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Abstract— There is a constant increase in the interest shown
for trusted computing in the embedded domain. In an MPSoC
each processing element such as a CPU could request accessing
any physical resource of the device such as a memory or an I/O
component. Along with normal requests, malevolent ones could
occur produced by malware applications or processes running
in one or more CPUs. A protection mechanism is required to
prevent injection of malicious data across the device, e.g. unsafe
data written by a CPU into a memory address, which are read
later by another CPU. A considerable amount of research has
been devoted in security for MPSoCs, but limited work exists in
performing protection at the source instead of the target, thus
cutting-off malicious content at an early stage prior to entering
the on-chip network.

In the present work we focus on the side of the CPU connected
to the SoC network. We are envisioning a self-contained NoC
firewall, which by checking the physical address of a request
to a memory-mapped device against a set of rules, rejects
untrusted CPU requests to the on-chip memory, thus protecting
all legitimate applications running in a shared-memory SoC.
To sustain high-performance we implemented the firewall in
hardware, while rule-checking is performed at segment-level
based on deny rules. To evaluate the impact of security mecha-
nisms we developed a novel framework based on gem5, coupling
ARM technology and an instance of a commercial point-to-point
interconnect from STMicroelectronics called Spidergon STNoC.
Tests include several scenarios with legitimate and malicious
processes running in different CPUs requesting access to shared
memory. Preliminary results show that the incorporation of a
security mechanism in the network interface can have a positive
effect on network performance by reducing both the end-to-
end delivery time of packets, and the power consumed from
unnecessary transmissions. From the network aspect, this effect
is independent of the performance of implementation itself,
e.g. either a hardware or a software solution equally relieves
the network from unnecessary loads. Finally, we compare the
performance of our hardware approach over a simple equivalent
software solution. Certainly, this comparison favours hardware
by considerable margins, however we use it only as reference to
illustrate the merit from implementing protection in hardware.

The purpose of the present study is three-fold. First, we present
the proposed hardware NoC firewall. Then we examine the
effect on network transmissions from incorporating a security
mechanism in the network interface; to do this we developed a
novel framework. Finally, we include preliminary performance
results of our NoC firewall and a simple yet indicative comparison
with a software solution.

I. INTRODUCTION

The complexity of modern Operating Systems - large num-
ber of code lines, developed by different groups - raises dif-
ferent security vulnerabilities resulting from software misbe-
haviors. These are exploited by cyber-criminals attempting to
subvert the security mechanisms supported by the OS in order
to get control of the device and data. For instance, overwriting
data or function pointers, dynamic memory allocation (double-
freeing, referencing or writing to free memory), zero-length
allocations, and buffer overflows are well-known techniques
to bypass any security protection imposed by the OS. There is
an increasing interest in solutions for trusted computing mainly
driven by the economic consequences when failing to ensure
security in embedded applications [1].

MPSoCs and communication architectures for interconnect-
ing SoC components, i.e. NoC [2] or bus [3], have been
widely studied during the last decade, but security aspects
have recently attracted the interest of researchers. Releases
of bug reports show that defending an MPSoC against attacks
remains an important issue. The lack of proper and efficient
isolation of source code and data among trusted and untrusted
applications/processes constitutes one of the main challenges
in shaping a secure architectural solution without jeopardizing
performance.

We propose a hardware security module to manage the
memory requests invoked by any initiator connected to the on-
chip-network. Initiators can be CPUs, DMA controllers or pe-
ripherals requesting access to any memory location including
memory-mapped registers. In the present work we conduct ex-
periments using only CPUs as initiators. The security module
is integrated in the network interface (NI) connecting the CPU
to the NoC. It acts as a firewall checking the CPU accesses
to memory against a lookup table containing the access
rights; this way it prevents malicious content from entering
the on-chip network. Protection takes place after virtual-to-
physical address translation, thus rule-checking is applied on
the physical address. The firewall ensures protection of the
memories distributed across the device that are accessed by
multiple on-chip processors, thus it should be incorporated in
the NI of each CPU. We assume that in each CPU several
independent processes are initiated; for example each process
could be related with a completely different application such
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as a billing service, voice transmission, multimedia, gaming
etc, each of which can request accessing any memory in the
SoC. Our approach allows to isolate different applications or
processes running even on the same CPU of the SoC. This
is important as for example a malicious process invoked in a
CPU is restricted from writing an address also allocated by a
legitimate process running either on the same or a different
CPU of the device.

Protecting an embedded system from malicious attacks has
consequences in both HW and SW design, as well as on phys-
ical characteristics such as performance, area cost, and power.
The authors in [4] used these factors, as well as the memory
cost, as metrics to evaluate their approach in protecting the
memory in embedded systems. Towards a similar direction,
we study whether a security mechanism results in diminishing
returns, such as incurring overhead to network delay and
power consumption. We show that in the presence of malicious
processes a security mechanism accounts for the reduction of
end-to-end transmission delays and power consumed in NoC.
In addition, our concern is whether a mechanism added in
the system for ensuring security, which examines continuously
the data before they are actually transmitted, incurs significant
overhead even in case a process does not convey suspicious
content. Our contributions are:

• a hardware-based NoC firewall performing efficient rule-
checking of memory requests at segment-level;

• a scalable modeling infrastructure based on gem5 relying
on ARM and Spidergon STNoC, augmented with security
features;

• experiments with multiple legitimate and malicious pro-
cesses requesting access to memory.

The remaining paper is organized as follows. Section II
overviews the related work with regard to hardware security.
Section III describes the components and functionality of
the proposed hardware NoC firewall. Section IV presents the
framework we developed to model the problem and conduct
the experiments. Section V deploys the different scenarios
to examine the effect of a security mechanism when both
legitimate and malicious requests occur. In Section VI, we
evaluate the effect of a security mechanism on the delivery
time of the packets and the power consumption of the network.
In that Section we also compare the performance of our HW
approach against a SW solution used for reference purposes.
Finally, Section VII summarizes the paper and presents our
future work.

II. BACKGROUND AND MOTIVATION

In the past, NoC research has focused on QoS topics, while
security is rarely mentioned. Only recently there have been
efforts to consider NoC security in the context of shared
memory MPSoCs with high performance and power-efficient
circuits for authentication, confidentiality and integrity sup-
port. These specialized hardware security modules can be used
to thwart attacks to external physical memory, mitigating risks
associated to denial-of-service (DoS), side-channel attacks,
malware intrusion, or buffer overflow vulnerabilities [5], [6].

In addition to crypto-based solutions, NoC firewall mech-
anisms provide domain protection by controlling memory

access rights through hardware multi-compartment isolation
[7]–[10], therefore ensuring a well-defined end-user service
agreement and billing model. The main purpose of memory
protection is to prevent a process from accessing shared
memory that has not been allocated to it. This prevents a
malicious process (or a bug within a process) from affecting
other processes, or the OS itself, issuing a segmentation fault
or storage violation exception to the offending process which
generally causes abnormal termination (killing the process).

Memory protection in multiprocessor operating systems
includes high-level security techniques, such as address space
layout randomization and executable space protection. These
software methods are often supported by low-level hardware
primitives and associated driver functions.

Most previous memory protection schemes propose fine-
grain page-level security. Hence, decisions are made on
whether to accept or reject a specific request based on rules
hidden within a page memory descriptor or via an independent
memory unit. Unlike fine-grain page-level protection, our work
considers for the first time coarse-grain, segment-level protec-
tion based on the physical address of the NoC transaction
request. Thus, the proposed NoC firewall, not only supports
isolation by extending the (end-to-end) network interface layer,
but also attempts to harmonize the system security infras-
tructure by implementing the NoC firewall module as a new
distributed service of the network interface.

Unlike the hardware memory protection module of Porquet
[9] and Wiggings [10] which consider page-level implementa-
tions based on MMU security, the proposed NoC firewall relies
on segment-level protection. Since rules are configured and
used directly at the network interface, the proposed scheme
has relatively less area overhead and latency. Moreover, by
avoiding caching, which involves a complex table walk mech-
anism to fetch rules from external memory to an internal
table-lookaside buffer (TLB), isolation of mixed-criticality
applications with hard real-time constraints can be realized.

Similar to the authors in [7], [8], our NoC firewall is
integrated in the network interface. However, while [7], [8] use
dedicated virtual channels to pass specialized rule-checking
information based on processor and thread identifiers, we
consider generic segment-level rules based on the NoC trans-
action’s physical address bits (excluding offset). In addition,
while [7], [8] compare different initiator and target implemen-
tations of the memory protection module in terms of area cost
and power consumption, we concentrate only on the initiator
side (assuming that processor requests rather than memory
accesses must be protected).

Finally, the proposed segment-level protection approach
supports efficient hardware-based multi-compartment philos-
ophy, thus extending existing protection mechanisms in com-
mercial multicore SoC technologies, such as ARM v7 Trust-
Zone or derivative solutions, e.g. SamSung Knox Workspace.
More specifically, ARM TrustZone currently defines only two
hardware-supported security domains (secure and non-secure)
identified using a (special) NS bit available in all memory page
descriptors [11], a significant overhead in today’s commercial
multi-faceted isolation solutions.
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III. THE HARDWARE NOC FIREWALL

We propose a lightweight, non-intrusive security module
composed of a novel hardware IP (and corresponding driver
components) providing isolation in integrated NoC-based MP-
SoC solutions. It is placed between a Network-on-Chip and a
system component, e.g. CPU, memory controller or hardware
accelerator, ideally at the network interface (NI). It acts as a
firewall between the NoC and the system component, adapting
concepts from enterprise network firewalls to the level of
the on-chip communication architecture of MPSoC devices.
Typically, there are multiple NoC firewalls distributed in the
system, i.e. one for each IP connected to the Network-on-Chip.
Within each NoC firewall component different access rules
are defined, thus regulating access to the protected memory
regions.

Executable system-level specifications have been developed
for a coarse-grain NoC Firewall solution which is implemented
at the NI layer of a Network-on-Chip (NoC). We have devel-
oped and validated both a cycle- and bit-accurate SystemC
virtual prototype model, and a higher-level transaction-level
(TLM) gem5 model, which we further time-annotated from
SystemC results.

Below, we examine the architecture and behavioral-level
characteristics of the NoC firewall. It operates at the NI layer
by:

• tagging NoC transactions with a 6-bit field (called PID)
that is mapped to a specific linux process identifier,

• statically or dynamically configuring rules for user pro-
cesses to access contiguous physical address regions
(either memory pages or generic segments),

• filtering the underlying transactions and ensuring that
security rules are obeyed at the NI of each initiator by
providing fast and efficient access to rules; this implies
that a potentially compromised process cannot access
data owned by another secure process, thus successfully
subverting Denial-of-Service attacks from malware appli-
cations and/or corrupt DMA engines.

Fig. 1. The top-level NoC Firewall module.

Figure 1 shows the top-level architecture. It consists of the
following submodules:

• The Operating Mode Controller (OMC), which accepts,
decodes and dispatches NoC firewall commands.

• The Segment-Level Rule-Checking module (SLRC),
which processes incoming memory access transaction
requests and most configuration commands; notice that

within the SLRC, a number of memory structures are
responsible for implementing deny rules at at segment-
level with a deny policy (we assume an allow-by-default
mode). The SLRC also includes internal monitors imple-
mented with timers and event counters to record NoC-
related activity, and report performance and/or security
issues to the Interrupt Unit.

• The Interrupt Unit (INTU), which accepts in parallel
interrupt requests from the OMC block (e.g. invalid
commands) and the SLRC block (resulting from rule-
checking), and reports interrupt contexts to the CPU
Interrupt Unit.

Fig. 2. Range search data structures using register-based parallel search.

As shown in Figure 2, a coarse-grain rule-checking ap-
proach is implemented in the SLRC unit. This policy controls
accesses to the memory at segment-level, whereas segment
size is variable. SLRC segments are implemented using
comparators and register sets that specify the startpoint and
endpoint of each segment. Search within these segments relies
on comparators, which check the physical address of the
incoming access requests after extracting lower order bits that
correspond to the offset L; the value of L is 12 bits for the
ARM v7 architecture.

This process involves checking whether the incoming physi-
cal address is in the preconfigured address range of a segment.
We have implemented a policy based on deny rules. Thus,
if there is no match in the segment structures specified by
the corresponding (start, end) points, then normal access is
allowed to the physical address. Otherwise, if an incoming
physical address falls in a particular segment address range,
then this match implies that the physical address belongs to
that particular segment, and hence the rule table needs to be
accessed to retrieve and test for the specific rule. Each segment
rule is 3-bits long, specifying access control based on any
combination of read, write and execute privileges.

In Figure 2 a 6-bit process identified (PID) is used to access
the base address of the rules defined for a particular PID. The
encoded result is used to index the discovered rule inside the
set of rules for this PID. The PID can be dynamically provided
by the OS serving a multiprocess environment.

It is implementation-dependent (based on silicon cost)
whether a CAM structure is faster and/or less complex than
the register-based comparators shown in Figure 2. Based on
RTL simulation results, it appears that if the number of
supported segments is small (below 128), then the proposed
solution based solely on parallel comparisons using registers
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is adequate in terms of performance. This option is much
more flexible, since it allows easier firewall configuration.
Other solutions, such as a parallel range search approach
based on two ternary CAMs to encode segments using the
longest common prefix concept provide nice asymptotics, but
complicate significantly the configuration of network interface
[12].

IV. EXPERIMENTAL FRAMEWORK

To evaluate the effect of security in MPSoCs we created
a framework combining CPUs and shared memory, inter-
connected with a network-on-chip topology. Furthermore, we
enhanced the framework by integrating the functionality of
the NoC firewall described previously. Currently, within the
framework we can measure end-to-end delivery times and
power consumption at the network-layer. The NoC firewall
is integrated at the network interface that lies on a higher
layer, i.e. transport-layer of the OSI model, therefore its
overhead is not “seen” in the above measurements. Hence, we
do not yet study the effect of NoC firewall on system-level
performance. Instead, within the context of the framework
it is viewed only as a security mechanism, and we evaluate
the effect from activating/deactivating it on the data delivery
time and power consumption at network-layer and below, i.e.
link-layer and physical-layer. In the future we will include
the capability of performing measurements not only at the
network-layer, but also at the application-layer. This will allow
to perform measurements from the time a request is generated
at application-layer, until it reaches its destination.

A. Building-up the Framework

Our framework combines ARM v7 CPU technology and
STNoC point-to-point interconnect. STNoC is a ring-based
topology comprising three main building ingredients; network
interface (NI) that functions as access point to the interconnect,
simple non-programmable router, and physical link. STNoC
relies on network operation, thus it provides programmable
services such as changing the routing information and quality
of service (QoS). It is equipped with a backpressure mech-
anism for regulating the traffic around the network. STNoC
can be customized according to the given specifications to
efficiently connect MPSoC components, i.e. CPUs, memories,
and peripherals [13]. Figure 3 shows an example topology
for attaching different components to the STNoC. From the
network point of view, each component is a node, and in-
formation - instructions and data - is transmitted across the
network in packets. Prior to transmission a packet is broken
down in smaller units called flits, which in turn are released
into the network. A flit carries the maximum amount of data
that can traverse the link per transaction. As a result, for a
given packet size the amount of flits comprising each packet
depends on the link-width. During customization procedure,
along with the topology, a designer should also tune-up these
parameters; the link width, the packet size and the number
of flits comprising each packet. For example, for an STNoC
with 16 Bytes link-width, if the selected packet is 128 Bytes
(including header), it is split up in 8 flits.

Fig. 3. Example of STNoC topology interconnecting the MPSoC compo-
nents. STNoC consists of three basic building ingredients: network interface
(NI), router, and link.

To conduct experiments we described the above system in
the gem5 simulator [14], a platform widely used in com-
puter system architecture research, encompassing processor
and system-level microarchitecture. It is highly-configurable
and includes support for multiple ISA and diverse CPU
models including ARM, with detailed memory systems and
interconnect models. Within the gem5 environment, we created
an STNoC-like network model instance, which we further
enriched with time-annotation derived from a cycle-accurate
RTL model. Also we implemented a gem5 transaction-level
model of the proposed NoC firewall and integrated it in the
network interfaces of STNoC. Then, we time-annotated the
NoC firewall model based on preliminary results from a cycle-
and bit-accurate design implemented in SystemC.

To study the system reaction under different conditions we
developed a method that generates legitimate and malicious
requests within the gem5 simulator. We consider two type
of processes that request access to memory. The first type
corresponds to legitimate (also called safe) processes, Si,
which perform write requests to a certain memory range.
The second type corresponds to malicious processes, Mj ,
which perform write requests to random addresses located in
the same memory range that is requested by the legitimate
processes. Therefore, all memory requests target the range
specified by the Si memory descriptors, and consequently
malicious requests interfere with legitimate communications.

For a realistic testbench, we aligned the rule-checking mech-
anisms to actual segments in the pagemap of the Si linux pro-
cess address space. We accomplished this by cross-compiling
and executing the Si linux process on top of the ARM
Fast Models simulator environment [15]. This environment
provides a programmer’s view (PV) of ARM processors. In
general, PV models are used to confirm software functionality,
but cycle counts or low-level component interactions are not
accurately modeled. The ARM FastModels is a functionally
accurate environment in which ARM v7 CPU models are
implemented as instruction set simulators. It simulates the
ARM Cortex-A9 architecture by loading a linux image, so
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we were able to perform full system simulation by executing
linux. The functional behavior of the model is equivalent to
real hardware, however timing accuracy is sacrificed for the
sake of efficient simulation.

The Si linux process allocates an array of 4096 integers and
then continuously writes data to array elements in an infinite
loop. This enabled examining linux page tables and obtaining
the memory descriptors that correspond to specific (virtual)
array accesses at the moment they occur.

Along with the Si process, we modified a pagemap-analysis
suite of programs and then cross-compiled them for ARM
v7 architecture using the common gnu-eabi toolchain [16].
This tool-suite allows us to collect and analyze the linux
pagemaps corresponding to the Si linux process (assembly
instructions) while it executes on top of ARM FastModels.
The corresponding descriptors from linux pagemaps analysis
of the Si process correspond to the heap range from 0x11000
to 0x36000; notice that 5 descriptors correspond to 5 * 4k
units of byte addressable memory which is enough to store 4K
32-bit integers (the first descriptor essentially contains malloc-
specific data).

Recapitulating, the above framework relies on ARM CPUs
and shared memory distributed across the MPSoC, inter-
connected with the STNoC. We experimented with different
configurations by varying the following parameters:

• the number of nodes, i.e. CPUs and memories available
in the chip;

• the number of legitimate and malicious processes running
in each CPU requesting memory access;

• enabling or disabling the security feature.

All other factors were kept constant throughout the experimen-
tation process; the width of STNoC link, the size of packet,
and the number of flits per packet have constant values, which
are shown in Table I. This does not sacrifice the generality of
our approach, while it allows for a straightforward comparison
among the different scenarios for a given nodes setup , e.g.
when security is enabled or disabled; when none or many
malicious processes are running in a CPU etc.

The above framework enables examining the effect of
security on network load and power. This is the consequence
from controlling the requests that are eventually released to the
STNoC. To model the MPSoC primitives we used the gem5
simulator and ARM Fast Models. To obtain cycle-approximate
results we time-annotated the STNoC and NoC firewall models
with data gathered from cycle- and bit-accurate simulation in
HDL and SystemC respectively. The latter feature cannot be
used here for the experiments, but we will use it once we add
the capability for performing measurements at the application-
layer. In addition, we used the Orion 2.0 model [17], which
is encapsulated in gem5, to evaluate the power consumed
at the NoC. Our framework can be used to evaluate more
intricate networks with more CPUs and memories. Currently,
a restriction of our approach is that the distribution of the
processes running in the CPUs is uniform, i.e. all CPUs run
the exact same number of legitimate and malicious process.
We are planning to fix this, and once we completely verify the
framework in terms of timing compatibility (cycle-accurate

instead of cycle-approximate), releasing it to the research
community.

B. Type of Measurements

Currently, the framework allows to study the time a packet
remains in the NI queue until it reaches its destination. This
includes the time needed for breaking down the packet in flits.
A flit passes through one or more routers, which store the flit
in their queue and relay it to the proper path. In the future, we
would like to conduct measurements not only at network-layer
but also to measure delays in different phases, starting from
the time a message is generated by a process at the application-
layer. This will allow to take into account the time overhead
of the NoC firewall.

V. EXPERIMENTAL SCENARIOS

We experimented with different number of nodes connected
to the STNoC as shown in Figure 4; for each case we generated
different combinations with regard to the number of safe and
malicious processes.

Fig. 4. The different configurations we used to study the effect of security.
Case (a) corresponds to two different configurations; either both CPUs or only
one CPU can be active.

Table I has the parameters of the simulation framework.
We ran simulations with 1 CPU/2 Memories (actually 2
CPUs but 1 is inactive), 2 CPUs/2 Memories, and 4 CPUs/4
Memories. We tested different scenarios with regard to the
number of safe and malicious processes running in the CPUs;
in Table I we represent this as xSyM , where x is the number
of safe processes and y the number of malicious processes.
The process that requests access to memory is selected with
a random policy, and it can be either a “write” or “write-
execute” request. A request is performed to a random address,
which belongs to one of the five allocated memory segments.
We performed the same experiments by enabling and then
disabling the NoC firewall. When enabled, the NoC firewall
denies access to every single request from malicious processes
since all requests are destined to memory segments that are
protected and can be used by safe processes only. Therefore,
malicious requests are rejected at the network interface, which
results in prohibiting unnecessary load from entering the
NoC. On the other hand, when the NoC firewall is disabled,
malicious requests are also transmitted to the NoC.

A setup-phase is needed to configure the rule table in each
NoC firewall. For our experiments we do this with 5 CPU



6

TABLE I
SIMULATION PARAMETERS

Parameter Type/Value
Interconnect topology Spidergon STNoC
CPU type ARM v7 Cortex A-9
Nodes setup 1CPU/2MEM; 2CPU/2MEM; 4CPU/4MEM
Processes per CPU
(Safe,Malicious)

4S1M; 3S1M; 2S1M; 1S1M; 1S2M; 1S3M,
1S4M;

Segments allocated for
safe processes

5

Segment size 4 KBytes
NoC’s link width 16 Bytes
Message type w; wx
Packet size in Bytes 72 Bytes (header=8; body=64)
Packet size in flits 5
# of flit credits 5
NI, Router, Link delay
(in cycles)

{1, 2, 0}

Status of security
mechanism

enabled; disabled

commands - one per segment - for every malicious process.
For example, for 3 malicious processes, during configuration
phase each CPU will send 3 ∗ 5 = 15 commands, resulting to
a total of 15 deny rules. This way, during normal operation
the firewall will block a malicious process from accessing the
protected segments. No setup rules are needed for the legiti-
mate processes since the operation of NoC firewall relies on
deny rules only. During setup-phase, the packet injection rate
is lowered due to gem5 limitations when using Network test
cache coherence protocol; this is because it cannot guarantee
packet arrival from the CPU to the network interface. Since
the environment in which we perform the experiments is under
our control, we ensure that the setup-phase is completed before
the processes start issuing memory requests.

By selecting different parameter values we performed ex-
periments for several configurations. In specific, 7 different
combinations of safe and malicious requests, 3 different
node setups, and 2 options for the security mechanism (en-
abled/disabled), give a total of 3 × 7 × 2 = 42 different
configurations. Regarding NoC parameters, the packet size
of a write command is 72 bytes, while we configured a 16
Bytes link-width, i.e. 16 bytes at most can traverse the link
per transaction. Hence, each packet is split up in 5 flits since
72/16 = 4.5.

VI. EFFECT OF SECURITY AND NOC FIREWALL
PERFORMANCE

In the present Section we show how we use the above
framework to evaluate the effect of security on the end-to-end
delivery time and power at the network-layer. We recall, that
this study is not affected by the performance characteristics of
the security component. Then, we compare the performance of
our proposed NoC firewall against a SW equivalent solution.

A. Effect of Security on Network Transmission

Our framework enables measuring the end-to-end delivery
times at the network-layer, and the power consumption on the

routers and links. In particular we measure two type of delays;
the time a packet remains in the NI queue before it is actually
released to the network, and then, after the flit leaves the NI
queue, the time spent to traverse the network until it reaches its
destination. The second delay includes the time for the flit to
pass through all routers of the path. Table II has the results for
a specific configuration when NoC firewall is either disabled
or enabled. The last column shows the impact from activating
the firewall. In all cases activation of security affects positively
the network, i.e. negative values indicate improvement.

TABLE II
EFFECT OF SECURITY ON QUEUE DELAY, NETWORK DELAY AND POWER

AT THE STNOC LEVEL. SCENARIO CONCERNS A 2CPU/2MEM SETUP

WITH {1S2M} REQUESTS.

Metric without firewall with firewall +/-(%)
NI queue delay 17.894 cycles 5.973 cycles -66.62%
Network traversal delay 7.588 cycles 6.619 cycles -12.77%
Router power (total) 0.2345 Watt 0.1794 Watt -23.51%
Router clock power 0.0958 Watt 0.0958 Watt 0%
Router static power 0.0594 Watt 0.0594 Watt 0%
Router dynamic power 0.0792 Watt 0.0241 Watt -69.60%
Link power 0.0113 Watt 0.0034 Watt -69.91%

The chosen case concerns the 2CPU/2MEM node setup,
with 1 safe and 2 malicious CPU processes requesting memory
access. It is obtained that when NoC firewall is active, both the
traversal delay and the delay in NI queues decreases. This is
due to that malicious requests are prevented from entering the
network, thus fewer packets are released, resulting in smaller
network traffic and less busy queues. Moreover, the total power
of routers decreases by -23.51%, mainly due to the drastic
decrease in the dynamic power. Finally, the use of firewall
reduces the power consumed at the network links by almost
70%.

The above analysis indicates that security relieves the net-
work from unnecessary load in the presence of malicious
processes. The values are average ones and concern all CPUs.
We performed experiments for two type of messages, e.g.
“write” and “write-execute”. In our tests the amount of flits
transmitted was 1130 flits when firewall was on, and 3715 flits
when firewall was off. Below, we concentrate on measuring the
delays for all configurations of Table I, and we do not include
further results on power consumption. We are planning to do
this in our future work. Nevertheless, with the above use case
we demonstrated the way the framework is used to evaluate
the effect of security on the power consumption of NoC.

Figure 5 shows the total NoC delay (sum of NI queue delay
and network traversal delay) for different node setups and for
different number of safe and malicious processes running in
each CPU, both when NoC firewall is enabled and disabled.
The total NoC delay is computed as the average time required
for a flit to remain in the queue of the network interface, and
then traverse the network by passing through the routers until it
reaches its destination. It appears that the greater benefit from
incorporating a security mechanism comes when the number
of malicious requests is large. Thus, the more the malicious
processes, the smaller the NoC delay becomes. For example,
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Fig. 5. NoC delay for all setups of Table I, when firewall is on or off.

we observe that in case 4 malicious processes are invoked
per CPU - in the Figure this is represented with 1S4M - the
NoC delay when security is active has the smallest value. It
is also observed that when security is off, NoC delay remains
unchanged regardless of the chosen setup. This is due to that
requests are always served, thus they are always transmitted
to the network.
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Fig. 6. NoC delay for all setups of Table I, when firewall is on.

Figure 6 has a different representation for assessing the
effect of security. It concerns only the case where security
is activated, covering all setups of Table I. We obtain that
the more nodes are connected to the NoC, the bigger the
NoC delay is. This is more obvious for large number of safe
processes per CPU. In fact, it is observed that for 4S1M the

gap of NoC delay between the 4CPU/4MEM setup and the
other two setups increases.

B. HW vs. SW implementation of the NoC firewall

To asses the performance of our NoC firewall we compare
it with a software implementation. This is used as a reference
just to demonstrate the benefits from implementing a dedicated
module in hardware. In particular, we compare the overhead
of our hardware implementation versus an equivalent software
implementation in ARM v7 Cortex-A9 processor. Results in
Table III indicates that the merit from implementing protection
in hardware is large.

TABLE III
TIME OVERHEAD OF NOC FIREWALL: HARDWARE VS. SOFTWARE

IMPLEMENTATION

NoC firewall action cycles in HW cycles in SW
Initialization of 32 Segments ∼160 62066-65904
Access Request 2 or 5 112-2127
Add Segment Table Entry 5 81-1019
Delete Segment Entry for a
given PID

5 79-513

Delete All Segment Entries 5 1977-2411

To generate the ARM v7 assembly code, we cross-compiled
the corresponding configuration functions and request access
transactions using arm-linux-gnueabi-gcc and flags ”-c -g -
Wa,alh,-ad -fverbose-asm” [18], [19]. After this step, we eval-
uated the delays of the cross-compiled source code functions
using cycle-approximate delay for each ARM assembly in-
struction (e.g. load, store, add, subtract and multiply, compare
and branch, move and shift). Timing information was obtained
from the technical architecture reference manual for Cortex-
A9 [20].

VII. CONCLUSIONS

Due to the wide adoption of NoC-based MPSoC technology,
security aspects and system address space protection services
become of major concern. In this context, we implemented a
hardware NoC firewall with deny rules statically configured
at the network interface of all initiator nodes. This allows to
prevent the injection of malicious requests at an early phase,
thus prior releasing them into the NoC.

Using an instance of the industrial STNoC interconnect
technology as the baseline architecture, we created a frame-
work based on the gem5 environment which combines ARM
architecture and security features. Within this framework, we
study the effectiveness of security and reveal a significant
reduction of the end-to-end delivery times and dynamic power
consumption at the network level, especially when the relative
number of malicious requests increases. Currently, we have
extended the gem5 framework with time-annotated values
from cycle- and bit-accurate SystemC in order to produce a
realistic timing behaviour for both the STNoC and the NoC
firewall. One weakness of our current setup is that it does
not yet allow to study the effect of NoC firewall on the total
system performance within the integrated framework. We are
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working on this so as to be able to measure the contribution
of NoC firewall overhead as part of the total system overhead.

With regard to NoC firewall we consider several extensions.
We examine the implementation of a hybrid-architecture com-
bining segment- and page-level rule-cheking; the two rule-
checking architectures can operate in tandem to perform both
coarse- and fine-grain rule-checking. Another extension is
to dynamically update the request types and deny rules in
hardware so as to generalize the NoC firewall mechanism;
this will enable the adaptation of memory protection solution
to any predefined set of rules depending on the application
domain.

Analysis is based on gem5 simulation results from a cycle-
approximate STNoC model. Once tested for timing compati-
bility, our intention is that the gem5 STNoC model integrating
the proposed NoC firewall protection mechanism will be
released to the open gem5 community.
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