
Enabling Dynamically Reconfigurable
Technologies in Mid Range Computers Through

PCI Express

Charalampos Vatsolakis12, Kyprianos Papadimitriou12, and Dionisios
Pnevmatikatos12

1 School of ECE, Technical University of Crete
2 Institute of Computer Science, Foundation for Research & Technology - Hellas

cvatsolakis@isc.tuc.gr, {kpapadim, pnevmati}@ics.forth.gr

Abstract. Efficient I/O access is crucial in reconfigurable hardware
platforms for implementing high-performance systems. Such platforms
can outperform CPUs and GPGPUs in executing applications charac-
terized by inherent parallelism. However, the system-level performance
depends heavily on sustaining high transfer rates for feeding data into
the reconfigurable hardware and getting the results back to the end-user.
In the present work we propose and implement a hybrid system com-
prising a host computer and an FPGA platform. The latter acts as co-
processor into which hardware accelerators are loaded and executed in a
transparent way, i.e. user is not involved in FPGA programming neither
controlling its execution. Depending on the user request, the FPGA can
be reconfigured either partially or entirely. Initially, we discuss the cur-
rent state-of-the-art on I/O interfaces attached to FPGAs focusing pri-
marily on the PCI Express (PCIe). Then, we present our system on which
we implemented a design for measuring end-to-end throughput. We have
developed a simple yet functional interface for serving the communica-
tion between software and hardware over PCIe v1.0 bus. At system-level,
we achieved a throughput of 544 MBytes/s and 618 MBytes/s for DMA
writes and reads respectively, over a PCIe four-lane (x4) connection. This
includes all overhead such as communication delays and systems calls for
requesting services from the operating system. Our work can be used as
the basis for programming and executing hardware accelerators under
the control of a run-time system.

1 Introduction

Desktop users usually possess a mid-range workstation with 2-4 processing cores
and a limited amount of main memory. In general their needs regarding the type
of applications they execute during workstation’s life-time, concern applications
such as word processors, spreadsheets, simple math calculations, drawing and so
on. However, in some cases a user should execute compute-intensive applications
such as image or signal processing; even more, the user might need to get the
results back at real-time. Doing this using the host CPU is a poor option as



2

software execution may take from hours to days. Moreover, the CPU might not
be able to withstand the processing load, thus resulting to system crash. Multi-
threading partially solves the problem but is not always sufficient. A viable
solution is the use of GPGPUs that has been proven to be effective for highly
parallelizable applications.

FPGA technology stands as a strong competitor against the aforementioned
solutions and comes with an unprecedented advantage; it offers fine-grain hard-
ware customization allowing to achieve the exact level of parallelism and pipelin-
ing needed per application to get the best possible performance. Hardware imple-
mentations of entire applications or compute-intensive algorithmic parts should
be stored in a repository of IP cores. A run-time system residing on the software
side loads the requested core to the FPGA for acceleration. Present works aims
at addressing part of this functionality by providing an efficient system that
communicates with and reconfigures an FPGA accordingly. During our work we
had to resolve several issues such as the mechanism for FPGA reconfiguration
and the interconnection between the CPU and the FPGA.

The Input/Output (I/O) of the FPGA can add considerable overhead to
the total system execution. Although the computational power of FPGAs serves
well kernel acceleration, the total execution time can be affected from the rate of
servicing incoming/outgoing data. In cases where the FPGA is shared amongst
multiple users, there are certain reconfiguration costs we need to take into ac-
count. Recent FPGA technology offers mechanisms allowing to reach high re-
configuration rates.

Efficient I/O has traditionally been an important research area and multiple
interfaces have been developed over the years either parallel or serial. PCIe is a
highly efficient serial interface. It is the successor of the parallel PCI interface,
and there is a number of lanes available per device. The device throughput
is related to the number of lanes a device supports. In terms of bandwidth,
the initial version of PCIe (v1.0) offered a maximum of 2.5 Giga Transfers per
second (GT/s) per lane for each direction. Due to the 8b/10b encoding, the
maximum achievable bandwidth per lane was 250 MB/s [1]. The second version
of the PCIe interface (v2.0), doubled the transfer rate up to 5.0 GT/s, leading
to a throughput of 500 MB/s per lane for each direction [2]. The latest PCIe
specification (v3.0) doubles the payload to 1 GB/s per lane by increasing the
transfer rate up to 8.0 GT/s and using a more sophisticated 128b/130b encoding
scheme [3]. Practically, each PCIe version doubles the per lane throughput of its
previous, without necessarily doubling the clock frequency.

The scope of present work is to deliver an efficient reconfiguration mechanism
and a high throughput I/O interface to desktop users. We envision a low-cost
heterogeneous environment able to support the execution of multiple accelerators
loaded into reconfigurable hardware under the control of host software. Our
contributions are:

– The study of a desktop system in which the CPU triggers FPGA reconfigu-
ration over PCI Express.



3

– Micro-architectural choices to achieve high transfer rates for reconfiguration
and data transactions.

– A transparent process, i.e. without requiring user involvement, for loading
and accessing hardware accelerators.

The paper is structured as follows: Section 2 has the related work. Section 3
presents our desktop system combining hardware and software resources. First,
we discuss the hardware architecture, and then we detail the software side. At
the end of this Section we provide initial results from performance evaluation
proving that our approach is promising. Finally, Section 4 concludes the paper.

2 Related Work

Several works exist in the literature studying the use of PCIe for interfacing
with an FPGA. The authors of [4] used it for transferring data between the
host and the DRAM memory located close to the FPGA. In that design the
device operated as a DMA bus master, capable of performing DMA transactions
to the main memory and issuing interrupts to the host CPU. The initiation of
each transfer was performed by the driver and required that a number of device
registers was written. In some of the cases the data had to be fetched from the
device DRAM. The design was implemented in a small Virtex 5 at PCIe v1.0
x1 (single-lane) and the total throughput reached, including the device DRAM
latency, was 11-15 MB/s. The key bottleneck in that work was the interrupt
service rate which was 7680 interrupts/s. They also measured the performance
of the DMA from the hardware aspect and they found it equal to 79.3 MB/s for
read and 74.1 MB/s for write requests. The device in our case, supports multiple
PCIe lanes, leading to higher bandwidth. We also target to providing a complete
system capable of reprogramming the FPGA through PCIe.

Another work that is closer to our research is RIFFA [7], in which the authors
present a framework for FPGA accelerators dealing with the communication be-
tween the accelerators located into the FPGA and the user software. They sys-
tem is able to manage multiple accelerators implemented in hardware at a given
time. They also use the PCIe interface for communication purposes. Our work
is significantly different since we currently support a set of resource consuming
accelerators running at a given time. We also provide interconnection between
the user software and the hardware, but the user in our system is capable of
partially reconfiguring the FPGA at a low cost and in a transparent manner.

In a previous work [8], we presented two systems capable of reprogramming
the FPGA depending on the user selection. The kernels loaded into the FPGAs
were able to communicate with the user application through register I/O. The
systems of this work were implemented in two different platforms; the netFPGA
and the XUPv5. The key difference between these systems regards their primary
interface used for communication purposes. The netFPGA uses the standard PCI
interface, whereas the XUPv5 supports PCIe x1. Another important difference
is that in netFPGA, a secondary FPGA controls the PCI itself, leading to recon-
figuration over PCI. In the present work we are extending the second system,



4

by enabling DMA operation over PCIe and providing partial reconfiguration
capabilities through ICAP.

3 Partially Reconfigurable System

The main contribution of this work is the development of a system able to
communicate and partially reconfigure the FPGA, in a manner transparent to
the user. Several hardware accelerators can be developed, depending on the user
needs, for a certain piece of software, or a software suite. Each of the implemented
software packages, may transfer the compute-intensive part of their code into a
single or multiple reconfigurable areas of the FPGA. This can be accomplished
by a call to our software API containing the ID of the harware module needed,
or the partial bitstream itself.

Our aim is to provide a framework capable of programming the FPGA and
transferring data in a transparent to the user manner. The user, will be able to
implement an accelerator in hardware based on a predefined set of ports and
then access it through a software library. Our system will guarantee the user
that the accelerator will be executed, but not when the execution will start.
Once the execution of an accelerator completes, the system is responsible for
reprogramming the PRR with a pending accelerator. Once the reconfiguration
is complete, the I/O requests are scheduled and the results are returned to
the user. There are several parameters we need to take into account during
the implementation of each accelerator and the system itself, both in terms of
software and hardware, presented in the following subsections.

3.1 Hardware Architecture

The hardware architecture of our system, illustrated in Figure 1, can be divided
in two main regions, the static and the reconfigurable. The static region, con-
tains the PCIe endpoint, the DMA controller and the reconfiguration controller
attached to the ICAP port. These components are application independent, as
they are responsible for the data transfers and the reconfiguration of the Par-
tially Reconfigurable Regions (PRRs). The reconfigurable space of our system
consists of three equally sized PRRs. Each application is located into a PRR and
has a set of dedicated memory segments and registers. The total area allocated
by the PRRs occupies the 70% of the FPGA in terms of slices, DSPs and routing
resources.

The PCIe endpoint of our system is based on the first version of the PCIe
interface and it is 4 lanes wide. The PCIe endpoint consists of the physical, the
data link, the transaction and the application layers. The data link layer provided
as a hardware core [10], while the transaction layer of the PCIe interface in our
system was partially based on a hardware application implemented by Xilinx
[9]. The PCIe interface itself is packet based, leading to the division of the data
transferred to several Transaction Layer Packets (TLPs). The maximum size of
each TLP is architecture dependent, while a common selected value in DMA



5

Fig. 1: Hardware Architecture. The hardware components communicate with the host
through the PCIe x4 interface. The host operating system initiates DMA transactions
between the PRRs, the ICAP and the system memory. The FPGA performs the bus
mastering during the transaction.

transactions is 128 bytes. The total number of TLPs transferred is set during
the DMA initiation time.

The partial reconfiguration of the FPGA requires a set of steps to be per-
formed until its completion. The first step is the setup of the reconfiguration
control register, which is located into the device register file. Once the appro-
priate word is written to the control register, the reconfiguration controller is
waiting for data to be written into its memory block. The bitstream is transferred
to the memory block of the reconfiguration controller through DMA. The recon-
figuration controller then sends the incoming data to the ICAP, in a sequence of
32 bit words. The consumption of the incoming data leads to an update of the
control register value, through which the software is informed to initiate a new
DMA. This procedure is repeated until all the reconfiguration data are transmit-
ted, leading to the completion of the reconfiguration process. The access to the
DMA buffers is then returned to the application. The status of the configuration
procedure is accessible to the operating system through a device register.



6

The DMA buffers can hold up to 32 KB of data each and are 64 bits wide.
Figure 1 depicts only the datapath connections of the data; there are several
other associated control signals. There are four 32 bits wide registers, visible to
the application for each PRR, three of which are general purpose. The fourth
register is holding the ID number of the current bitstream loaded. The other
three registers can be used for application specific parameterization and status
purposes.

The accelerator itself is the second main component of our system. It resides
into one of the three available PRRs, while our system is capable of supporting
up to seven PRRs. Each accelerator implements a set of ports for communicating
with the rest system. These ports are presented in the Table 1. The system is
responsible for sending data to each accelerator and fetching the results. It is
informed about the state of each accelerator through a set of events sent via an
interrupt. These events are:

– A DMA is complete.
– An accelerator needs data.
– An accelerator has produced results.
– An accelerator has completes its execution.
– The reconfiguration controller needs data.
– The reconfiguration procedure is complete.

clk input clock operating at 125 MHz

resetN input active low reset signal

incomingData input 64 bit incoming data

incomingRen output read enable for incoming data

incomingEmpty input incoming data are consumed

outgoingData output 64 bit outgoing data

outgoingWen output write enable for outgoing data

outgoingFull input outgoing data not transmitted

reg1,2 input 32 bit general purpose registers

ressreg output 32 bit general purpose register

complete output execution complete

bitstreamID output 32 bit identification for certain bitstream

Table 1: Accelerator Port Map

In order to cover the case when multiple I/O intensive accelerators are ex-
ecuted, the accelerator has to support a stall state. It needs to enter this state
when there are no inputs or there is no room for results. When these issues are
resolved by our system, the accelerator has to be able to exit its stall state. Our
system needs to be informed in case an accelerator has completed its execution
in order to replace it with a new one. The following section presents the software
interface provided by our system.



7

3.2 Software Architecture

The software consists of a device driver and a user space application. The driver,
in its current form, is implemented in Linux as a character device driver capable
of performing Programmed Input Output (PIO) operations. The memory read
or written through these operations, represents the register file of the device. The
device operates as bus master, thus it is capable of performing DMA transfers.

Interrupts in our design are used to inform the operating system for the
events presented in the previous section. PCIe supports both Message Signal
Interrupts (MSI) and legacy interrupts. MSI are issued by performing memory
write transactions. The key feature of the MSI is that the total amount of avail-
able interrupts is increased. The legacy interrupt emulation is also performed by
certain messages. Each legacy interrupt pin (INTA, INTB, INTC and INTD) is
represented by two certain messages (Assert and De-assert) led to the system
interrupt controller [10].

The device has access to a certain memory segment during the execution of
a DMA transaction. This memory segment is allocated in the kernel memory
space, at the initialization phase of the driver and its physical address is stored
into a device register. The driver has exclusive access to that memory segment,
thus an extra copy of incoming and outgoing data needs to be performed. In the
user aspect, write and read system calls need to be performed before each DMA
read and after each DMA write respectively.

The partial reconfiguration procedure requires a set of operations to be per-
formed. Initially, one of the pending accelerators needs to be scheduled for ex-
ecution. The bitstream file is located into the data structure holding each ac-
celerator. In order to initialize the reconfiguration procedure, the system needs
to set the proper device register and we then transmit sequentially all the bit-
stream data packets. Finally, a message informs us about the completion of the
reconfiguration procedure.

The driver is responsible for keeping and scheduling both the accelerators
and the appropriate I/O requests. As a result we need to define a set of function
prototypes through which the software will be able to communicate initially with
the driver and the accelerator.

The prototypes in Table 2, define an adaptive manner of communication
between the software and the hardware. First, the user application needs to
create a new accelerator and provide to it the appropriate bitstream files. Then,
the application may need to write a set of registers for initialization purposes.
After the initialization is complete, the user level software needs to transmit to
the accelerator the appropriate data sets. The initiation of DMAs takes place
into the driver once the accelerator resides into a PRR. The user level application
is then capable of issuing a data receive, which will block until all the requested
data are fetched from the FPGA. Finally, once the execution of the accelerator
is complete, device is “destroyed”.

Generally, the scheduling of each accelerator and the transmission of the
required data are completely transparent to the user. The transmission is per-



8

Accel* CreateDevice (); Creates an accelerator entry. Returns
reference to the accelerator or NULL in failure.

int SetBitsetreams(Accel*, Assigns the bitstream files for all PRRs.
char*, char*, char*); Returns non-zero value in case of an error.

int Transmit(Accel*, Non blocking transmission of data. Takes as
void*,int); parameters the pointer to data and their size.

int Receive(Accel*, Blocking reception of data. Takes as parameters
void*,int); the pointer to data and the size of the data expected.

int ReadDevReg(Accel*,int); Blocking read of a certain device register.

void Non-blocking write to a certain device register.
WriteDevReg(Accel*,int,int);

void DestroyDevice(Accel*); Destroys an accelerator entry.

Table 2: Software Prototypes

formed sequentially for all the given data, depending on the needs of the acceler-
ator. As a result, the throughput can be equally shared among the accelerators.

3.3 Evaluation

System X58 Based

Processor Core i7 950 @3.0GHz

Chipset Intel X58 Express

RAM 6GB DDR3 @ 1600

FPGA Virtex 5 LX330T @ 125MHz

PCIe Interface Version 1.0, 4 lanes

Reconfiguration Port ICAP 32bit @ 125MHz

Operating System CentOs 6.4 @ 64bit

KERNEL Version 2.6.32

Table 3: Desktop System Specifications

Here we are presenting the rates we achieved both for regular data trans-
fers and reconfiguration. Evaluation of hardware components is discussed in this
Section, while we are still evaluating of software performance. Table 3 has the
system specification. The FPGA operated at 125 MHz. The measurements re-
gard the total throughput reached in terms of time elapsed for transferring 10 GB
of data to and from the FPGA. The initialization of each DMA and the recon-
figuration procedure are managed by the user-level software, while the driver is
character based. We performed DMAs of 32 KB each, since in such transactions
the throughput of the interface was saturated. The total throughput reached
equal 618 MB/s for DMA Reads (system write) and 544 MB/s for DMA Writes



9

(system read). The actual measurements are 45-48% lower than the nominal
throughput value of the PCIe v1 x4 interface.

As mentioned earlier, the maximum throughput reached for the PCIe inter-
face, is equal to 2.5 GTs per lane. Due to the 10b/8b encoding scheme, it is
translated to 250 MB/s per lane. The throughput reached may be considered
significantly lower than the theoretical maximum of 250 MB/s per lane (in our
case 1 GB/s). That is the rate of byte transfers performed in the physical layer,
while there are several bytes added to each TLP among the transaction, the data
link and the physical layer of the PCIe. The total amount of extra bytes added,
varies between 20-28 depending on the system and device settings, in that way
an overhead of 15-21% is added to 128 B TLP transactions [12]. As a result the
maximum theoretical throughput, taking into account the packet overheads, is
around 200 MB/s per lane(in case there is no packet loss and no acknowledge-
ment costs). In our case, the maximum theoretical throughput would be 800
MB/s and we reached 68% in DMA Writes and 77% in DMA Reads for half
duplex transactions.

The partial reconfiguration in our system occurs through writing the incom-
ing bitstream data to ICAP. The interface itself is 32 bit wide and is over-clocked
at 125 MHz, giving a throughput of 500 MB/s. The bitstream data are trans-
ferred through DMAs and their total size is 1.7 MB per PRR. The reconfig-
uration throughput reached, is equal to 488 MB/s (97.6% of the maximum).
It is important to state that we used double buffering techniques in order to
avoid starvation. The partial bitstreams used in this phase, served evaluation
purposes. In case we will use custom accelerators, the bitstream size and the
overall throughput would remain the same.

4 Conclusions

We presented a desktop system with heterogeneous resources capable to load
accelerators without requiring user’s involvement. Our work enables execution
of multiple applications in reconfigurable resources, or their accessing by mul-
tiple users. This can allow to exploit greatly the capabilities of reconfigurable
computing, as virtually, it can accommodate an large number of accelerators,
even though a certain number of reconfigurable areas is defined at compile time.

We have developed a simple functional interface to ease the use by potential
applications, and showed how this functionality is used to transfer the application
data between software and hardware by supporting high transfer rates using the
PCIe bus. This interface also supports partial reconfiguration through ICAP.
Finally, we showed with experimental results that partial reconfiguration can be
achieved at high rates.

Acknowledgment

This work was supported by the European Commission in the context of FP7
FASTER project (#287804).



10

References

[1] Satish K. Dhawan, Introduction to PCI Express - A New High Speed Serial Data
Bus, IEEE Nuclear Science Symposium Conference Record, 2005.

[2] Matthew J. Koop, Wei Huang, Karthik Gopalakrishnan, Dhabaleswar K. Panda,
Performance Analysis and Evaluation of PCIe 2.0 and Quad-Data Rate InfiniBand,
16th IEEE Symposium on High Performance Interconnects, 2008.

[3] PCI Sig, PCI Express 3.0 Frequently Asked Questions, available at http://www.

pcisig.com.
[4] Ray Bittner, Bus Mastering PCI Express In An FPGA, FPGA’09, Monterey

California USA 2009.
[5] Ray Bittner, Speedy Bus Mastering PCI Express, FPL’12, Oslo Norway August

2012.
[6] Alan George, Herman Lam, Greg Stitt, Novo-G: At the Forefront of Scalable Re-

configurable Supercomputing, IEEE Computer Science and Engineering, Jan-Feb
2011, volume 1 issue 13, pp.82-86.

[7] Matthew Jacobsen, Yoav Freund and Ryan Kastner RIFFA: A Reusable Integration
Framework for FPGA Accelerators, 2012 IEEE 20th International Symposium on
Field-Programmable Custom Computing Machines, pp.216-219.

[8] Kyprianos Papadimitriou, Charalampos Vatsolakis and Dionisios Pnevmatikatos
Invited paper: Acceleration of computationally-intensive kernels in the reconfig-
urable era, 7th International Workshop an Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), 2012.

[9] XAPP1052, Bus Master DMA Performance Demonstration Reference Design for
the Xilinx Endpoint PCI Express Solutions, Xilinx Corporation, available at http:
//www.xilinx.com/support/documentation/application_notes/xapp1052.pdf.

[10] UG341, LogiCORE IP Endpoint Block Plus v1.15 for PCI Express User
Guide available at http://www.xilinx.com/support/documentation/ip_

documentation/pcie_blk_plus_ug341.pdf.
[11] PCI Sig, PCI Express Base Specification Revision 1.1, available at http://www.

pcisig.com.
[12] Alex Goldhammer, John Ayer Jr, Understanding Performance of PCI Express

Systems, Xilinx WP350, Sept 4, 2008.


