation
approaches adjust their internal structure in order to directly
tackle multi-label data by employing a type of problem trans-
formation. Representative techniques which have been adapted
for the multi-label case include SVM [39], Boosting [16],
Decision Trees (DT) [40], k-Nearest Neighbors (kNN) [41],
and Artificial Neural Networks [42]. Ensemble methods have
appeared more recently and are deployed on top of problem
transformation or algorithm adaptation methods as wrappers,

improving their generalization ability by gathering knowledge
from multiple components [43]. According to this paradigm,
multiple base learners are combined during the training phase
to construct an ensemble, while a new instance is classified
by integrating the outputs of single-label classifiers.

In our formulation, we assume a multi-label training set
D =

{
(xi, Yi) | i = 1, ... , n

}
, where Yi is the actual labelset

of the i-th example, and L =
{
λj | j = 1, ... ,m

}
is the

set of all labels. For each unseen instance x, we define Zx

as its predicted set of labels, and rx(λ) as the associated
ordered listing (rank) for label λ. The objective of multi-label
classification is to estimate a set of decision rules H that
maximize the probability of H(x) = Zx for each example
x. Based on this notation, in the following section we discuss
key representative examples from each category.

A. Problem Transformation Methods

Binary Relevance (BR) [44] is one of the earliest approaches
in multi-label classification [9], where a single-label binary
classifier is trained independently for each label, regardless of
the rest of the labels (one-versus-all strategy). The method
produces the union of the labels predicted by the binary
classifiers, with the capability of ranking based on the classifier
output scores. More specifically, in the BR approach, one trains
a set of m classifiers such that:

HBR =
{
hj | hj(x)→ λj ∈ {0, 1}, j = 1, ... ,m

}
. (1)

BR is a straightforward approach for handling multi-label
problems and is thus typically employed as a baseline method.
The theoretical motivation and intuitive nature of BR are
enhanced by additional attractive characteristics, such as mod-
erate computational complexity (polynomial w.r.t. the number
of labels), the ability to optimize several loss functions, and
the potential of parallel execution [45]. An inherent drawback
of the BR approach is the lack of consideration for label
correlations which can lead to under or over estimation of
the active labels, or the identification of multiple labels that
never co-occur [46].

Another fundamental yet less extensively used transforma-
tion method is Label Powerset (LP) [44], where each existing
combination of labels in the training set is considered as a pos-
sible label for the newly transformed multi-class classification
problem. This way, the number of distinct mutually exclusive
classes is upper bounded by f = min(n, 2m), however, in
practice it is much smaller [47]. For the classification of a
new instance, the single-label classifier of LP outputs the most
probable class, which can be now translated to a set of labels:

HLP =
{
hj | hj(x)→ λj ∈ {0, 1}, j = 1, ... , f

}
. (2)

In contrast to BR, LP methods can capture inter-relationships
among labels, at the cost of significantly higher computational
complexity, which scales exponentially with the number of
labels. Therefore LP is challenged in domains with large
values of n and m. Furthermore, although this method is good
at exact matches, it is prone to overfitting since it can only
model labelsets which have been previously observed in the
training set [48].
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One can see that this type of transformations are univer-
sally applicable, since any traditional single-label classifier
(DT, SVM, Naive Bayes, etc.) can be employed in order
to obtain multi-label predictions. The overall complexity of
classification is heavily dependent on the underlying single-
label classification algorithm and the number of distinct label
collections. Due to these properties, problem transformation
methods are very attractive in terms of both scalability and
flexibility, while they remain competitive with state-of-the-art
methods [46].

B. Algorithm Adaptation Methods

The Multi-Label k-Nearest Neighbors (ML-kNN) method
[41] constitutes an adaptation of the kNN algorithm for multi-
label data following a Bayesian approach. It is a lazy learning
algorithm which is based on retrieving the k nearest neighbors
in the training set and then counting the number of neighbors
belonging to each class (i.e., a random variable W ) [49].
Based on prior and posterior probabilities for the frequency of
each label within these neighboring instances, it utilizes the
Maximum a Posteriori (MAP) principle in order to determine
the labelset for the unseen sample x. The posterior probability
of label λj ∈ L is thus given by:

P
(
λj ∈ Zx |W = w

)
=

P(W=w | λj∈Zx)P(λj∈Zx)
P (W=w) . (3)

Then, for each λj , ML-kNN builds a probabilistic classifier
hj(·) applying the rule: hj(x) ={

1 P
(
λj ∈ Zx |W = w

)
> P

(
λj /∈ Zx |W = w

)
0 otherwise .

(4)

A classifier’s output of 1 indicates that λj is active for x,
while 0 indicates the opposite. Despite the fact that ML-
kNN inherits merits from both lazy learning and Bayesian
reasoning (e.g., adaptive decision boundary due to the varying
neighbors identified for each test instance), it is ignorant of
the possible correlations between labels. Thus it is essentially
a BR method which learns a single classifier hj(·) for each
label, independently from the others [10].

The Instance-Based Logistic Regression (IBLR) method
[50] is also derived from the family of kNN inspired algo-
rithms. The core idea, is to consider the label information
in the neighborhood of a query as “extra features” of that
query, and then to treat instance-based learning as a logistic
regression problem. For each label λj , the algorithm builds a
logistic regression classifier hj(·) according to the model:

log

(
π
(j)

x′

1−π(j)

x′

)
= ω

(j)
x′ +

m∑
l=1

α
(j)
l · ω

(j)
+l (x), (5)

where π(j)
x′ denotes the (posterior) probability that λj ∈ L is

relevant for x′, ω(j)
x′ is a bias term, α(j)

l denotes a coefficient
indicating to what extent the relevance of λj is influenced by
the relevance of λl, and ω(j)

+l (x) is a summary of the presence
of label λl in the neighborhood of x′, Nk(x′), defined by:

ω
(j)
+l (x

′) =
∑

x∈Nk(x′)

hl (x) . (6)

Here, hl(x) is 1 if and only if λl is associated with x,
and 0 otherwise. The main advantage of IBLR over ML-
kNN is that the former attempts to take into account label
inter-dependencies arising by the estimation of regression
coefficients.

C. Ensemble Methods

Ensemble of Classifier Chains (ECC) [46] has established
itself as a powerful learning technique with modest compu-
tational complexity. It is based on the successful Classifier
Chains (CC) model [46], which involves the training of m
binary classifiers, similar to BR methods. However, unlike the
naive BR scheme, in CC binary classifiers are linked along
a “chain” so that each classifier is built upon the preceding
ones. In particular, during the training phase, CC enhances the
feature space of each link in the chain with binary features
from ground-truth labeling. Since true labels are not known
during testing, CC augments the feature vector by all prior BR
predictions. Formally, the classification process begins with h1

which determines P (λ1 | x), and propagates along the chain
for every following classifier h2, ... , hj predicting:

P (λj | x, λ1, ... , λj−1)→ λj ∈ {0, 1}, j = 2, ... ,m . (7)

The binary feature vector (λ1, ... , λm) represents the pre-
dicted label set of x, Zx. Despite the incorporation of label
information, the prediction accuracy is heavily dependent
on the ordering of the labels, since only one direction of
dependency between two labels is captured. To overcome this
limitation, ECC extends this approach by constructing multiple
CC classifiers with random permutations over the label space.
Hence, each CC model is likely to be unique and able to
give different multi-label predictions, while a good label order
is not mandatory. More specifically, to obtain the output of
ECC, a generic voting scheme is applied, where the sum of
the predictions is calculated per label, and then a threshold ts
is applied to select the relevant labels, such that λj ≥ ts.

Another effective ensemble-based architecture for solving
multi-label classification tasks is the Random k-Labelsets
(RAkEL) [47], which embodies LP classifiers as base mem-
bers. The RAkEL system tries to estimate correlations between
the labels by training each LP classifier of the ensemble with
a small randomly selected (without replacement) k-labelset
(i.e., a size-k subset of the set of labels). This randomness
is of primary importance in order to guarantee computational
efficiency. For a classification of a new instance, each model
provides binary predictions for each label λj in the corre-
sponding k-labelset. Let Ej be the mean of these predictions
for each label λj ∈ L. Then, the output is positive for a given
label, if the average decision is greater than a 0.5 threshold:

Zx =
{
λj | Ej > 0.5, 1 ≤ j ≤ m

}
. (8)

In other words, when the actual number of votes exceeds half
of the maximum number of votes that λj receives from the
ensemble, then it is regarded to be relevant (majority voting
rule). Although RAkEL models label correlations effectively
and overcomes the aforementioned disadvantages of the LP
transformation, the random selection of subsets is likely to
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negatively affect the ensemble’s performance, since the chosen
subsets may not cover all labels or inter-label correlations [43].

V. DATA AND EVALUATION DESCRIPTION

In this Section, we present the specific sources of data, both
satellite- and ground-based, that are used in our analysis. One
of the key contributions of this work lies in employing real
imaging data provided by the MODIS sensor and real ground-
truth land cover data from the EEA. Furthermore, we provide
a detailed discussion of the various evaluation metrics that
are adopted for the performance quantification of multi-label
classification algorithms.

A. MODIS data - Obtaining features

NASA’s MODIS Earth Observation System is considered
one of the most valuable sources of remote sensing data, aimed
at monitoring and predicting environmental dynamics. The
MODIS sensor can achieve global coverage with high tem-
poral resolution, scanning the entire Earth’s surface (aboard
the Terra and Aqua satellites) in 1− 2 days, from an altitude
of 705km. MODIS acquires data in 36 spectral bands ranging
from 400−14400nm, where the first two bands have a spatial
resolution (pixel size at nadir) of 250m2, bands 3 to 7 of
500m2, and the rest bands at 1km2 approximately. The sensor
provides 12 bits radiometric sensitivity and achieves a swath of
2330km (across track) by 10km (along track at nadir). MODIS
data are open-access and continuously updated since 2000.

The MODIS land native product files distributed by the
Land Processes Distributed Active Archive Center1 come in
the Hierarchical Data Format (HDF) and in Sinusoidal (SIN)
projection. As a result, MODIS data are grouped in 460 equal
non-overlapping spatial tiles starting at (0,0) in the upper left
corner and proceeding to the right (horizontal) and downward
(vertical) until the lower right corner at (35,17). Each one
of them captures approximately 1200× 1200km of real land.
Nevertheless, SIN projection is not widely used and thus a
common geographic projection is needed for our study. For
this reason, we utilized the MODIS Reprojection Tool2 (MRT),
which provides a basic set of routines for transformation of
MODIS imagery into standard geographic projections. This
way, we re-sampled the original data and changed the pro-
jection to Universal Transverse Mercator (UTM) to become
compatible with the global coordinate system (WGS 84 da-
tum), which is also adopted by the Global Positioning System
(GPS). The area of our interest, shown in Fig. 2, comprises of
a central portion of the European continent, namely h19v04
(without portions of Ukraine and Moldova) and h18v04 image
tiles.

In order to benefit from the high temporal resolution obser-
vations of MODIS, while simultaneously mitigating the low
spatial resolution, we consider annual time series to monitor
the best possible density and intensity of green vegetation
growth. Our model takes into account a well known mon-
itoring indicator for vegetation health and dynamics, namely

1https://lpdaac.usgs.gov/
2https://lpdaac.usgs.gov/tools/modis reprojection tool

Fig. 2: Geographic distribution of MODIS h18v04 and h19v04
tiles. The h18v04 region captures South-Central Europe, while
h19v04 a large part of the Balkans, capturing a diverse set of
land cover types.

the Normalized Difference Vegetation Index (NDVI) [51] from
the Level-3 product MOD13A1, collection 5 (500m2 spatial
resolution, 16 days temporal granularity). It is empirically
related to the reflectance measurements in the red and Near
InfraRed (NIR) portion of the spectrum through:

NDVI =
ρNIR − ρred

ρNIR + ρred
. (9)

Due to the high discriminating capabilities of NIR versus
visible wavelength, NDVI is more sensitive than a single
wavelength and able to separate very well the living from
stressed or dead plantation. Therefore, NDVI carries valuable
information regarding surface properties and can effectively
quantify the “floral” content of an area, i.e., the chlorophyll
concentrations. Furthermore, as a ratio, it has the advantage
of minimizing different types of noise (variations in irradi-
ance, clouds, view angles, atmospheric attenuation and even
calibration), but it also leads to insensitivities with respect to
vegetation variations over certain land cover conditions [52].
NDVI is designed to standardize the vegetation indices values
between −1 and +1, where higher values indicate more
photosynthetically active land cover types. We collected ap-
proximately 2 measurements for a ten-month period (March
until December) leading to 19 NDVI values/features. For
the final data calibration, we refer to the quality assurance
metadata [53] supplied with the MOD13A1 product in order to
assemble only reliable pixels (i.e., exclude unprocessed data).

Land Surface Temperature (LST) has been proved to play a
significant role in detecting several climatic, hydrological, eco-
logical, and biogeochemical changes [14], which are crucial
parameters for land cover estimation. LST observations are
retrieved from the Thermal InfraRed (TIR) bands and are able
to combine the results of all surface–atmosphere interactions
and corresponding energy fluxes, measuring the additive com-
positions of TIR from background soils and overlying vegeta-
tion canopy. This way, whereas NDVI measurements estimate
efficiently the vegetation cover, LST is more applicable for
targets that are not chlorophyll sensitive [54]. The LST data
are included in the Level-3 product MOD11A2, which stores
the average values during an 8 day period on a 1km2 SIN
grid, leading to 38 values for the period March-December. In
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order to obtain the same spatial resolution with MOD13A1,
we perform an oversampling to 500m2 spatial resolution. As
a result, we enhance the previously selected 19 features by
adding measurements (feature level fusion) related to the LST
daytime, extending the number of features to 57.

B. CORINE Land Cover data - Obtaining Labels

The CLC inventory was initiated in 1990 and has been
updated in 2000 and 2006, while the latest version of the 2012
update is still under production. CLC consists of 44 classes,
including artificial surfaces, agricultural and forest areas, wet-
lands, and water bodies overall. In this work, we utilize data
from 20003 and 2006 at 100m2 resolution (Version 17). The
QGIS4 software is employed in order to transform these raster-
based Geographic Information Systems (GIS) measurements
to WGS 84 datum in order to become compatible with MODIS
data, and subsequently extract the regions corresponding to the
h19v04 and the h18v04 tiles.

Fig. 3: CLC map and legend for the h19v04 tile of 2000
(CLC2000).

In order to construct the multi-label dataset, the CLC labels
matrix was divided into non-overlapping blocks using a 5× 5
grid, since the MODIS pixel size is approximately 25 times
the size of a CORINE pixel. As a result, a binary vector per
sample is produced, where a value of one indicates that a
label is present while a value of zero denotes that a label is
absent. We select 20 labels as depicted in Table I and exclude
examples composed of only one label in order to acquire a
challenging scenario for the multi-label learning algorithms.

It is important to highlight that not all multi-label datasets
are equal, even if they have the same number of instances
or labels. Therefore, to obtain a better understanding of the
characteristics of our dataset, we estimated certain statistical
metrics [9]. Let S be the multi-label dataset consisting of |s|
multi-label examples (xi, Yi), i = 1, ... , |s|. Label Cardinality
(LC) calculates the average number of class labels associated
with each instance in the dataset: LC(S) = 1

|s|
∑|s|
i=1 |Yi|. LC

is independent of the number of labels m and it is used to
denote the number of alternative labels that characterize the
|s| examples of a multi-label dataset. The larger the value
of LC, the more difficult is to obtain good classification
performance. Besides LC, we also calculated Label Density

3http://www.eea.europa.eu/data-and-maps/data/
corine-land-cover-2000-raster-3

4http://www.qgis.org/en/site/

TABLE I: Selected ground-truth CLC labels from CORINE.

No. CLC Code Description

1 111 Continuous urban fabric
2 121 Industrial or commercial units
3 122 Road & rail networks & assoc. land
4 124 Airports
5 131 Mineral extraction sites
6 132 Dump sites
7 133 Construction sites
8 141 Green urban areas
9 142 Sport and leisure facilities
10 212 Permanently irrigated land
11 213 Rice fields
12 223 Olive groves
13 241 Annual crops assoc. with perm. crops
14 322 Moors and heathland
15 331 Beaches, dunes, sands
16 332 Bare rocks
17 411 Inland marshes
18 412 Peat bogs
19 421 Salt marshes
20 521 Coastal lagoons

(LD), which is the cardinality normalized by the number of
labels m: LD(S) = 1

|s|
∑|s|
i=1

|Yi|
m . LD quantifies how dense (or

sparse) the multi-label dataset is. Moreover, we consider the
Distinct Labelsets (DL) metric, which expresses the number of
different label combinations observed in the dataset and it is
of key importance for methods that operate on label subsets:
DL(S) =

∣∣{Yi | ∃xi : (xi, Yi) ∈ S}
∣∣ , i = 1, ... , |s|. Table II

summarizes the aforementioned statistics for the h19v04 tile of
CLC2000 including some benchmark multi-label datasets from
a variety of domains along with their corresponding statistics.

TABLE II: Statistical characteristics of the proposed and other
publicly available multi-label datasets.

Name (domain) |s| m LC LD DL

land cover (rem. sensing) 12291 20 2.037 0.102 246
yeast [39] (biology) 2417 14 4.237 0.303 198
scene [18] (image) 2407 6 1.074 0.179 15
bibtex [55] (text) 7395 159 2.402 0.015 2856
emotions [17] (music) 593 6 1.869 0.311 27

C. Experimental and evaluation settings

In our analysis, we consider the algorithmic implementa-
tions included in the MULAN5 Java library, an open source
platform for the evaluation of multi-label algorithms that
works on top of the WEKA6 framework. We make an initial
split of the training to testing examples in the order of 7 : 3,
although we are particularly interested in classification with
very limited training examples, since obtaining real labeled
data is a costly process.

A multi-label classifier produces a set of predicted labels,
but many implementations first predict a score for each label,
which is then compared to a threshold to obtain the set.
Ultimately, there exist two major tasks in supervised learning
of multi-label data: multi-label classification aiming at pro-
ducing a bipartition of the labels into a relevant (positive)
and an irrelevant (negative) set, and label ranking seeking

5http://mulan.sourceforge.net/
6http://www.cs.waikato.ac.nz/ml/weka/
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to map instances to a strict order over a finite set of pre-
defined labels [44]. Consequently, performance evaluation is
significantly more complicated compared to the conventional
supervised single-class case and several metrics are required
in order to properly evaluate an algorithm. We assume two
major performance metric categories: example-based measures
which are calculated separately for each test example and
averaged across the test set, and label-based measures which
evaluate the system’s performance for each label separately, re-
turning the micro/macro-averaged value across all labels [10].

Formally, let T =
{

(xi, Yi) | i = 1, ... , p
}

be the multi-
label evaluation dataset. With respect to the first category of
metrics, we consider the following measures:
• Hamming Loss calculates the percentage of misclassified

example-label pairs, considering the prediction error (an
irrelevant label is predicted) and the missing error (a
relevant label is not predicted) given by:

Hamming Loss =
1

p

p∑
i=1

|Yi∆Zi|
m , (10)

where ∆ stands for the symmetric difference between the
two sets. The value is between 0 and 1, with a lower value
representing a better performance. Due to the typical
sparsity in multi-labeling, Hamming loss tends to be a
lenient metric.

• Subset Accuracy evaluates the fraction of correctly clas-
sified examples:

Subset Accuracy =
1

p

p∑
i=1

I(|Yi| = |Zi|), (11)

where I is the indicator function taking values I(true) =
1 and I(false) = 0. Subset accuracy is a strict accuracy
metric, since it classifies a sample as correct if all the
predicted labels are identical to the true set of labels.

• One-error is a ranking based metric which computes
how many examples have irrelevant top-ranked labels
according to:

One-error =
1

p

p∑
i=1

δ(arg min
λ∈L

rxi
(λ)), (12)

where δ(λ) = 1 if λ /∈ Yi and 0 otherwise.
• Coverage reports the average distance which needs to be

traversed in order to cover all the relevant labels of the
example from the ranked label list:

Coverage =
1

p

p∑
i=1

max
λ∈Yi

rxi
(λ)− 1 . (13)

• Ranking Loss evaluates the average fraction of labels
pairs that are ordered incorrectly:

Ranking Loss =
1

p

p∑
i=1

1
|Yi||Ȳi|

|Gi| , (14)

where Gi is a set equal to
{

(λ′, λ′′) : rxi(λ
′) > rxi(λ

′′)
}

for (λ′, λ′′) ∈ Yi × Ȳi. Here, Ȳi denotes the complemen-
tary set of Yi with respect to L. In other words, ranking

loss measures the ability to capture the relative order
between labels.

• Average Precision expresses the percentage of labels
ranked above a particular relevant label:

Av. Prec. =
1

p

p∑
i=1

1
|Yi|

∑
λ∈Yi

∣∣∣{λ′∈Yi:rxi
(λ′)<rxi

(λ)}
∣∣∣

rxi
(λ) .

(15)
From information retrieval, we know that the evaluation

metrics for a binary classification problem are based on the
number of True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN) test samples. Based
on the above, one can compute Precision as TP/(TP+FP),
Recall as TP/(TP+FN), and the F-Measure as the harmonic
mean between precision and recall. Extending this concept
to multi-label problems, we can derive the corresponding
quantities for each label λj calculating the micro-averaging
operation [56]: Bmicro =

B

 m∑
j=1

TPλj
,

m∑
j=1

TNλj
,

m∑
j=1

FPλj
,

m∑
j=1

FPλj

 , (16)

as well as the macro-averaging operation [56]:

Bmacro =
1

m

m∑
j=1

B(TPλj ,TNλj ,FPλj ,FNλj ), (17)

where B is one of the previous mentioned classification
metrics, and TPλj , TNλj , FPλj , FNλj is the value of TP, TN,
FP and FN after the binary evaluation for λj . Conceptually
speaking, micro-averaging gives equal weight to each example
and is an indicator of large classes, whereas macro-averaging
to each label and gives a sense of effectiveness on small
classes [57].

Finally, we consider the Area Under the Curve (AUC)
metric which is calculated from the Receiver Operating Char-
acteristic (ROC) curve. In case all annotations contain con-
fidence values, the AUC score describes the overall qual-
ity of performance, independently of individual threshold
configurations regarding specific trade-offs between TP and
FP [58]. More precisely, let the True Positive Rate (TPR) be
defined as TP/(TP+FP) and the False Positive Rate (FPR) as
FP/(FP+TN). Then, each point on the ROC curve corresponds
to a pair (TPR, FPR) for one threshold, and the area under this
ROC curve is called micro-AUC, derived as:

AUCmicro =

∣∣∣{(x′,x′′,λ′,λ′′) | rx′ (λ′)≥rx′′ (λ′′),}
∣∣∣

|R+||R−| , (18)

for (x′, λ′) ∈ R+, and (x′′, λ′′) ∈ R−, where R+ ={
(xi, λ) | λ ∈ Yi, 1 ≤ i ≤ p

}
corresponds to the set of rele-

vant, and R− = {(xi, λ) | λ /∈ Yi, 1 ≤ i ≤ p} to the set of
irrelevant labels [10]. Subsequently, the macro-averaged AUC
is the average AUC of the separate ROC curves for each class
and can be defined as follows: AUCmacro =

1

m

m∑
j=1

∣∣∣{(x′,x′′) | rx′ (λj)≥rx′′ (λj),(x′,x′′)∈Zj×Z̄j}
∣∣∣

|Zj||Z̄j| , (19)

where Zj =
{
xi | λj ∈ Yi, 1 ≤ i ≤ p

}
is the set of test in-

stances with label λj ∈ L, and Z̄j = {xi |λj /∈ Yi, 1 ≤ i ≤ p}
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is its complementary set of test instances without λj ∈ L. A
value of 1 corresponds to a perfect system.

VI. EXPERIMENTAL RESULTS

In this Section, we examine the performance of each ap-
proach under the following challenging scenarios: (a) classi-
fication performance with respect to the number of training
examples; (b) classification performance when the training
data correspond to a specified geographic region and the
testing data come from a neighboring region; and (c) clas-
sification performance when the training data correspond to
a specified time instance and the testing data come from the
same location but another instance. Each experiment has its
own distinct value, whereas the objective is to evaluate the
multi-label classification framework when applied under real-
life conditions where limited training data are available.

A. Classification performance with respect to training set

The objective of the first set of experiments is to evaluate the
generalization capabilities of each learning algorithm. To that
end, we evaluate the performance of each method as a function
of the number of training examples using the NDVI and the
LST features. This is a critical parameter, since it is directly
related to the cost and manpower required for the classification
and understanding of newly acquired remotely sensed images.
We consider a varying number of training examples ranging
from 25 to 5000, averaged over 10 realizations.

We selected the C4.5 [59] DT learning algorithm as the
base-level single-label classifier in all problem transformation
and ensemble techniques, while individual parameters of each
method were instantiated according to recommendations from
the literature. In specific, the ML-kNN and IBLR algorithms
are parametrized by the size of the neighborhood, for which
we adopted the value of k = 10, while ML-kNN needs further
a smoothing parameter γ controlling the effects of priors on
the estimation, where we select a value of γ = 1 leading to
a Laplace smoothing prior [41]. For the ensemble methods,
the key parameter is the number of component classifiers
(models), whereas RAkEL also requires the definition of the
size of the labelsets. The number of models was set to 10 for
ECC, and to 2m for RAkEL with a size-3 subset.

In Fig. 4, we present the performance of multi-label clas-
sification for tiles h19v04 and h18v04 using data from the
CLC2000 inventory, where the Hamming loss and the micro-
averaged AUC associated with the BR-DT, the ML-kNN, and
the ECC-DT algorithms are presented (one algorithm from
each category). These two metrics are highly representative,
since the Hamming loss belongs to the example-based metrics
and can give us an overall intuition of the misclassified
instance-label pairs, whereas the AUC is a label-based metric
evaluating the quality of predictions for each label indepen-
dently.

One can observe that for both metrics the performance in-
creases monotonically with the gradual increase of the training
set size, with a fast rate during initial cases and then with a
slower one. These results indicate that the algorithms indeed
learn and exploit information from the training data in order to

ameliorate their predictions. Looking closer at each metric, we
observe that the performance of the three classifiers according
to the AUC is quite stable across tiles examined on the same
labels (especially for a large number of training examples),
whereas slight differences are attributed to the variation of the
intrinsic spatio-spectral characteristics of each tile. Analogous
results arise when considering the Hamming loss metric as
well. In this case, we further observe that when a large number
of training examples is employed, BR-DT outperforms ML-
kNN, indicating that in some cases “letting the data speak
for themselves” can allow naive algorithms to beat more
complex approaches. Overall, ECC-DT outperforms the other
two algorithms in this experimental setup, partly due to its
internal mechanisms that benefit from label dependencies. This
behavior has been also observed in other scenarios of multi-
label classification [38].

Considering the h19v04 tile of CLC2000 as our reference
region, an overview of the performance is presented in Table
III, where we have included all the evaluation metrics. For
the evaluation of experiments, we performed 10 different 10-
fold cross validation experiments and report the average results
over these 100 executions. Considering the problem transfor-
mation methods, we observe that BR-DT is better than LP-DT
in all exampled-based metrics except subset accuracy, which is
notably high among all methods, suggesting that LP-DT is able
to faithfully capture the underlying statistics of the labels. For
the label-based metrics, the results are more balanced, since
BR-DT achieves superior precision and F-measure, whereas
LP-DT is slightly better with respect to AUC. Regarding
the algorithm adaptation methods, we observe that IBLR has
a small lead, but overall ML-kNN and IBLR are on equal
footing, since the observed variation in prediction accuracy
manifested in most of the evaluation metrics is of limited
statistical significance. Last, analyzing the ensemble methods,
RAkEL-DT has a clear advantage when it comes to metrics
such as subset accuracy and recall, however, ECC-DT achieves
superior performance for precision and AUC.

In general, one can argue that the ensemble methods con-
firmed their reputation as one of the most powerful class
of multi-label classification algorithms, since they achieve
a better and more robust performance compared to other
methods. On the opposite, the higher performance comes at
a significant higher computational cost, as it is shown in the
runtimes reported in Table III on a typical workstation. Be-
tween the remaining two categories, i.e., algorithm adaptation
and problem transformation methods, results are balanced and
largely dependent on the metric which one seeks to optimize.

To better demonstrate the behavior of each algorithm and
how differences in error metrics are perceived, we introduce
the “multi-label confidence map”. Each row of the map corre-
sponds to a specific label (CLC code), while columns encode
particular examples, i.e, spatial locations. Fig. 5 presents the
ground-truth multi-label map for h19v04 of CLC2000. This
image is a binary matrix where a value of 1 indicates the
presence of a specific label, while 0 denotes the absence of
the label. For instance, considering the first example (column),
labels 1 and 8 are active, indicating that CLC labels with codes
111 and 141 exist in this pixel.
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(c) Hamming Loss for h18v04 tile of CLC2000
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(d) Micro AUC for h18v04 tile of CLC2000

Fig. 4: Classification performance w.r.t. the number of training examples for two different tiles, where the complex interactions
between training data size and classification performance are illustrated. In general, the performance gains are more dramatic
when increasing smaller sets of training samples, while the benefits of introducing more training data are moderate.
TABLE III: Performance (mean ± std) of each multi-label learning algorithm over 10 different 10-fold cross validation
experiments. For each metric, ↑ indicates “higher the better”, whereas ↓ indicates “lower the better”. Ensemble methods
perform overall better than problem transformation and algorithm adaptation techniques.

Measure
Multi-Label Learning Algorithm

BR-DT LP-DT ML-kNN IBLR RAkEL-DT ECC-DT

Hamming Loss ↓ 0.044± 0.002 0.047± 0.002 0.067± 0.001 0.067± 0.001 0.030± 0.002 0.033± 0.001
Subset Accuracy ↑ 0.496± 0.013 0.626± 0.015 0.305± 0.010 0.318± 0.014 0.638± 0.014 0.597± 0.013
One-error ↓ 0.189± 0.013 0.289± 0.015 0.269± 0.015 0.268± 0.012 0.098± 0.010 0.108± 0.009
Coverage ↓ 4.793± 0.236 5.743± 0.176 2.987± 0.073 3.008± 0.054 2.436± 0.179 1.939± 0.075
Ranking Loss ↓ 0.120± 0.008 0.177± 0.008 0.072± 0.004 0.073± 0.003 0.044± 0.006 0.030± 0.002
Average Precision ↑ 0.802± 0.010 0.742± 0.012 0.762± 0.009 0.763± 0.006 0.900± 0.008 0.896± 0.005

Macro Precision ↑ 0.770± 0.013 0.731± 0.015 0.679± 0.033 0.669± 0.019 0.874± 0.010 0.897± 0.015
Macro Recall ↑ 0.724± 0.016 0.729± 0.013 0.419± 0.008 0.451± 0.016 0.772± 0.011 0.692± 0.011
Macro F-Measure ↑ 0.743± 0.013 0.727± 0.012 0.483± 0.012 0.520± 0.016 0.814± 0.009 0.766± 0.011
Macro AUC ↑ 0.864± 0.007 0.878± 0.010 0.913± 0.005 0.919± 0.005 0.953± 0.005 0.968± 0.003
Micro Precision ↑ 0.795± 0.009 0.768± 0.013 0.746± 0.014 0.735± 0.010 0.881± 0.009 0.897± 0.006
Micro Recall ↑ 0.768± 0.011 0.766± 0.012 0.516± 0.013 0.531± 0.009 0.820± 0.011 0.761± 0.011
Micro F-Measure ↑ 0.782± 0.009 0.767± 0.012 0.610± 0.009 0.616± 0.009 0.850± 0.009 0.823± 0.008
Micro AUC ↑ 0.882± 0.008 0.891± 0.008 0.942± 0.003 0.940± 0.002 0.967± 0.004 0.980± 0.002

Training Time (sec) 48.19± 1.800 19.46± 0.564 37.40± 2.628 49.03± 1.855 243.3± 5.418 761.8± 134.8
Testing Time (sec) 0.436± 0.035 0.378± 0.094 4.220± 0.333 4.730± 0.472 0.507± 0.058 0.935± 0.178

In Figures 6 and 7, we visualize the performance of the
BR-DT, ML-kNN, and ECC-DT classifiers with the help of
the multi-label confidence map, where each pixel in the map
takes a confidence value ranging from 0 to 1 (results averaged

over 50 realizations and then scaled to [0, 1] interval). Values
closer to 0 indicate that the label is less likely to be enabled,
whereas values closer to 1 indicate that this label has a higher
probability of being active.
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Using these maps, we can visually verify the performance
due to the use of more training examples, by examining for
instance the label 2 (second row) associated with the CLC
code 121. When the algorithms utilize 128 training examples,
they assume that almost all samples have this label enabled,
something that is not in accordance with the ground-truth data
presented in Fig. 5. On the contrary, when the algorithms
use 1024 training examples, we can see that their revised
predictions become more accurate and reliable. This obser-
vation suggests that for the specified label many false positive
examples arise. False positives are taken into account by the
precision metric, where BR-DT and ECC-DT outperform ML-
kNN for this number of training examples. Another illustrative
paradigm occurs when we take into account the label 20 with
CLC code 521 (last row). In this case, we observe that the
classification algorithms cannot detect that the specified label
is active in some pixels when presented with 128 training
examples, however, the prediction improves dramatically with
1024 training examples. In other words, we have the case of
recall and false negatives, where we show that the BR-DT
and the ECC algorithms achieve almost similar performance
whereas ML-kNN exhibits a significant performance lag.

B. Classification on different spatial regions and temporal
instances

In this Section, we examine the performance of the al-
gorithms when the training examples are acquired from a
specified region at a given year, while testing takes place either
on a neighboring region, or on a different time instance. We
initially examine the classification efficiency in a neighboring
geographic region, since accurate prediction of the labels of
another region suggests that we can leverage training examples
of a particular label to evaluate its presence in unexplored loca-
tions, avoiding the high cost of hand-collecting new annotated
training examples. We consider an experimental setup where
three different types of training sets are used, namely a training
set from the same tile (h18v04), a training set from another
tile (h19v04), and a mixed training set containing all training
examples from the reference tile (h19v04) and only a few
(i.e., 1024) training examples from the target tile (h18v04).
The ECC-DT ensemble classifier was selected for this set of
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Fig. 5: Ground-truth multi-label map for h19v04 of CLC2000
corresponding to a binary matrix indicating which labels are
active for each example, i.e., spatial location. Each horizontal
line corresponds to a specific label as illustrated in Table I,
while each vertical line corresponds to a specific testing
example out of the 3687.
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Fig. 6: Multi-label confidence maps for h19v04 of CLC2000
with 128 training samples. The red boxes outline areas where
there is significant deviation between the predicted and the
ground-truth labels. They highlight that some labels in classi-
fication are more sensitive than the others.
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Fig. 7: Multi-label confidence maps for h19v04 of CLC2000
with 1024 training samples. Similar to before the red boxes
outline areas where there is significant deviation between the
predicted and the ground-truth labels. Comparing to the case
of 128 training examples shown above, we observe less errors
according to the ground-truth map in Fig. 5.

experiments.
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Fig. 8: Classification performance with respect to the amount
of training data for a tile originating from a different spatial
location using ECC-DT. The results indicate that training
using data from different spatial locations can have a dramatic
effect on performance, while exploiting a mixed training set
composed of data from both the corresponding location as well
as from a different location can achieve very high performance.

Analyzing Fig. 8, we observe that when the training and the
testing sets are associated with the same tile, a high classifi-
cation performance is achieved. Naturally, there is significant
degradation in performance when the training set is associated
to another tile. We observe that although the performance
improves initially, it soon reaches a performance plateau which
is significantly worse than when the data from the same tile
are used in both training and testing. This is where the third
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Fig. 9: Classification performance with respect to amount of
training data from a single tile at different time instances
using ECC-DT. Similar to Fig. 8, the performance significantly
improves by considering mixed training conditions.

described training set comes into play. As we can see, the
performance in mixed training conditions is quite close to the
performance achieved in the benchmark case. This behavior
suggests that one can exploit already acquired annotated data,
limiting the effort required for collecting new labeled data,
and still achieve a high classification performance.

Fig. 9 examines the predicting performance for data from
the h19v04 tile in CLC2006 under three different training sets,
namely using a training set from the same tile (h19v04) in
the same year (2006), using a training set from the same tile
(h19v04) in another year (2000), and a training set composed
of all data from the reference tile enhanced by 1024 training
examples from the target tile. In this case, the objective is
to forecast the presence/absence of specific labels in order to
understand the temporal evolution of land cover for this region.
This is an immensely important scenario, since obtaining
up-to-date field-based annotation is extremely challenging,
causing very low update rates that characterize the CLC. The
problem holds for land cover maps in general, leading to data
that are outdated at release time. Similar to the previous case,
we observe that the prediction performance when utilizing
examples from the reference tile reaches a plateau for the two
metrics, but the performance gradient is smoother when using
our proposed mixed training approach.

C. Comparison with spectral unmixing

Spectral unmixing and multi-label classification in remote
sensing can both operate under the scenario that an observed
spectral vector can be actually composed of one or more
materials (in contrast to single-label classification). Never-
theless, a direct comparison between the two methods is
very difficult for various reasons. Firstly, spectral unmixing
is an unsupervised method whereas multi-label classification
adheres to the supervised learning paradigm and strongly
utilizes the provided labels. Furthermore, the objective of
spectral unmixing is the estimation of the abundance of each
endmember in an observed spectral vector, while multi-label
classification aims at estimating a bipartition and a ranking of
all labels. With the above in mind, we proceed to the compar-

ison between spectral unmixing and multi-label classification
for real remotely sensed multispectral data. The algorithms
were supplied with a priori knowledge regarding the number
of endmembers, which is assumed to be equal to the number
of the labels m, in order to be able to compare with the
ground-truth. Moreover, in order to satisfy the sum-to-one
constraint, we convert the 1’s indicating the label existence to
probabilities that sum up to one (i.e. if two labels are present
in a pixel, we assign to the corresponding positions the value
of 0.5). The authors’ implementation with suggested settings
were used for all algorithms.
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Fig. 10: RMSE with respect to the number of examples for
h19v04 of CLC2000 over 30 realizations. The approximation
for all the examined unmixing chains improves, suggesting the
considered dataset can be used for unmixing purposes.

In order to unmix the reference tile h19v04 of CLC2000,
we initially have to decompose the measurements into a
library A ∈ Rd×m, where d is the number of bands/features
and m is the number of endmembers/labels. In this step,
three state-of-the-art algorithms are considered, namely the
N-FINDR, the VCA, and the SISAL. For the fractional abun-
dance estimation we evaluate two state-of-the-art methods,
namely the SUnSAL, which uses sparse regression under the
LMM, and a gradient-based algorithm developed in [37] which
assumes the PPNMM. The quality of the unmixing procedure
is measured by comparing the estimated â and the “actual”
abundance vector a, in terms of the error defined by the
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Root Mean Square Error (RMSE) =
√

1
mp

∑p
i=1 ‖ai − âi‖2,

where a(i) and â(i) is the actual and the estimated abundance
vectors of the i-th testing pixel.

The performance of unmixing using the different algorithms
is shown in Fig. 10. We observe that the error for all
the unmixing chains reduces with respect to the number of
training examples, suggesting that the proposed ground-truth
based labeled dataset can be used for unmixing tasks. More
specifically, the SISAL method, which does not rely on the
pure pixel assumption achieves a lower RMSE, which is also
characterized with a lower variance. In addition, the gradient-
based algorithm assuming the PPNMM captures better the
existing nonlinearities and leads to a better approximation of
a than SUnSAL, especially for a small number of training
examples. A possible explanation of this behavior, following
the reasoning in [60], is that the LMM assumption may be
inappropriate for images containing sand, mineral mixtures,
trees and vegetation areas, elements that are all contained in
the selected labels (CLC codes 331, 131, 141, 223, 241).

Given the best performing unmixing strategy, i.e., SISAL
for endmember extraction and the gradient-based algorithm for
abundance estimation, we proceed to a comparison between
spectral unmixing and multi-label classification versus the
ensemble methods, utilizing multi-label classification metrics.
In order to produce a binary predictions matrix strictly en-
coding the presence or absence of a label, one must convert
the positive-valued abundances to binary values. To achieve
this, we performed a sorting of the estimated abundances
in a descending order and selected only the endmembers
that exceed a threshold T . All the corresponding estimated
abundances above this threshold are set to 1 while the rest
are set to 0. Table IV presents the experimental results with
respect to the threshold (50% and 95%) and the number of
training examples.

TABLE IV: Performance (mean ± std) of the ensemble versus
unmixing methods over 30 realizations.

Measure # Tr.
Spectral Unmixing Multi-Label Classification

T = 50% T = 95% RAkEL-DT ECC-DT

Hamming
Loss ↓

128 0.24± 0.01 0.59± 0.02 0.11± 0.00 0.10± 0.00
1024 0.26± 0.02 0.71± 0.03 0.08± 0.00 0.07± 0.00

Micro
Precision ↑

128 0.09± 0.02 0.10± 0.01 0.47± 0.02 0.55± 0.02
1024 0.10± 0.02 0.10± 0.01 0.67± 0.01 0.72± 0.01

Micro
Recall ↑

128 0.16± 0.03 0.61± 0.05 0.33± 0.02 0.28± 0.02
1024 0.19± 0.04 0.74± 0.06 0.50± 0.01 0.43± 0.01

Overall, Table IV demonstrates that the multi-label methods
are considerably better than the spectral unmixing ones in
terms of the classification measures. Regarding the perfor-
mance of unmixing with respect to the selected threshold,
Table IV demonstrates that increasing the threshold leads to
higher Hamming error, and that it dramatically increases the
recall, due to the fact that larger values of the threshold
produce a larger number of false positives and a lower number
of false negatives. With respect to the number of training
examples, we observe that only the recall metric is increased
suggesting that the architecture is able to capitalize on the
training examples by identifying a larger portion of true labels.

A higher level snapshot of the each method’s behavior can
be obtained by comparing the Hamming loss metric, which
shows that the percentage of misclassified example-label pairs
is much higher for unmixing compared to the ensemble multi-
label learning algorithms. In general, the results presented in
Table IV demostrate that multi-label classifiers, even if they are
not able to produce fractional abundance estimations, achieve
much higher and more robust binary predictions, even under
noisy environments.

D. Applying the scheme with hyperspectral data

Hyperspectral imaging platforms can provide finer spatial
resolution imagery than multispectral systems, typically at the
cost of a smaller field-of-view. As a result, they are limited
in their capacity to provide global land cover estimation.
For instance, the Hyperion sensor aboard EO-1 has a spatial
resolution of 30m2, acquiring images at 242 spectral bands,
however, it does not provide global coverage. As a conse-
quence, we cannot directly introduce the concept of multi-label
classification of Hyperion imagery by utilizing CORINE land
cover data which have a spatial resolution of 100m2.

Nowadays however, novel datasets have been compiled that
provide ground-truth data at a much higher spatial resolution
than 30m2. Such data do not consider widespread coverage
(e.g., whole continents like Europe) as the process of labeling
is extremely costly and time-consuming. Nevertheless, they
do provide detailed maps of more specific geographic areas
(e.g., cities, forests, etc.). For instance, a high resolution land
cover dataset for New York City (NYC) of 2010 with a spatial
resolution of 1m (3 feet) has been recently released7. We
investigate the application of our scheme with the NYC dataset
combined with the Hyperion data, where we consider the
study area encoded as EO1H0130322010245110KF SGS 01
by Hyperion from September 2, 2010, provided in GeoTIFF
format. In Fig. 11 we consider the performance of four multi-
label algorithms by utilizing the 198 calibrated bands from
Hyperion.
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Fig. 11: Performance with respect training examples using
hyperspectral data of the Hyperion sensor.

The results suggest that multi-label classification is also a
viable choice for the exploitation of hyperspectral data for land

7https://nycopendata.socrata.com/Environment/
Landcover-Raster-Data-2010-/9auy-76zt
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cover estimation. Observing the achieved performance with the
performance in the case of multispectral data, we note that
for the NYC dataset with hyperspectral data, performance is
worse compared to CLC prediction with multispectral data.
However, we should note that the results are not directly
comparable due to many differences in datasets: different types
and number of labels, distinct intrinsic characteristics of the
regions (topologies), different years, and different types of
features that are extracted from hyperspectral compared to
multispectral imagery.

Apart from these significant reasons, additional effects come
into play in the case of multi-label classification of hyper-
spectral data. First of all, we could only manage to find one
scene from the whole 2010 to characterize just the same small
portion of the NYC. On the other side, MODIS has a high
temporal resolution with a sun-synchronous orbit and thus we
are able to generate the time-series which is more appropriate
for capturing the variation of land cover characteristics through
a whole year. As a conclusion, it is not only the spectral res-
olution which is critical for the classification quality, but also
the temporal resolution, especially for land cover estimation.

A second important parameter is the ratio of scale incom-
patibility. Whereas each pixel of MODIS is approximately
25 times the size of the CORINE, in the NYC land cover
case the Hyperion pixel is approximately 900 times the land
cover pixel, since the NYC dataset has a spatial resolution of
1m2 and the Hyperion sensor of 30m2. The dramatic change
in scale, is definitely a key factor that highly affects the
performance of classification.

Comparing the performance of the different classification
schemes, we observe that algorithm adaptation methods, i.e.,
ML-kNN and IBLR, achieve better performance compared to
the RAkEL-DT and ECC-DT ensemble methods. A reason
for this behavior is that the performance of the classifiers is
directly related to a well-known problem in estimation theory
and machine learning, the curse of dimensionality, whereby
increasing the dimensionality of the data space, makes the
processes of data modeling more challenging due to the sparse
coverage of high-dimensional spaces with limited examples.
The problem in multi-label learning is even bigger, since
features represent all the classes of the whole dataset, whereas
many of them are not relevant to a specified class.

E. Parameter sensitivity analysis

In order to provide a comprehensive analysis, in this sub-
section we investigate the effects and influence in performance
attributed to the parameter selection process of each consid-
ered algorithm. To minimize the effects introduced by other
sources of variation, we fix the number of training examples to
1024 and report results averaged over 50 realizations in order
to obtain an informed view of the sensitivity of each method.

Regarding the kNN-based methods, the key parameter that
must be defined concerns the number of neighbors that are
employed. We observe in Fig. 12 that the worst choice for
Hamming loss corresponds to using 30 neighbors, while the
point of optimal performance is attained with 5 neighbors for
both methods. The results suggest that further increasing the
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Fig. 12: Performance with respect to the number of neighbors
for h19v04 of CLC2000 with 1024 training examples. Both
adaptation algorithms exhibit similar performance with respect
to this parameter, however IBLR has a slightly higher and
more robust behavior compared to ML-kNN.
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Fig. 13: Classification performance with respect to the number
of models for h19v04 of CLC2000 with 1024 training exam-
ples. Varying the number of models has a major effect on the
classification performance of ensemble methods where ECC
achieves superior performance compared to RAkEL.

number of the neighbors leads to performance deterioration,
since valuable information is replaced with noise obtained,
in addition to the computational overhead. Between the two
classifiers, we note that IBLR has a more robust behavior
compared to ML-kNN.

Considering the powerful class of ensemble techniques, we
investigate how the number of component base classifiers
involved in the chain affects the performance. As illustrated
in Fig. 13, ECC-DT and RAkEL-DT differ significantly with
respect to the internal design, since the former achieves a
performance close to optimal with a small number of classifier
chain models, whereas RAkEL-DT is learning progressively
with an increased number of models. With an adoption of
a large number of models (more than 60), we can observe
that the RAkEL-DT approximates the performance achieved
by ECC-DT. However, the superiority of ECC-DT for multi-
label classification with land cover data is particularly evident
when a small number of training examples is considered.



15

VII. CONCLUSIONS

In this work, we presented a radically different approach
in satellite-based land cover identification, where we cast the
problem as an instance of multi-label learning. Multi-label
classification in this specific domain provides supplementary
solutions to the important problem of spectral unmixing,
however, unlike state-of-the-art schemes, the proposed for-
mulation utilizes publicly available labels in conjunction with
contemporary satellite data, and provides a real-world answer
to maintaining up-to-date land cover maps.

We considered an extensive set of experiments, employing
state-of-the-art multi-label learning algorithms under diverse
and challenging scenarios. The experimental results suggest
that a small number of training examples is sufficient for
achieving satisfying performance in the situation where train-
ing and testing data from a specified region on a given time
instance is considered. However, the performance deteriorates
when testing takes place on a different spatial region or from
another instance in time. We demonstrate that by encompass-
ing a limited number of examples of the target-tile at the
target-time, the performance improves remarkably, offering a
solid answer to the issues related to the cost and time required
for gathering annotated ground-truth data. It should be noted
that the proposed formulation can fully exploit the existence
of ground-truth data, which means that this approach cannot
be applied in cases where labeled data are unavailable, e.g.,
unmixing of the Mars surface data.

In addition to the value of this work in the remote sensing
community, we have also effectively introduced a new class
of datasets composed of satellite and geographic data, offering
the research community the possibility to evaluate different
multi-label classification schemes on alternative remote sens-
ing datasets, which provide a more appropriate formulation
compared to the single-label cases that have been explored in
the literature so far.

ACKNOWLEDGMENT

This work was partially funded by the PHySIS project
(contract no. 640174) and the DEDALE project (contract
no. 665044) within the H2020 Framework Program of the
European Commission.

REFERENCES

[1] A. Di Gregorio, Land Cover Classification System—Classification con-
cepts and user manual for Software version 2. Rome, Italy: Food and
Agriculture Organization of the United Nations, 2005.

[2] I. McCallum, M. Obersteiner, S. Nilsson, and A. Shvidenko, “A spatial
comparison of four satellite derived 1km global land cover datasets,” Int.
J. of App. Earth Observation and Geoinformation, vol. 8, no. 4, 2006.

[3] D. Lu and Q. Weng, “A survey of image classification methods and tech-
niques for improving classification performance,” International journal
of Remote sensing, vol. 28, no. 5, pp. 823–870, 2007.

[4] G. Camps-Valls, D. Tuia, L. Bruzzone, and J. Atli Benediktsson, “Ad-
vances in hyperspectral image classification: Earth monitoring with sta-
tistical learning methods,” Signal Processing Magazine, IEEE, vol. 31,
no. 1, pp. 45–54, Jan 2014.

[5] N. Keshava, “A survey of spectral unmixing algorithms,” Lincoln Lab-
oratory Journal, vol. 14, no. 1, pp. 55–78, 2003.

[6] N. Keshava and J. Mustard, “Spectral unmixing,” Signal Processing
Magazine, IEEE, vol. 19, no. 1, pp. 44–57, Jan 2002.

[7] J. Li and J. M. Bioucas-Dias, “Minimum Volume Simplex Analysis: A
fast algorithm to unmix hyperspectral data,” in Geoscience and Remote
Sensing Symposium, 2008. IEEE International, vol. 3, July 2008.

[8] C. Salvaggio and C. J. Miller, “Comparison of field- and laboratory-
collected midwave and longwave infrared emissivity spectra/data
reduction techniques,” pp. 549–558, 2001.

[9] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,”
Int. J. of Data Warehousing and Mining, vol. 3, no. 3, pp. 1–13, 2007.

[10] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning al-
gorithms,” IEEE Transactions on Knowledge and Data Engineering,
vol. 26, no. 8, pp. 1819–1837, Aug 2014.

[11] J. M. Bioucas-Dias, A. Plaza, S. Member, N. Dobigeon, M. Parente,
Q. Du, S. Member, P. Gader, and J. Chanussot, “Hyperspectral un-
mixing overview: Geometrical, statistical, and sparse regression-based
approaches,” IEEE Journal of Selected Topics in Applied Earth Obser-
vations and Remote Sensing, pp. 354–379, 2012.
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