On-Chip Networks for Mixed-Criticality Systems

Polydoros Petrakis”, Mohammed Abuteir!, Miltos D. Grammatikakis”, Kyprianos Papadimitriou”,
Roman Obermaisser’, Zaher Owda’, Antonis Papagrigoriou”, Michael Soulie¥, and Marcello Coppola®

*Technological Educational Institute of Crete, GR
fUniversity of Siegen, DE
§STMicroelectronics, FR
“contact: {mdgramma, kpapadim}@cs.teicrete.gr

Abstract—We propose the integration of a network-on-chip-
based MPSoC in mixed-criticality systems, i.e. systems running
applications with different criticality levels in terms of completing
their execution within predefined time limits. An MPSoC contains
tiles that can be either CPUs or memories, and we connect them
with an instance of a customizable point-to-point interconnect
from STMicroelectronics called STNoC. We explore whether the
on-chip network capacity is sufficient for meeting the deadlines of
external high critical workloads, and at the same time for serving
less critical workloads that are generated internally. To evaluate
the on-chip network we vary its configuration parameters, such
as the link-width, and the Quality-of-Service (QoS), in specific
the number (1 or 2) and type (high or low priority) of virtual
channels (VCs), and the relative priority of packets from different
flows sharing the same VC.

I. INTRODUCTION

With the advent of multicore processors residing on the
same chip (MPSoC) several efforts exist towards integrat-
ing systems with different levels of importance, safety and
dependability, known as mixed-criticality systems integration
[1], [2]. Certification of such systems is challenging because
concurrently executed applications with different criticality
levels can block each other when accessing shared resources
[3]. Furthermore, a few recent efforts started studying on-
chip networks to explicitly support mixed-criticality systems
[4], [5], [6]. Some propose new on-chip networks, and others
augment existing ones with certain features. Previous studies
to this direction researched the extend to which guaranteed-
performance and best-effort traffic can be served by a NoC
[7]. The authors of [8] discussed adaptation of NoCs to
real-time requirements, and showed that for soft real-time
systems the number of missed deadlines can be reduced by
utilizing a routing mechanism based on message priorities. We
complement these works by searching the set of parameters
of a certain NoC that suit well for mixed-criticality systems.

We consider that external hard real-time messages enter the
MPSoC through a gateway, which in-turn forwards them to the
tiles, while at the same time less critical workload is produced
by independent processes running in the on-chip CPUs. Real-
time tasks are transferred in the form of Time-Triggered
Ethernet (TTE) messages [9] entering the MPSoC, in which
tiles are interconnected via the Spidergon STNoC [10]. By
definition, a mixed-criticality system should not sacrifice lower
criticality applications for whatever purpose [11], and it is
desirable to serve them at competitive soft real-time rates that

can be specified at design time by a service-level agreement.
Our main contributions are:

« we reveal the cases showing saturation of the NoC and
noticeable variations in packet delay;

o we identify a proper set of NoC parameters by varying
link-width and QoS that balances cost with performance;

e a worst case timing analysis of the transfer of packets
throughout the NoC.

In the next Section we provide some preliminaries, and
in Section III we present the experimental setup. Section IV
discusses the application mapping and scenarios, and the NoC
parameters we varied. Section V has our results and findings.

II. PRELIMINARIES

This Section has clarifications on the fields related with
our work: we briefly describe real-time systems, then time-
triggered communication technology, and finally we give de-
tails of the Spidergon on-chip communication network.

A. Real-Time Systems

Real-time tasks are distinguished in four categories de-
pending on their arrival pattern and deadlines. If meeting a
given task’s deadline, i.e. time point a task must have been
completed, is critical for the system operation, the deadline is
considered to be hard. If it is desirable to meet the deadline but
in some cases missing it can be afforded, the deadline is termed
soft. Tasks with regular arrival times are called periodic. On
the other hand, tasks with irregular arrival times are called
aperiodic, and typically have soft deadlines. Also, there exist
aperiodic tasks that have hard deadlines, termed sporadic tasks.

B. Time-Triggered Ethernet

Time-Triggered Ethernet [9] or TTE emerges as one of
the dominant technologies for integrating high critical and
low critical traffic into a homogeneous backbone, and stands
as a suitable replacement of bus-systems in mixed-criticality
systems. It offers three classes of traffic: static time-triggered
(TT) traffic that has the highest priority, and dynamic traffic,
which is subdivided into Rate Constrained (RC) traffic that
has bounded end-to-end latencies, and Best-Effort (BE) traffic
for which no timing guarantees are given. TTE networks are
composed of one or more clusters connected via gateways, and
each cluster groups end-nodes and network-switches intercon-
nected with full duplex physical links. Data are transmitted

in the form of frames; messages are transferred in the frame
payload. TTE frames follow the previous naming convention:
TT frames are transmitted based on offline computed schedules
and are periodic, RC frames have a minimum inter-arrival time
and are sporadic, and BE frames are aperiodic.

The TTE network is partitioned into communication chan-
nels with a predefined link bandwidth and scheduling time,
using the concept of virtual links (VL). Virtual links are
tree structures with one sender and one or multiple receivers
that allow to emulate point-to-point connectivity. In terms of
implementation, this is done using a virtual link identifier
(VLID) transferred into the frame. The VLID is used to
differentiate between the different traffic classes, by a table
lookup in a device. Network-switches route packets based on
their VLID, and it is possible that different switches change
the traffic class of a frame, e.g. a frame sent as TT to a switch,
can then be tagged as RC and forwarded accordingly [9].

Further details on TTE technology are out of our scope,
as we use it as the external source only for feeding the on-
chip network with real-time messages, and we could use other
technologies such as CAN bus or FlexRay [12].

C. Spidergon on-chip Communication

Spidergon STNoC is a ring-based topology comprising three
main building ingredients; network interface (NI) that func-
tions as access point to the interconnect onto which initiators
and targets are directly connected; simple non-programmable
router; and physical link. STNoC relies on network operation,
thus it provides programmable services such as changing the
routing information and Quality-of-Service (QoS). It can be
customized according to given specifications to efficiently
interconnect MPSoC components, i.e. CPUs, memories, and
peripherals. From the network point of view, each component
is a node (called also tile), and information - instructions
and data - is transmitted across the network in packets. Each
packet carries a header information that allows the receiver to
reconstruct the original message. Typically, packets sent from
a certain tile follow always the same path. This is determined
with a source-based static routing policy, which functions
based on the information contained in the packet header.

Prior to transmitting a packet, this is broken down into
smaller units called flits that in turn are released into the
network. A flit carries the maximum amount of data that
can traverse the physical link per transaction. Thus, for a
given packet size, the amount of flits comprising each packet
depends on the link-width. During customization, along with
the topology, the NoC designer tunes-up these parameters, i.e.
link-width and packet size. For example, for an STNoC with
16 Bytes link-width, if packet size is 72 Bytes, e.g. 64 for
payload and 8 for header, this is split up in 5 flits.

Each router is equipped with buffer(s) that store temporarily
the flits, prior to forwarding them to the next router. A buffer
implements essentially the virtual channel (VC) on which the
packets are transferred. Routers can be configured with up to 2
buffers each, thus 2 VCs, each one with a different priority, i.e.
high- or low- priority. This comes at the expense of additional
hardware cost, but it allows to simultaneously store packets
from different flows onto the same router, which accounts

for congestion reduction. Different traffic policies can be set
depending on the number of available VCs; this relates to the
Quality-of-Service of STNoC.

NI NI

-
:} high-priority VC
- \\\\

\

r \

\
1l

Router Router

low-priority VC {

Fig. 1: Packets from different VCs transferred in an interleaving manner.
Packets using the high-priority VC are served immediately, which can result
in preempting packets being transferred on the low-priority VC.

Figure 1 shows that the presence of high priority VC allows
preempting packets transferred on the low priority VC, by
permitting packet interleaving. We consider this feature as
important for delivering hard deadline packets, as their transfer
time on the STNoC can be pre-calculated; ideally it is equal to
the STNoC latency. Another traffic policy is that of assigning
priorities for the different flows sharing the same VC. This
can be done with the QoS Fair Bandwidth Allocation (FBA),
a low cost arbitration algorithm that distributes the NI target
bandwidth among different initiators during peak request time.
This algorithm is enabled at the garnet router and allows to
manage packets from different flows that compete for the same
output port of the router.

Recapitulating, the different STNoC configurations offer
a wide range of choices, but they are related to cost. On-
chip networks with 8 Bytes link-widths cost much less than
32 Bytes, and 1 VC costs less than 2 VCs, thus selecting
wisely the parameters prevents from increasing unnecessarily
the hardware cost. This can be huge, considering that existing
SoC products using STNoC such as the STiH312 Cannes Ultra
platform interconnect up to 148 tiles [13].

ITII. EXPERIMENTAL SETUP

This Section overviews the setup on which we evaluated the
NoC in serving mixed-criticality systems.

A. System Model

Three TTE nodes communicate over a TTE network via a
switch. One of the TEE nodes is the STNoC that interconnects
CPU and memory tiles. TTE messages sent by other nodes are
forwarded by the switch, then enter the STNoC through an on-
chip gateway, converted through a protocol into STNoC pack-
ets, and subsequently relayed to the on-chip tiles. We modeled
this system within an environment that mixes commercial and
academic frameworks. We use a simulation framework for the

TTE published in [14] to generate the TTE messages, which
then feed an extended version of gem5 simulator implementing
the STNoC-based MPSoC [15]. The frameworks communicate
via files, in which actions are annotated with time-stamps and
other related parameters, i.e. ID/type of message, message size,
VLID, target tile, arrival time, and deadline.

B. Spidergon STNoC Node

We target the MPSoC of Figure 3 that interconnects four
CPUs and four memories via a Spidergon STNoC. The clock
frequency of the on-chip network is 1G H z, thus once a packet
transmission begins, each flit is injected from the NI every
Ins. With regard to the delay added by each component
participating in a complete transaction: the latency of the
protocol at the initiator for converting an incoming message
into an STNoC packet, either from the gateway or a CPU,
is 5 clock cycles; the NI that breaks the packet into flits
adds a latency of 1 clock cycle, and the garnet router along
with the physical link add a total latency of 2 clock cycles.
Therefore, if for instance a packet passes via two routers,
10 cycles are needed in total to deliver the head flit at the NI
of the target. The remaining flits are transferred in a pipeline
manner, thus 1 more cycle per flit is needed for delivering
the entire packet to the NI. Packet routing is static, source-
based, following the across-first strategy, and we implemented
it in the gem5 routing tables.

TTE messages are received at the gateway that is im-
plemented in one of the on-chip CPUs. The other CPUs
invoke individual processes with soft deadlines, producing
packets with a fixed injection rate. The capability of the on-
chip network to serve all requests depends on its bandwidth
capacity. Here we study its capability in serving the TTE
workload, with and without enabling concurrently other CPU
processes. An analysis for different packet injection rates,
similar to the one we present in [16], would expose additional
extreme cases. In present work, we focus on the effect of
STNoC parameters only, and consider a fixed injection rate
specified by a service-level agreement. Furthermore, we do
not examine the overhead added by any other on-chip resource,
and hence our measurements do not include the time overhead
from CPU computation, gateway processing, and memory
access. We should notice that in order to generate packets
we used the network tester primitive provided by gemS5 [17].
We connected one network tester per STNoC node acting as
initiator, instead of using a CPU model from a library.

C. Hard Deadline Workload Flow and its Representation

TTE messages carry both write and read memory requests.
Once a TTE packet reaches the NI of a memory it is im-
mediately consumed, the NI responds within a single cycle,
and sends a new packet back to the gateway. This packet is
then converted into Ethernet format and relayed to the TTE
network. We recall that we do not measure the memory access
time; we focus only on the NoC transfer overhead.

The TTE traffic is represented with a DAG that carries
information about the dependencies between the virtual links
(VL) and the relative deadline requirements. Figure 2 depicts
part of the example we used. It resembles a high critical

TN TN
(vir) (vi2)
N4 N
// \
—5us—»{ VL3 j«3ps
TN
(via)
o
/TN
{5)
N
N i s
(w7) 2us K
N4
i) (o
Sus—>(VL6) (vis)
N2

Fig. 2: DAG with dependencies between virtual links for on-chip processing,
and on-chip deadlines.

application from the healthcare domain consisting of both
periodic and sporadic tasks, all characterized by deadlines;
in a previous work this application was deployed onto a Time
Triggered platform [18]. Further details on the DAG in terms
of which task is periodic and which task is sporadic are
out of the scope of this paper. The DAG nodes represent
cluster-level TTE communication actions each assigned with a
VLID, and the edges represent dependencies between the TTE
communication actions. An edge means that the input from a
source node, i.e. incoming virtual link, must be processed in
order to provide output for a target node, i.e. outgoing virtual
link. Processing is carried out by the STNoC-based MPSoC.
For example, VL1 and VL2 are incoming virtual links that
should be processed on-chip in order to feed the outgoing
VL3; once the on-chip processing completes and the result
is sent back to the TTE, VL3 becomes the incoming virtual
link. In turn, after the on-chip processing of VL3 completes,
it provides input to the VLS5, and so on. The labels on edges
correspond to the relative deadline between the reception of
an input message from the incoming virtual link, and the
transmission of an output message to the outgoing virtual
link. This deadline refers to the maximum time that should be
spent at chip-level, i.e. the time-window within which on-chip
actions should complete. These are: the gateway processing
for handling the incoming/outgoing messages, the transfer on
NoC from the gateway to memory and back, and the memory
access. Here we concentrate on the NoC transfer only to
examine whether its overhead results in missing deadlines.

DAG nodes without a label on their output edges correspond
to read-only messages. The maximum permitted time specified
by a deadline includes the time for completing read actions of
such subsequent nodes. For instance, in Figure 2, VL3 output
edge is not labeled; the smallest deadline of a previous node,
i.e. VL2, specifies the maximum permitted time for completing
the processing of both VL2 and VL3.

IV. EXPERIMENTAL CASES AND SYSTEM PARAMETERS

The MPSoC we studied is shown in Figure 3; CPU {0}
implements the gateway between TTE and STNoC.

CPU

> NI

¢ 04
Router - v ¢

- o

Memory

v v

® M

Fig. 3: 8-tile Spidergon STNoC. Gateway connection for incoming/outgoing
TTE messages is implemented in CPU{0}.

Link

A. Application Mapping and Traffic Direction

The TTE messages entering the gateway induce write and
read requests to the memory tiles {0}, {2} and {3} of Figure
3. In particular, a write packet is sent to a memory, and
once arrived at its NI, it responds within a single cycle by
sending another packet back to the gateway. In our mapping
scenario we made a convention with regard to the memories
to which the different TTE message types are sent; sporadic
messages are forwarded to different memories than periodic
messages, therefore the respective transfer times vary depend-
ing on the number of intermediate routers in each path. The
injection rate of requests by the gateway is low; in a total
of 10 million clock cycles of simulation time the gateway
releases 250 requests. This is driven by the rate of TTE
messages arriving at the gateway. The other on-chip CPUs
invoke processes injecting requests to any on-chip memory
in a random way, and they are of write-type only. They
are less critical processes produced by real-time applications
with soft deadlines, such as continuous media, and real-time
performance monitoring, for which the required service rate
is specified by a service-level agreement.

B. Parameter Selection and Scenarios

Apart from the NoC link-width, we varied its QoS param-
eters such as the number of VCs, and the relative priority
of packets transferred on the same VC. We measured the
NoC delay at flit- and packet- level, and for some cases the
corresponding power consumption. We tested the following
scenarios to cover a sufficient range of cases that exhibited
critical situations:

#1 STNoC serves the TTE workload only, using one VC;

#2 on-chip CPU processes generate concurrently memory
requests. TTE workload is transferred on the high-priority
VCO0, CPU workloads on the low-priority VCI;

#3 all workloads share the same VC, without setting priorities
(FBA in the routers is off); and

#4 all workloads share the same VC, and we examine the
effect from setting different packet priorities (FBA is on).

The gateway receives TTE messages of varying sizes, and
converts them into network packets of fixed size prior to

transmitting them to STNoC. TTE messages do not exceed
the amount of 100 Bytes, hence we selected a payload of
128 Bytes to fit the largest TTE message. The packet header
size is 8 Bytes. Prior to injecting a packet to the STNoC,
this is broken down into flits. The router’s buffer size was
set equal to the number of flits comprising a packet. On the
other hand, we set large queues at the NIs in order to avoid
potential overflows when new data arrive; although this is
unrealistic, it prohibited packet dropping, and thus allowed
us to find the time for serving a packet in the worst case
and also assess saturation cases, by measuring the time a
packet remains in the NI queue prior to releasing it into the
STNoC. In a real system the NI queue is relatively small,
and packet dropping is handled by either controlling the rate
of data entering the queue depending on its status, or, with
retransmission of dropped packets.

The packet injection rate from each CPU was
set equal to 0.05 packets per clock cycle, i.e.
1 packet every 20 clock cycles. This is driven by the
rate of CPU messages arriving at the protocol prior to NI
In [16] we showed that for a similar setup with 8 nodes
and link-width equal to 8 Bytes, saturation occurs above
0.035 packets per clock cycle per CPU. We expected here
that the given rate, i.e. 0.05, will cause NoC saturation.

V. PERFORMANCE EVALUATION

We performed experiments in the framework published in
[15] that allows measuring the end-to-end delivery times and
the power consumption of routers and links. We measure two
types of delay; the time a packet is waiting in the NI queue
before it is split up into flits and released to the network
(called NI queue delay), and then, after the head flit leaves the
NI queue, the time elapsed for traversing the network until it
reaches the destination (called network traversal delay). This
way we measure the time for transferring the entire packet.
We also measure the time for serving a TTE message after
converting it into STNoC packet format; this is composed
of the time for a TTE packet to reach the NI of the target
memory, and the time for the response packet to be delivered
back to the gateway. We refer to this as TTE message or
TTE packet round-trip time. We ran each simulation for
10 million clock cycles, and we repeated the experiments
to validate the results. For the traffic rates we reported earlier,
gem5 simulation ran fast, carrying out 140, 000 cycles/sec on
an Intel i15-3470 clocked at 3.2G'H z.

A. Varying the Link-Width

Table I has results for scenario #1 and shows that the
network traversal delay and the TTE message round-trip time
decrease when link-width increases. This is due to the bigger
amount of data transferred per flit and the smaller amount
of flits per packet, i.e. when link-width is 8 Bytes, the
TTE message is broken down in 17 flits, while for 16
and 32 Bytes it is broken down in 9 and 5 flits respec-
tively. We observe that when link-width is 32 Bytes, the
TTE message round-trip time drops considerably, down to
24 — 28 clock cycles (cc). However, the wide link-width
increases router’s total power, mainly due to its clock; we

observe that when link-width doubles, clock power doubles
as well. We also notice that TTE message round-trip time
varies in each case, i.e. between 48 — 52cc, 32 — 36¢c, and
24 — 28cc. This is due to the application mapping we reported
earlier; for different message types, periodic or sporadic, the
corresponding packets follow different routing paths, which in
turn results in different transfer times, e.g. reaching memory
{0} from gateway requires fewer hops than for memory {2}.

TABLE I: Effect from link-width (Iw) variation on NI queue delay, network
traversal delay, TTE packet round-trip time, and power consumption. Values
are average and runs concern scenario #1, i.e. TTE workload only.

Network metric | w=8B | lw=16B | Iw=32B
NI queue delay 1.555¢cc | 1.555cc | 1.555cc
Network traversal delay (flit) | 13.444 cc | 9.444 cc | 7.444 cc
TTE packet round-trip time 48-52 cc | 32-36 cc | 24-28 cc
Router total power 0.261 W | 0.380 W | 0.616 W
Router clock power 0.095W | 0.191 W | 0383 W
B TTE packet round-trip CPU packet write-only
2,000,000 -~
200,000 ===
B 10,000 o
o
S
3
3 1,000 oo
3
Q
2 100 o
10— S .
1]
8 16 32

NoC link width (#Bytes)

Fig. 4: Average NoC delay (logarithmic scale) for different link-widths, for
scenario #2 in which TTE and CPU packets are transferred on separate VCs.

Figure 4 depicts the total NoC delay per packet, i.e. sum of
NI queue delay and network traversal delay for all its flits, as
an average from all CPUs, and the average TTE packet round-
trip time, for scenario #2. We obtain the best results when link-
width is 32 Bytes, but this comes at the expense of power.
We also observe that when link-width is 8 Bytes, the CPU
workload causes saturation of the NoC, leading to enormous
delays. In fact, we noticed that NoC begins to saturate early;
in the first 10, 000 clock cycles of simulation the average NoC
delay per CPU packet went up to 724 clock cycles. Saturation
depends on the bandwidth capacity of NoC and emanates from
its incapability to accept new packets arriving with the given
rate, as it is busy transferring other packets. On the other hand,
when link-width is 32 Bytes, the average NoC delay drops
down to 25 clock cycles. Finally, for all link-widths the NoC
satisfies the requirements of TTE workload as round-trip time

reaches up to 52 clock cycles (52ns), which is much smaller
than any deadline in Figure 2.

B. One or Two Virtual Channels?

To explore the variation in packet delivery time, we analyzed
each packet individually. We did this initially for the high
critical workload. We configured the NoC with the narrowest
link-width, and performed tests for all scenarios. Figure 5
shows the TTE packet round-trip time over the simulation time
window in which we observed the largest variations. Each of
the scenarios #1 and #2 is characterized by minor variations
in the TTE packet round-trip time, i.e. 48 — 52 clock cycles.
Therefore, the dedicated high-priority VC for the hard deadline
workload keeps the time for transferring the corresponding
packets within predictable levels. The small variation is due
to that packets corresponding to periodic messages follow a
different path from the sporadic ones; this was noticed also
in the previous subsection. On the other hand, in scenarios #3
(1 VC, FBA is disabled) and #4 (1 VC, FBA is enabled) we
observe considerable variations, i.e. TTE round-trip time varies
between 48 — 143 clock cycles and 48 — 119 clock cycles
respectively. It appears that a shared VC affects the TTE
round-trip time significantly. Moreover, in scenario #3 in
which FBA is disabled, we observed the longest delay in the
round-trip. Below we analyze further these time variations,
along with a worst case timing analysis, for both high critical
and low critical workloads.

«=@=TTE on high-priority VC(sc#1,#2)
-e-all on same VC, FBA is on(sc#4)

all on same VC, FBA is off(sc#3)

e

Noc Delay of TTE packets (#cycles)

40

>
%,
k)

IR AN AN
oS NS
WA SN RN NN

Simulation time (clock cycles)

Fig. 5: Variation of NoC round-trip time for the TTE packets over simulation
running time, for scenarios #1-#4. Link-width is 8 Bytes.

C. Worst Case Transfer Time of NoC

There are two main methods to determine worst case timing:
static analysis and measurement-based. Our setup allows for
performing the second one; we analyzed the worst case times
for transferring packets throughout the on-chip network, which
we term WCTT,,,.. As it is not based on mean times, we

TABLE II: W CTThc analysis for the TTE packet round-trip time, and for the time per CPU packet for reaching a memory. Values are in NoC clock cycles.

link-width=8 Bytes link-width=16 Bytes
scnr. TThocTTE WCTTnocTTE TTnocCPU WCTTnocCPU TThocTTE WCTTnocTTE TTnocCPU WCTTnocCPU
#1 48-52cc 52cc n/a n/a 32-36¢c 36¢cc n/a n/a
#2 48-52cc 52cc saturation - 32-36¢c 36¢cc 15-269cc 269cc
#3 48-143cc 143cc saturation - 32-64cc 64cc 15-270cc 270cc
#4 48-119cc 119cc saturation - 32-62cc 62cc 15-270cc 270cc
examined each packet of each workload. Table II has the REFERENCES

results for all scenarios and two link-widths. We observe again
that a dedicated high-priority VC maintains time-predictability
in the transfer of hard deadline packets. We reported this in the
previous subsection for link-width equal to 8 Bytes, and here
we demonstrate that it holds also when link-width is 16 Bytes.
The same tendency with the previous subsection holds when 1
VC is shared amongst the workloads; but for link-width equal
to 16 Bytes, the TTE round-trip time experiences smaller
variations, and NoC is not saturated. Soft deadline packets
can be served, given that the corresponding flows can tolerate
NoC transfer times up to 270 clock cycles for a packet.

We then measured the piece-wise delays for releasing and
transmitting a packet. We did this for the soft deadline packets,
which have longer transfer times in Table II, and we found that
in the worst cases the largest portion of the time is consumed
in the NI queue. When link-width is 16 Bytes, 255 out of
the 270 clock cycles of the WCTT,,,ccpy are consumed in
the NI queue of the initiator. This is due to that while CPU
messages arrive at the NI protocol, the NoC cannot accept
them immediately as it is busy serving other packets. This
problem propagates back to the NI of initiator, and prevents
it from breaking down the new packet in flits immediately.
The packet remains in the NI queue of the initiator, and new
packets arriving from the CPU are stacked in it waiting for
the NoC to become uncongested.

D. Discussion

Our analysis revealed that the NoC with link-width equal to
16 Bytes serves the requirements of all workloads. The nar-
rowest link leads to NoC saturation, and a wider link increases
router’s clock power consumption. Future study includes the
energy consumption per workload, or, per session opened by
an initiator for completing one job. We demonstrated that set-
ting up routers with 1 VC allows for meeting all requirements
without missing any deadline, neither degrading highly the
NoC transfer rate, i.e. max transfer time is 270 cc, which
accounts for resource savings. We found that FBA improved
slightly the transfer time of hard deadline packets, but a
dedicated high-priority VC performs better by maintaining
time-predictability. The above can be taken into account when
considering the trade-offs prior to configuring the NoC.

ACKNOWLEDGMENT

This research was funded by the EU FP7/2007-2013, under
grant agreement no. 610640, DREAMS project.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

http://www.mixedcriticalityforum.org/projects/.

S. Saidi, R. Ernst, S. Uhrig, H. Theiling, and B. D. de Dinechin,
“The Shift to Multicores in Real-Time and Safety-Critical Systems,” in
International Conference on CODES+ISSS, October 2015, pp. 220-229.
G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, “Scheduling
of Mixed-Criticality Applications on Resource-Sharing Multicore Sys-
tems,” in ACM/IEEE International Conference on Embedded Software
(EMSOFT), September 2013, pp. 1-15.

S. Tobuschat, P. Axer, R. Ernst, and J. Diemer, “IDAMC: A NoC for
Mixed Criticality Systems,” in IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applications (RTCSA),
August 2013, pp. 149-156.

A. Burns, J. Harbin, and L. S. Indrusiak, “A Wormhole NoC Protocol
for Mixed Criticality Systems,” in IEEE Real-Time Systems Symposium
(RTSS), December 2014, pp. 184-195.

G. Giannopoulou, N. Stoimenov, P. Huang, L. Thiele, and B. D.
de Dinechin, “Mixed-criticality Scheduling on Cluster-based Manycores
with Shared Communication and Storage Resources,” Real-Time Sys-
tems, The International Journal of Time-Critical Computing Systems,
vol. 59, no. 1, pp. 1-51, 2015.

K. Goossens and A. Hansson, “The Aethereal Network on Chip after
Ten Years: Goals, Evolution, Lessons, and Future,” in ACM/IEEE Design
Automation Conference (DAC), June 2010, pp. 306-311.

E. de Faria Corréa, E. W. Basso, G. R. Wilke, F. R. Wagner, and
L. Carro, “The Implications or Real-Time Behavior in Networks-on-
Chip Architectures,” in IFIP Conference on Distributed and Parallel
Embedded Systems (DIPES), August 2004, pp. 307-316.

R. Obermaisser, Time-Triggered Communication. Taylor & Francis,
2011.

M. Coppola, M. D. Grammatikakis, R. Locatelli, G. Maruccia, and
L. Pieralisi, Design of Cost-Efficient Interconnect Processing Units:
Spidergon STNoC. Taylor & Francis, 2008.

B. B. Brandenburg and J. H. Anderson, “Integrating Hard/Soft Real-
Time Tasks and Best-Effort Jobs on Multiprocessors,” in Euromicro
Conference on Real-Time Systems (ECRTS), November 2007, pp. 61-70.
S. Chakraborty, M. Lukasiewycz, C. Buckl, S. A. Fahmy, N. Chang,
S. Park, Y. Kim, P. Leteinturier, and H. Adlkofer, “Embedded Systems
and Software Challenges in Electric Vehicles,” in Design Automation
and Test in Europe (DATE), March 2012, pp. 424-429.

Cannes Ultra - ARM-based, UHD Multimedia Connected Client-Box
Platform, STMicroelectronics, December 2013.

M. Abuteir and R. Obermaisser, “Simulation Environment for Time-
Triggered Ethernet,” in IEEE International Conference on Industrial
Informatics (INDIN), July 2013, pp. 642-648.

M. D. Grammatikakis, K. Papadimitriou, P. Petrakis, A. Papagrigoriou,
G. Kornaros, I. Christoforakis, O. Tomoutzoglou, G. Tsamis, and
M. Coppola, “Security in MPSoCs: A NoC Firewall and an Evalu-
ation Framework,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), pp. 1344-1357, August 2015.
K. Papadimitriou, P. Petrakis, M. D. Grammatikakis, and M. Coppola,
“Security Enhancements for Building Saturation-free, Low-power NoC-
based MPSoCs,” in IEEE International Conference on Communications
and Network Security (CNS), September 2015, pp. 594-600.
http://www.mSsim.org/Publications.

Z. Owda, M. Abuteir, R. Obermaisser, and H. Dakheel, ‘“Predictable and
Reliable Time Triggered Platform for Ambient Assisted Living,” in [EEE
International Symposium on Medical Information and Communication
Technology (ISMICT), April 2014, pp. 1-5.

