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Abstract. Partial reconfiguration (PR) of FPGAs can be used to dynamically 

extend and adapt the functionality of computing systems, swapping in and out 

HW tasks. To coordinate the on-demand task execution, we propose and 

implement a run time system manager for scheduling software (SW) tasks on 

available processor(s) and hardware (HW) tasks on any number of 

reconfigurable regions of a partially reconfigurable FPGA. Fed with the initial 

partitioning of the application into tasks, the corresponding task graph, and the 

available task mappings, the RTSM considers the runtime status of each task 

and region, e.g. busy, idle, scheduled for reconfiguration/execution etc., to 

execute tasks. Our RTSM supports task reuse and configuration prefetching to 

minimize reconfigurations, task movement among regions to efficiently manage 

the FPGA area, and RR reservation for future reconfiguration and execution. 

We validate its correctness using our RTSM to execute an image processing 

application on a ZedBoard platform. We also evaluate its features within a 

simulation framework, and find that despite the technology limitations, our 

approach can give promising results in terms of quality of scheduling. 

1   Introduction 

Reconfiguration can dynamically adapt the functionality of hardware systems by 

swapping in and out HW tasks. To select the proper resource for loading and 

triggering HW task reconfiguration and execution in partially reconfigurable systems 

with FPGAs, efficient and flexible runtime system support is needed [6]. In this paper 

we propose and implement a Run-Time System Manager (RTSM) incorporating 

efficient scheduling mechanisms that balance effectively the execution of HW and 

SW tasks and the use of physical resources. We aim to execute as fast as possible a 

given application, without exhausting the physical resources. 

Our motivation during the development of RTSM was to find ways to overcome 

the strict technology restrictions imposed by the Xilinx PR flow [8]: 

 Static partitioning of the reconfigurable surface in reconfigurable regions (RR). 

  



 Reconfigurable regions can only accommodate particular hardware core(s), called 

reconfigurable modules (RM). The RM-RR binding takes place at compile-time, 

after sizing and shaping properly the RR. 

 An RR can hold one RM only at any point of time, so a second RM cannot be 

configured into the same RR even if there are enough free logic resources for it. 

Our RTSM runs on Linux x86-based systems with a PCIe FPGA board, e.g. XUP 

V5, or on embedded processors (Microblaze or ARM) within the FPGA; it can be used 

on other processors and FPGAs. We validated the behavior of RTSM on a fully 

functional system on a ZedBoard platform executing an edge detection application [7]. 

We also created a simulation framework that incorporates current technology 

restrictions in order to evaluate our RTSM. The main contributions of this work are: 

 an RTSM with portable functionality in its main core, capable to control HW and 

SW tasks in PR FPGA-based systems; 

 dynamic execution of complex task graphs, with forks, joins, loops and branches; 

 combination of different scheduling policies, such as relocation, reuse, 

configuration prefetching, reservation and Best Fit. 

In the following two sections, we first discuss previous work in the field, and then 

we present the key concepts and provide details on the RTSM input and operation. 

Then, in Section 4 we offer a performance evaluation in a simulation environment and 

validation on a real FPGA-based system, and in Section 5 we summarize the paper.. 

2   Related Work 

In one of the first works on hardware task scheduling for PR FPGAs, Steiger et al. 

addressed the problem for the 1D and 2D area models by proposing two heuristics; 

Horizon and Stuffing [1]. Marconi et al. were inspired by [1] and presented a novel 3D 

total contiguous surface heuristic in order to equip the scheduler with “blocking-

awareness” capability [2]. Subsequently, Lu et al. created the first scheduling 

algorithm that considers the data dependencies and communication amongst hardware 

tasks, and between tasks and external devices [3]. 

Efficient placement and free space management algorithms are equally important. 

Bazargan et al. [4], offers methods and heuristics for fast and effective on-line and 

off-line placement of templates on reconfigurable computing systems. Compton et al., 

in a fundamental work in the field of task placement, proposed run-time partitioning 

and creation of new RRs in the FPGA [5]. However, the proposed transformations are 

still beyond the currently supported FPGA technology. 

Burns et al., in one of the first efforts to create an operating system (OS) for 

partially reconfigurable devices, extracted the common requirements for three 

different applications, and designed a runtime system for managing the dynamic 

reconfiguration of FPGAs [6]. Göhringer et al. addressed the efficient reconfiguration 

and execution of tasks in a multiprocessing SoC, under the control of an OS [11], [12]. 

The managing of hardware tasks in partially reconfigurable devices by RTSMs is 

very interesting and active [9], and some efforts have evaluated the proposed 

scheduling and placement algorithms on actual FPGA systems [7], [11]. What seem to 

be missing are complete solutions that take into consideration all the current 



technology restrictions. In [11] the actual overhead of the scheduler compared to the 

execution time of each task is not calculated and also the reconfiguration time 

measured is the theoretical one, and the application execution is presented in a 

theoretical way. The run-time manager presented on [7] is able to map multiple 

applications on the underlying PR hardware and execute them concurrently and takes 

all restrictions in consideration; however the mechanics of the scheduling algorithm 

are simple and the overhead considerable. 

3   The Run-Time System Manager 

The RTSM manages physical resources employing scheduling and placement 

algorithms to select the appropriate HW Processing Element (PE), i.e. a 

Reconfigurable Region (RR), to load and execute a particular HW task, or activate a 

software-processing element (SW-PE) for executing the SW version of a task. HW 

tasks are implemented as Reconfigurable Modules, stored in a bitstream repository.  

3.1   Key Concepts and Functionality 

During initialization, the RTSM is fed with basic input, which forms the basic 

guidelines according to which the RTSM takes runtime decisions: 

(1) Device pre-partitioning and Task mapping: The designer should pre-partition the 

reconfigurable surface at compile-time, and implement each HW task by mapping it to 

certain RR(s) [8]. This limitation was discussed in [6] and [7]. 

(2) Task graph: The RTSM should know the execution order of tasks and their 

dependencies; this is provided with a task graph. Our RTSM supports complex graphs 

with properties like forks and joins, branches and loops for which the number of 

iterations is unknown at compile-time. 

(3) Task information: Execution time of SW and HW tasks, and reconfiguration time 

of HW tasks should be known to the RTSM; they can be measured at compile-time 

through profiling. A task’s execution time might deviate from the estimated or 

profiled execution time so the RTSM should react adapting its scheduling decisions. 

The RTSM supports the following features: 

(1) Multiple bitstreams per task: A HW task can have multiple mappings, each 

implemented as a different RM. All versions would implement the same functionality, 

but each may target a different RR (increasing placement choices) and/or be differently 

optimized, e.g. in terms of performance, power, etc. A similar approach is used in [6], 

and accounts for the increased scheduling flexibility and quality [7]. 

(2) Reservation list: If a task cannot be served immediately due to resource 

unavailability, it is reserved in a queue for later configuration/execution. A HW task 

will wait in the queue until an RR is available, or it is assigned to the SW-PE. 

(3) Reuse policy: Before loading a HW task into the FPGA, the RTSM checks whether 

it already resides in an RR and can be reused. This prevents redundant reconfigurations 

of the same task, reducing reconfiguration overhead. If an already configured HW task 



cannot be used, (e.g. it is busy processing other data, etc.), the RTSM may find it 

beneficial to load this task’s bitstream to another RR is such a binding exists. 

(4) Configuration prefetching: Allows the configuration of a HW task into an RR 

ahead of time [14]. It is activated only if the configuration port is available. 

(5) Relocation: A HW task residing in an RR can be “moved” by loading a new 

bitstream implementing the same functionality to another RR, as illustrated in Figure 1. 

Two RMs are being scheduled for configuration into two RRs; RM1 is already 

configured in RR2. RM2 should also execute, so it is waiting to be configured, but its 

RR is not available. The proposed relocation mechanism first moves the HW task by 

configuring the RM1 to RR1, and then configures the RM2 to the now empty RR2. 

This differs from the previously proposed relocation mechanism [5]. To fully exploit 

the benefits of this approach context save techniques are needed [10]. 

 

Fig. 1. RM2-RR1 does not exist, thus the hardware task laying in RR2 is relocated by first 

configuring RM1-RR1, and then RM2-RR2. 

(6) Best Fit in Space (BFS): It prevents the RTSM from injecting small HW tasks into 

large RRs, even if the corresponding RM-RR binding exists, as this would leave many 

logic resources unused. BFS minimizes the area overhead incurred by unused logic 

into a used RR, pointing to similar directions with studies on sizing efficiently the 

regions and the respective reconfigurable modules [13]. 

(7) Best Fit in Time (BFT): Before an immediate placement of a task is decided, the 

BFT checks if reserving it for later start time would result in a better overall execution 

time. This can happen due to reuse policy: when HW tasks are called more than once 

(e.g. in loops). For example, consider a HW task that is to be scheduled and already 

exists in an RR due to a previous request. Scheduling decision evaluates which action 

(reservation, immediate placement and relocation) will result in the earliest completion 

time of this task. For instance, BFT might invoke reconfiguration of a HW task into a 

new RR, even though this HW task (equal functionality, but different bitstream) 

already resides in another RR (but it is busy executing or has been already scheduled 

for execution). 

(8) Joint Hardware Modules (JHM): It is possible to create a bitstream implementing 

at least two HW tasks, thus allowing more than one tasks to be placed onto the same 

RR. JHM, illustrated in Figure 2, exploits this ability by giving priority to such 



bitstreams, which can result in better space utilization and reduced number of 

reconfigurations. A similar concept was presented in [15]. 

The above features are incorporated in the RTSM, and have been tested within a 

simulation framework presented in the following Section. The combination of BFT 

with the Reservation list and their reaction with the Reuse policy constitute an 

interesting feature, leading the scheduler to hybrid decisions that potentially benefit an 

application. To this end, we believe it is important to study if complex techniques and 

features are actually required to serve efficiently different kind of applications. 

 

 

Fig. 2. Implementations for all crypto modules are available for and can be loaded into any RR, 

however a large amount of resources will be under-utilized. JHM utilizes more efficiently the 
RR area, given that the corresponding bitstream (the combined AESDES module) is available. 

3.2   RTSM Input and Execution Flow 

The input to the RTSM is the partitioning of the FPGA in partially reconfigurable 

HW-PE resources, the availability of SW-PE resources, the tasks to be scheduled, the 

task graph representation describing task dependencies, and the available task 

mappings, i.e. bitstreams for the different implementations of each hardware task, and 

tasks implemented in software that can be served by a SW-PE. Additionally, the 

RTSM needs the reconfiguration and execution times of each task, and optionally the 

task deadlines. This information is used to update the RTSM structures and perform 

the initial scheduling. We use lists to represent the reconfigurable regions (RR list); 

the tasks to be executed (task list); the bitstreams for each task (mappings list); and 

reservations for “newly arrived” tasks waiting for free space (reservation list). Since 

we do not consider random arrival times of tasks, we provide a definition by which a 

task is characterized as “arrived task”: If a task has completed its execution at time 

t=x, then the next in sequence dependent task as retrieved from the task graph has an 

arrival time tarr=x+1. During application execution the RTSM changes its scheduling 

decisions dynamically. Specifically, it reacts according to dynamic parameters such as 

the runtime status of each HW/SW task and region, e.g. busy executing, idle, 

scheduled for reconfiguration, scheduled for execution, free/reconfigured-

idle/reconfigured-active region etc. Our approach is dynamic, i.e. at each point of 

time the RTSM reacts according to the FPGA condition and task status. 



We structure the RTSM in two phases. In the first phase the RTSM continuously 

checks for newly arrived tasks. After the scheduling decision is made, the RTSM 

checks if the task can be served immediately and then whether the Reuse Policy can 

be invoked, and accordingly issues an execution or reconfiguration instruction. Then, 

it checks if a task has completed execution, and decides which task to schedule next 

according to the task graph. Finally, the RTSM checks if there are reserved tasks that 

should start executing. 

The second phase is the main scheduling function of the RTSM. In order to reach a 

scheduling decision for a task, the RTSM follows a complex process, employing a 

variety of functions and policies. The RTSM tries to first exploit the available 

bitstreams in terms of space and then tries to find a solution that will provide the task 

with the best ending time. The RTSM creates a list of the available mappings and of 

the available RRs, for which a mapping exists, for the newly arrived task. If the later 

list contains more than one RR, a Best Fit policy decides which RR the task will be 

placed on, considering the area occupied by the task. Our scheduler will pick the 

bitstream of the task that best utilizes the area of the corresponding RR, i.e. it places 

the newly arrived task on the RR producing the smallest unused area, provided this 

RR is free. If no free RR could be found on the available RRs list, but there are free 

RRs that have no corresponding mappings for the task, the scheduler performs 

Relocation. With this step the scheduler tries to relocate a previously placed task to 

another RR so as to accommodate the newly arrived task. If this step is also 

unsuccessful, the scheduler will attempt to make a reservation for the newly arrived 

task, thus execute it at a later time. 

Even if the scheduler finds a suitable RR for immediate placement, it will also 

perform a Best Fit in Time (BFT) in order to check if by reserving the task for later 

execution and reusing a previously placed core, the incoming task will finish its 

execution at an earlier time. It is important to note that the RTSM besides the RR and 

SW PEs, treats also the configuration controller as a resource that must be scheduled. 

3.3   Tasks with Deadlines 

For applications with task deadlines, the RTSM can consider them prior to taking 

scheduling and placement decisions. If no alternative -either via relocation, reservation 

or SW execution- can meet the deadline, the task is rejected. Note that the proposed 

relocation moves a HW task only if its deadline will be met. This feature is inactive in 

our current work, as we focus on applications that run in a streaming fashion. 

3.4   Discussion 

Task reconfiguration and execution times: These inputs can be derived through 

profiling, which may be done by the end user. It can also be computed using theoretical 

reconfiguration times and the HW bitfile size, while the execution time can be 

estimated by the compilation tools or can be provided by the programmer during the 

design phase of the application. This information is provided to the RTSM in its 

initialization. However, in practice, a task may execute for more than its predicted 



execution time, hence the RTSM should be notified when a task completes execution, 

so that it may revise its scheduling decisions dynamically. 

BFS: The BFS aims to place a newly arrived task (implemented as bitstream) on 

the RR producing the smallest unused area. Without BFS, the size of an RM does not 

pose any restriction for loading it into a RR, given that such a bitstream exists. The 

programmer can disable this feature; however in all our experiments it is enabled. 

Size of RRs and RMs: These parameters are defined at design-time and have fixed 

values. BFS reacts based on these parameters. 

4   Experimental Simulation Framework, Testbed, and Results 

We evaluated the RTSM within a simulation framework, and tested its correctness 

executing an edge detection application on the ZedBoard platform. To demonstrate all 

concepts described previously we also used the RTSM to control synthetic workloads. 

Figure 3 shows the task graph that the RTSM will manage. In this Figure we express 

the HW/SW execution times and reconfiguration time in arbitrary time units in order to 

make the understanding easier. The task graph has one instance in which three tasks 

have more than one dependency, i.e. T3, T7 and T8, which results in join operations. 

Also, in T2 there are fork operations. The available resources consist of two RRs and 

one SW-PE, as well as the FPGA configuration port, which is also treated as a resource 

to be scheduled. Also, the RTSM accepts as input the width and height of each RR; 

these are used by the Best Fit in Space function. 
 

 

TABLE I RM-RR Bindings and required space. 
 

 

 

Fig. 3. Application task-graph annotated 

with HW and SW execution time and 

reconfiguration time for each task.

Table I shows the available task mappings that drive the options of RTSM for 

making the best scheduling decision for a given task, e.g. T1 can be loaded either in 

RR1 or RR2. If a task has only one RR-RM, (e.g. T2) binding, options are limited. We 

assume that every task has a software implementation as well, in order to study how 

the RTSM reacts in exploiting both hardware and software resources, always to the 

Tasks 
Mapping Characteristics 

#RR Width Height 

T1 1,2 1 2 

T2 2 1 3 

T3 2 1 3 

T4 1,2 1 2 

T5 1 2 2 

T6 2 1 2 

T7 1,2 1 2 

T8 1,2 1 2 



advantage of the overall application execution time. It is important to note that the 

software implementation of a task has a longer execution time than the hardware one. 

The scheduling result of the experiment presented is shown in Figure 4. In this 

execution most of the RTSM features were activated. Relocation is activated to 

accommodate task T2. Since Best Fit in Space (BFS) function has placed task T1 on 

RR2, in order to place task T2 on the FPGA, the RTSM first performs relocation and 

reconfiguration of task T1 on RR1, and then reconfigures T2 to the now empty RR2. 

Additionally, the decision to execute task T5 on SW-PE is due to the Best Fit in Time 

(BFT) function as a later reservation of task T5 on a RR gave a longer completion time. 

Fig. 4. The scheduling outcome of our example, showing features such as relocation, reservation 

and prefetching. The use of the SW version of task T5 completes faster the overall execution. 

Also we can see the use of Reservation on the decision taken for task T3. The 

arrival time of task T3 is on t=10 and since the only available bitstream binds task T3 

to RR2, there is no other option but to reserve task T3 for later execution on RR2. Note 

that the scheduler does not relocate task T4 to RR1, because T4 is near completion of 

its execution (otherwise it would restart its execution). 

Finally, there is a high level of inner task parallelism between tasks of the same 

level but also from different levels, i.e. tasks T1, T2, T4, and T5, and we observe the 

use of configuration prefetching for tasks T7 and T8. 

4.2   Discussion 

In the example above we observe the following: 

 The task graph is complex enough to demonstrate fork and join operations. We 

assumed multiple bitstreams per task to show the flexibility of RTSM. 

 We demonstrated almost all RTSM features: relocation, reservation, prefetching, 

BFT and BFS. The reuse policy was not demonstrated as no task is repeated, nor 

does the task graph contain a loop. We also did not demonstrate the use of JHM, as 

we did not assume availability of such bitstreams. 

 In Figure 4, we obtain that relocation takes place from the very beginning of the 

scheduling. This evidences that our approach is dynamic, i.e. at each point of time 

the RTSM reacts according to the FPGA condition and task status. 

 We assumed that the SW-PE execution takes more time than the combined 

hardware execution and reconfiguration operation, prompting the scheduler to 

choose the hardware accelerator to program in the FPGA. 

 Finally, we assumed that HW task execution time is 2-3 times larger than the 

reconfiguration time, to model fast reconfiguration times or coarser grain tasks. 



4.3   Validating the RTSM with a Real-World Application 

We validated the behavior of RTSM on a fully functional system on a ZedBoard 

platform executing an edge detection application [7]. Figure 5 shows the system 

architecture that features two ARM Cortex-A9 cores, two reconfigurable regions acting 

as the HW-PEs each of which is connected to a DMA engine, and a DDR3 memory. 

We used CPU0 for the RTSM and CPU1 as the SW-PE, executing SW tasks. 

Fig. 5. System architecture of the Zynq platform. 

At system start-up, the system is initialized by the on-board flash memory; the boot 

loader initializes CPU0 with the RTSM code, sets-up CPU1 as the Processing Element 

(PE), and loads the initial bitstream in the programmable logic. Then the RTSM loads 

the application description (task graph, task information, task mappings, etc.) from the 

SD card. It also transfers the partial bitstreams from the SD to the main (DDR3) 

memory. During normal operation the RTSM takes scheduling decisions and issues 

tasks, on the SW-PE, i.e. CPU1, and the two HW-PE, i.e. RR1 and RR2. 

The edge detection application consists mainly of four filter kernels executing in a 

sequence: Gray Scale, Gaussian Blur, Edge Detection and Threshold [7]. For these 

tasks, we have both a HW version as partial bitstreams, and a SW version; the RTSM 

will decide which version (SW or HW) is better to use based on the run-time 

availability of HW- and SW-PEs. The input image is loaded from the SD card, while 

intermediate images resulting after processing each task and the final output image are 

also written back to SD card. The transfer from and to the SD card is performed by SW 

tasks running on CPU1, which also controls partial reconfiguration of HW tasks. 

Figure 6 depicts the task graph of the application, showing only task dependencies but 

not how the application will execute over time. We also include the (implicit) SW tasks 

that perform the reconfiguration process. 

The CPUs communicate with each other through the on-chip shared memory using 

two memory locations, one for each communication direction, using a simple 

handshake protocol (set and acknowledge/clear). One flag shows the PE status where a 

“-1” indicates that the PE is idle and the RTSM can issue any SW task to it; when the 

PE is busy, the flag indicates the task assigned, e.g. “2” for SW_imageRead, “3” for 

SW_imageWrite, etc. Once the PE completes the task execution, it informs the RTSM 

using the other flag indicating the type of the completed task. 



In the system architecture of Figure 5, the two RRs are connected to the processing 

ARM cores through an AXI_Lite bus running at 75MHz, and through a DMA engine, 

each one having read and write channels on a dedicated AXI_Stream running at 150 

MHz. The AXI_Stream is connected to the processor High Performance ports that 

provide access to DDR memory. To execute a HW task, the RTSM issues a 

reconfiguration command to CPU1, which in turn configures the FPGA with the 

corresponding bitstream through the PCAP configuration port. Once partial 

reconfiguration completes, RTSM initiates the HW task execution, programs the 

appropriate values and triggers the corresponding DMA engines and kernel filters. All 

HW mappings of the kernels were implemented with the Xilinx HLS tool that also 

creates automatically the SW drivers for the SW/HW communication over the 

AXI_Lite bus. When a kernel completes execution, it generates an interrupt to the 

RTSM, which then updates its structures and proceeds to a new scheduling decision. 

Fig. 6. Edge Detection Application Task Graph. 

The RTSM operation can be broken down into different phases shown in Table II. 

The Table also lists the total time spent on an ARM A9 Cortex CPU for each distinct 

phase, both in clock cycles and μs. The RTSM initialization phase is performed only 

once and it includes fetching from the flash memory the initialization file that 

describes the tasks the control flow graph and the task mappings, parsing it, and 

initializing the RTSM data structures. In the RTSM initialization time we do not 

include the overheads for loading the file from flash memory and for transferring the 

partial bitstreams to DDR3 memory. The Schedule phase refers to the time needed to 

execute the Schedule function in order to take a decision about the task to be executed 

next, i.e. when and where this task is going to be executed. The Issue Execution phase 

refers to the time required to issue either a reconfiguration or execution task 

instruction, depending on what the scheduling decision was. Also, depending on 

whether a HW core is reused, the RTSM checks if configuration prefetching can be 

performed. The HW Task completion phase & SW Task completion phase refer to 

updating the RTSM data structures after the completion of a HW or SW task, and to 

resolving the dependencies in order to set the next task in the graph as “arrived”. 

Finally, the Reconfiguration task completion & HW task execution issue phase refer to 

the interval in which the RTSM receives a reconfiguration completion notification 

from the PE, issues a task execution command, and checks whether it can perform 

configuration prefetching of a not yet “arrived” task. 

The overall execution time of the application was measured to be 129.62 ms, while 

the total RTSM overhead derived from Table 2 is 0.112 ms. The theoretical 



reconfiguration overhead, given that PCAP has a throughput of 400MB/sec, is 0.6 ms. 

This is added only once, since in the rest cases of our example configuration 

prefetching takes place and hides the reconfiguration overhead with HW execution. 

However, since we use a SW task to perform reconfiguration, the throughput is 

considerably lower at 50MB/sec, increasing the reconfiguration cost to 5ms. Still, 

compared to the total execution time of application, this overhead is negligible. 

 
TABLE II. Time per each distinct phase of the RTSM, running on ARM A9 at 667MHz. 

RTSM phases #Clock Cycles Elapsed time (μs) 

RTSM Initialization 7,707 23.121 

Schedule 17,346 52.038 

Issue Execution 5,995 17.985 

HW Task completion 2,493 7.479 

Reconfiguration task completion & 

Hardware task execution issue 
1,224 3.672 

SW Task completion 2,748 8.244 

 

Finally, we compare the performance of our system with the one presented in [7]. 

That work used the same application running on a Xilinx Virtex-5 FPGA and reported 

a throughput of 18 fps for a 640x480 image. In our case, we used a 1920x1080 image, 

and we measured a throughput of 7 fps. By converting the two results into pixels per 

second throughput, our system is faster by a factor of 2.6. Since the two platforms are 

quite different, a direct comparison is not easy; for example in the Zynq we use the 

ARM hard processors while the V5 supports only soft-core MicroBlaze processors. 

Regarding portability, our initial RTSM was developed on an x86 ISA desktop; 

porting it to the ARM architecture required only (i) cross-compiling the code, and (ii) 

the re-implementation of architecture specific drivers and communication protocols 

between the RTSM and the Processing Elements. 

5   Conclusions 

We presented a run-time system to efficiently schedule HW and SW tasks in systems 

with partially reconfigurable FPGAs. We plan to develop complex use-cases, e.g. task 

graphs with branches and loops that will allow for demonstrating and evaluating all the 

features of RTSM on actual FPGA platforms. One obstacle to this effort (by us and 

other researchers) is the lack of standard interface across different applications, and 

designers have to manually intervene to adjust the RTSM and the task application 

interfaces, according to the specifics of each platform. Our RTSM relieves the designer 

from the task invocation complexities; he/she only has to address the task data 

interface with the core part of the RTSM.. 
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