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Abstract—New generations of NoC-based platforms incorpo-
rate address interleaving, which enables balancing transactions
between the memory nodes. The memory space is distributed
in different nodes of the NoC, and accessed alternately by each
on-chip initiator. A memory node is accessed depending on the
transaction request address through a memory map. Interleaving
can allow for efficient use of NoC bandwidth and congestion re-
duction, and we study whether its gains scale over system size. In
this work we concentrate on an instance of a customizable point-
to-point interconnect from STMicroelectronics called STNoC. We
first evaluate a setup with 4 CPU initiators and 4 memories,
and show that interleaving relieves the NoC from congestion
and permits higher packet injection rates. We also show that
this depends on the number of packets sent per transaction by
an initiator prior to changing destination memory node; this is
called interleaving step. We then enriched the setup with several
DMA engines, which is in accordance with industry roadmap.
We experimented with MPSoCs having up to 32-nodes and for
various link-widths of the STNoC. When link-width was 32 Bytes,
the aggregate throughput gain from address interleaving was
20.8%, but when we set it 8 Bytes the throughput gain reached
69.64%. This implies silicon savings in SoCs, as it is not always
necessary to configure NoCs with wide link-widths.

Index Terms—Network-on-Chip (NoC), network interface (NI),
address interleaving, address decoding, throughput, link-width,
saturation

I. MOTIVATION

Embedded computing is changing constantly, and on-chip
processing using multiple cores is becoming the dominant
solution. Some argue that single-purpose nature of embedded
systems make multi-core processing unattractive, and it is true
that even today there are several applications where single-
core is the preferred solution. But the complexity and variance
of processing tasks is increasing, and there is an increasing
interest in running multiple applications with different criti-
cality levels onto the same chip. Given the asymmetric nature
of processing tasks within an embedded system, multi-core
execution permits lower clock rates which results in reducing
power consumption, one of the most important factors in the
embedded domain.

On-chip networks implement a flexible packet-based com-
munication, aiming to replace shared buses to some extent in
developing efficient and cost effective multi-core SoCs [1].
They come with inherent architectural advantages in power
consumption, performance, and area over traditional crossbar
and bus-based interconnect technologies, which allows for the
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designers to cope with the growing complexity of heteroge-
neous architectures while reducing the research, development,
and unit costs [2]. In the present work we enhance on-chip
networks with an address interleaving scheme, and explore
whether it allows for improving the performance of NoC-
based MPSoCs, and at the same time reduce the silicon cost
and power consumption. The two latter factors are critical in
the embedded domain, considering that the amount of tiles
interconnected in an MPSoC can be large, e.g. in [3] STNoC
interconnects 148 tiles.

Within this scope, it is in the plans of industry to incorporate
several low power DDR controllers - called channels - that
will be accessed in burst by multiple initiators, such as
CPUs, DMA engines, or other peripherals [4]. Having different
channels allows balancing the network load amongst them,
which can also result in balancing the traffic in the NoC
itself. The transactions are split and interleaved within the
interconnect and the NIs of the NoC; the decision to which
channel a transaction belongs, depends on the address of
the transaction. This is realized with an address interleaving
scheme implemented in the initiator’s network interface (INI).
An important parameter set during configuration time is the
interleaving step, i.e. the number of network packets sent
per transaction by an initiator prior to changing destination
memory node. This corresponds to the number of bytes to
be written before changing memory node. In the present
work we perform a first in-depth analysis of the address
interleaving scheme. We experimented with different setups,
with and without interleaving, for various number of nodes
and link-widths. In the first setup CPUs initiate transactions
with variable injection rates, while in the other two setups the
DMA engines are the initiators. We varied the interleaving
step along with the injection rate so as to find the best match
that serves the requirements of an application; the injection
rate can be provided by a service-level agreement specifying
the requirements in terms of the data arrival rate. An important
finding of our analysis is that the gains are higher for a narrow
link-width, which accounts for a low-cost, low-power solution.

This paper is structured as follows. Section II has infor-
mation on the Spidergon STNoC. In Section III we explain
the concept of address interleaving, and in Section IV we
overview the related work. Section V discusses the setups and
the scenario we deployed to evaluate the interleaving scheme.
Section VI has the experimental results, and Section VII pro-
vides information on the address interleaving implementation
along with its hardware cost. Section VIII concludes the paper.
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II. SPIDERGON ON-CHIP COMMUNICATION

It is a ring-based topology comprising three main building
ingredients; network interface (NI) that functions as access
point to the interconnect onto which initiators and targets
are directly connected; simple non-programmable router; and
physical link. STNoC relies on network operation, thus it pro-
vides programmable services such as changing the routing in-
formation and Quality-of-Service (QoS). It can be customized
according to given specifications to efficiently interconnect
MPSoC components, i.e. CPUs, DMA engines, memories, and
peripherals. From the network point of view, each component
is a node (called also tile), and information - instructions
and data - is transmitted across the network in packets. Each
packet carries a header information that allows the receiver to
reconstruct the original message. Typically, packets sent from
a certain tile follow always the same path. This is determined
with a static routing policy, which functions based on the
information contained in the packet header.

Prior to transmitting a packet, this is broken down in smaller
units called flits that in turn are released into the network. A
flit carries the maximum amount of data that can traverse the
physical link per transaction. Thus, for a given packet size, the
amount of flits comprising each packet depends on the link-
width. During customization, along with the topology, the NoC
designer tunes-up these parameters, i.e. link-width and packet
size. For example, for an STNoC with 16 Bytes link-width,
if the packet has 136 Bytes, e.g. 128 for payload and 8 for
header, this is split up in 136÷ 16 ≈ 9 flits.

Each router is equipped with buffer(s) that store temporarily
the flits, prior to forwarding them to the next router. A buffer
implements essentially the virtual channel (VC) on which the
packets are transferred. The routers can be configured with up
to 2 buffers each, thus 2 VCs, and each one can be set with a
different priority, i.e. high and low. This comes at the expense
of additional hardware cost, but it allows to simultaneously
store packets from different flows onto the same router, which
accounts for congestion reduction. Different traffic policies
can be activated depending on the amount of available VCs;
this relates to the QoS of NoC. A traffic policy is that of
assigning priorities for the different flows sharing the same
VC. This can be done with the QoS Fair Bandwidth Allocation
(FBA), a low cost arbitration algorithm that distributes the NI
target bandwidth among different initiators during peak request
time. This algorithm is enabled at the garnet router and allows
for arbitrating packets from different flows that compete for
the same output port of the router. It is worth noting that
in older STNoC architectures - until 2006 - packets of the
same flow could switch amongst the two VCs, from VC0 to
VC1 and vice-versa, while transferred across the network. This
mechanism was abandoned as it turned out that switching
amongst different VCs didn’t offer considerable increasing
returns.

Typically, STNoC runs at 1GHz, thus once a packet trans-
mission begins each flit is injected from the NI every 1ns.
In particular, after the head flit of a packet is released into
the network, the remaining flits are transferred in a pipelined
manner, thus 1 more clock cycle per flit is needed for

delivering the entire packet to the target NI. Packet routing
is static, source-based, following the across-first strategy.

Recapitulating, the different STNoC configurations offer a
wide range of choices, but they are related to cost. On-chip
networks with 8 Bytes link-widths cost less than 32 Bytes,
and 1 VC costs less than 2 VCs, thus selecting wisely the
parameters prevents from increasing unnecessarily the hard-
ware cost. This can become huge, considering that existing
SoC products using STNoC such as the STiH312 Cannes Ultra
platform interconnect up to 148 tiles [3].

III. ADDRESS INTERLEAVING IN STNOC
Interleaved memory was initially proposed to compen-

sate for the slow speed of dynamic random-access memory
(DRAM), by distributing memory addresses evenly across
memory banks. In this way, contiguous memory requests
are headed towards each memory bank in turn, i.e. they are
accessed sequentially, one at a time. This results in higher
memory throughput due to the reduced waiting time for the
memory banks to become available for the given operation,
write or read. Consequently, interleaving helps in hiding the
memory refresh time of DRAMs.

The STMicroelectronics STNoC is an Interconnect Pro-
cessing Unit (IPU), whereas an integrated interactive EDA
design flow composed of the iNoC and Meta-NoC environ-
ments, low- and intermediate-level device driver generators,
and validation subsystems, can be used to design a custom
cost-effective NoC solution on a single die that may include
optional HW/SW components at the network interface (NI)
and possibly NoC layer. These components jointly implement
advanced system/application services via a set of low-level
primitives. Optional STNoC services include end-to-end QoS
via an FBA protocol implemented at NoC layer and target
NI, firewall mechanisms implemented at the initiator NI,
or fault tolerant routing by implementing on-the-fly post-
silicon re-programmability of the routing function at the NI.
STNoC technology has enriched its QoS features with the
implementation of address interleaving.

STNoC uses source-based routing, i.e. the routing path
depends only on the source address of the request transaction.
Address interleaving is implemented in the shell (IP-specific
subsystem) of the initiator network interfaces, on top of the
NoC layer, which provides the routing service including pack-
etization and size/frequency conversion. Address interleaving
is able to modify the current STNoC memory map settings.
If instantiated during STNoC configuration time, it can be
switched on/off and reprogrammed at runtime through a set of
registers. When address interleaving is disabled, the classical
address decoding applies.

In order to guarantee flexibility and data integrity, all INIs
must be able to route traffic consistently towards the same
address space at runtime. Reprogramming of address interleav-
ing registers across all related INIs is supported via a coherent
reprogramming system driver which allows an external “secure
code” to stop incoming traffic, reprogram all related INI, wait
for reprogramming to end, and then restart NoC traffic.

Figure 1 illustrates the operation of STNoC address in-
terleaving. Different pages are mapped to different memory
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Fig. 1. Address interleaving in STNoC. Requests to addresses from an initiator
change in turn, headed towards different memory controllers - called channels
- each connected onto a different node. Each different color on the right side
of the Figure corresponds to a different target node. On-chip networks can
support this solution natively due to that packets from the same initiator can
be routed via different paths.

controllers called channels. While a classical routing function
associates an address to a routing through a memory address
range, STNoC address interleaving is based on defining at
configuration time which memory region will be part of an
Interleaved Memory Region Set (IMRSet). A designer can
create IMRSets by defining the list of targets participating
into a set, the number of channels, the interleaving step for
this IMRSet, and the starting and end Interleaved Memory
Region (IMR) within a channel. A maximum of 16 IMRSets
per STNoC instance can be configured, and each IMRSet can
have up to 16 channels. If the incoming transaction address
belongs to an IMRSet, the associated routing path is computed
based on the current address, configured interleaving step, and
number of channels for the given IMR. As a result of this
computation, an appropriate routing path is selected, leading
to one of the channels constituting the IMRSet. Ordering
issues related to request transactions heading to the same
destination are assumed to be resolved at IP-level. The case
illustrated in Figure 1 corresponds to 1 IMR with 4 channels
of 1GB each. The way address interleaving is implemented is
by spreading the memory space into different memory nodes,
each one having different addresses; each target node holds a
different memory controller. The memory controllers, i.e. the
channels, should be located on contiguous nodes. We should
notice here that the number of channels and their memory map
location are fixed parameters intrinsic to the system. Another
solution available - but not studied in the present work - is
that requests to addresses can change in turn towards different
banks belonging to the same channel.

IV. RELATED WORK

In order to improve performance in MPSoCs, it is common
practice to employ interleaved access not only to different

physical memories, but also to banks, ranks or DIMMs of a
specific memory controller. This is especially important for
memory bandwidth-intensive, vector computations, whereas
a high degree of spatial and temporal locality provides a
significant advantage for overlapping parallel memory access
with computation [5]. Similar to interleaving, related skewed
data allocation schemes support parallel (strided) array ac-
cesses to array rows, columns or diagonals, thus optimizing
linear algebraic computations in multiprocessors with circuit-
switched interconnection networks [6]. In addition, XOR ad-
dress mapping principles randomize bank ordering access in
order to improve cache performance [7], [8].

Since STNoC address interleaving is implemented at the
initiator’s network interface (INI), our study is very similar
to [9]. In that study the authors model distributed inter-
leaving at the INI to balance traffic in both the NoC and
the memory channels of a WideIO DRAM memory. Exper-
imental comparisons with i) centralized solutions whereas a
single multi-ported controller can access all channels of the
WideIO memory, and ii) independent distributed controllers
assigned to each channel (without interleaving), are based
on communication-only task subgraphs of a modem IP-core.
Their results indicated that the proposed distributed solution at
the initiator NI improves overall throughput, while minimally
impacting the performance of latency sensitive communication
flows. Unlike that study, we focus on optimizing interleaving
performance by considering important NoC parameters such
as link-width, and we do not examine the performance of
different interleaving schemes.

Since 1970s, interleaved schemes have been integrated in
different generations of commercial systems, such as IBM
360/85, Ultrasparc III, and Cray-Y MP. Nowadays, several
commercial multicore SoCs support bank interleaving. For ex-
ample, Intel regularly issues best practices for optimized DDR
memory performance in systems integrating Xeon processors
and servers that support interleaving. These practices require
an even number of banks per channel, an even number of
ranks per bank, an odd/even number of channels depending
on memory size. Moreover, the number of ranks is shown
to be related to the number of DIMMs and the operating
frequency of the memory subsystem [10]. In addition, Arteris
[11] and Sonics [12] integrate memory interleaving in their
interconnect solutions, but they do not provide detailed exper-
imental results. Sonics has released limited results only for
their SonicsGN-3.0 NoC technology using two channels and
off-chip DDR3 memories.

V. EXPERIMENTAL SETUP

This Section overviews the setups and the environment
we used to evaluate address interleaving. Our aim was to
explore the parameters allowing to achieve high performance
without consuming unnecessarily silicon resources and power.
Tailoring wisely the system will result in a well-balanced
setup, e.g. a 32 Bytes link-width for the NoC might not be
necessary if an 8 Bytes link-width is sufficient. We varied
the link-width, and kept fixed the number of VCs across our
experiments, equal to 2. The FBA mechanism in the routers
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was inactive; a study of the FBA impact is available in [13]
and further discussion on this is beyond the scope of the
present work. The router’s buffer size was set equal to the
number of flits comprising a packet. On the other hand, we
set large queues at the NIs in order to avoid potential overflows
when new data arrive; although this is unrealistic, it prohibited
packet dropping, and thus allowed us to find the time elapsed
for serving a packet in the worst case and also assess saturation
cases, by measuring the time a packet remains in the NI queue
prior to releasing it into the STNoC. In a real system the
NI queue is relatively small, and packet dropping could be
addressed by either controlling the arrival rate of data entering
the queue depending on its status, by employing backpressure
flow control, or, with retransmission of dropped packets.

A. Evaluation Framework

We performed experiments in the framework published in
[14] that allows measuring the end-to-end delivery times, and
the power consumption of routers and links. It extends the
gem5 simulation framework by connecting together initiator
tiles such as CPUs or DMA engines, and target tiles such
as memory controllers, using a cycle-accurate model of the
commercial STMicroelectronics STNoC backbone intercon-
nect. We measure two types of delay; the time a packet is
waiting in the NI queue before it is split up into flits and
released to the network (called NI queue delay), and then,
after the head flit leaves the NI queue, the time elapsed for
traversing the network until it reaches the destination. The
latter is referred to as network traversal delay, and it is the
time required for the flit to pass through all the routers in
its path and reach the target NI. This way me can measure
the time for transferring each flit and also the entire packet;
we recall that once the head flit enters the on-chip network,
successive flits of the packet are transmitted in a pipelined
manner, cycle-per-cycle. Besides measuring the transfer delay
for write and read requests, we also calculate the throughput.
In specific, we report the average values of the transfer delay
on the NoC at flit-level, and of the power consumption at the
routers, and the total data transfer rate through the NoC, i.e.
the aggregate throughput.

B. Application Mapping and Traffic Generation

In all setups we used a synthetic benchmark that generates
traffic from all initiator tiles to perform write and/or read
requests to the target memory nodes. A memory node is
accessed depending on the transaction address, through a
memory map. We perform address interleaving through our
software code and proper memory allocation. In particular, the
address mapping is carried out so as each request is headed
towards a memory node depending on the interleaving step;
the interleaving step refers to the pace with which an initiator
changes destination. For instance, if interleaving step = 1,
every new request from an initiator is forwarded to an address
located in a different memory node from the previous request;
in this way we assess NoC behaviour when each new packet
sent from an initiator is following a different routing path from
the previous packet in the sequence. If interleaving step = 2,

two consecutive requests from an initiator are forwarded to
the same memory node, the next two requests to a different
memory node, and so on.

The address interleaving scheme is implemented in the
initiator NIs, and thus it is their responsibility of splitting
the transactions into packets and sending them to the proper
channel according to the address. Further details on the traffic
generation benchmark are unnecessary as we only used it in
order to expose the NoC behaviour under marginal conditions
in the setup with CPUs, and to study its behaviour in the setup
with multiple DMA engines. In all our experiments the data
size of packets is 128 Bytes. It is application-dependent and
we selected this size based on the specifications of a healthcare
application [15], which we will deploy in the future.

C. CPUs and DMAs as Initiators

We experimented with three different setups. The first setup
has 8-nodes in which four CPUs and four memories are
interconnected via a Spidergon STNoC. CPUs initiate memory
requests, and we studied NoC behaviour for different packet
injection rates. In particular, the purpose of these experiments
was two-fold: first to explore whether interleaving scheme
can remedy the NoC from saturation [16], and second to
explore the effect from changing the interleaving step value.
We should notice that interleaving between transactions takes
place only when the current transaction targets a different
memory address from the previous one; if it targets the same
address, the destination channel is not changed. In this setup
we didn’t model the delay added by the memory access at
the target NI; it is unnecessary in these experiments as we
are primarily interested in studying NoC maximum serving
capability only in order to find the conditions under which
NoC saturates, and whether address interleaving can remedy
saturation. In a recent study for different packet injection
rates we exposed such extreme cases in a similar setup with
four CPUs initiating requests to four memories [16]. We
demonstrated that when all CPUs send random requests to all
memories, and when link-width is 8 Bytes, saturation occurs
above the rate of 0.035 packets per clock cycle per CPU . In
that work we varied the injection rate only, without studying
the effect of address interleaving, and we also didn’t model
the memory access delay.

The other two setups incorporate DMA engines to perform
write and read memory requests, and CPUs do not produce
traffic. Each setup interconnects a different number of nodes
via the Spidergon STNoC, i.e. 16-nodes and 32-nodes setup.
The first setup has 7 DMA engines, and the second setup has
23 DMA engines. The incorporation of multiple DMA engines
accessing multiple memories has been previously studied and
is close to the industry roadmap [4]. In both these setups we
have modelled the DDR controller, thus our measurements
include the memory access delay. A DMA engine generates a
new request only once the previous one completes; completion
of a request is signified at the initiator side with an ACK packet
sent by the target. Therefore, the notion of injection rate does
not apply here. Figure 2 illustrates the 16-nodes setup in which
the memory space is distributed evenly across 8 channels,
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Fig. 2. 16-nodes Spidergon STNoC setup with 7 DMA engines. We depict
only the case with 8 channels, but we conducted experiments with 1 channel
(without address interleaving), 2, 4 and 8 channels. The channels, i.e. DDR
controllers, are placed in contiguous nodes. Memory space is distributed
evenly amongst the nodes.

each one located onto a different node. We experimented with
various number of channels, ranging from 1 to 8, in both the
16-nodes and the 32-nodes setup. STNoC supports up to 16
channels, but this constitutes an extreme case and we didn’t
study it in the present work.

D. The DDR Memory Controller

In the two latter setups we instantiated one or multiple
copies (number of copies depends on the number of channels
in the experiment) of the default DDR2-800 memory controller
module provided by the ruby simulation model in [17] of
gem5 ver. 9378, Jan 2013. Its theoretical peak transfer rate
is 6, 400 MB/sec. It models a single channel, connected to
2 DIMMs, 2 ranks of DRAMs each, with 8 banks per rank. It
assumes closed bank policy, i.e. each bank is closed automat-
ically after a single read or write. It operates with minimum
burst length, i.e. 4-bit-time transfer on the data wires, and
assumes “posted CAS”, i.e. the “READ” or “WRITE” is sent
immediately after the “ACTIVATE”.

VI. EXPERIMENTS AND RESULTS

We first deployed the 8-nodes setup in which all CPUs
send write-only requests to all memory nodes, and studied
Spidergon STNoC behaviour, with and without address in-
terleaving. Figure 3 shows the average NoC delay per flit
for different number of channels, packet injection rates, and
interleaving steps. We observe that the NoC delay is smaller
when interleaving step = 1, i.e. each initiator changes des-
tination channel after each transaction. This stands as long as
the current memory address that is accessed is different from
the previous one; if the current transaction concerns the same
memory address with the previous transaction, the initiator
does not change destination channel. It also appears that the

benefit from increasing the number of channels is significant;
the more the channels, the larger the maximum allowed packet
injection rate, i.e. we obtain that for 4 channels, when injection
rate is up to 0.07 packets per clock cycle per CPU , the
NoC does not saturate. This tendency holds for all values of
interleaving steps, but we observe that higher values result in
diminishing returns; e.g. if interleaving step = 32, for 4
channels, saturation begins earlier, when packet injection rate
is between 0.04−0.05. Table I has the maximum packet injec-
tion rates without causing NoC saturation for different number
of channels and interleaving step = 1. The improvement in
the best case can be bigger than 2x as compared to the case
without address interleaving.

TABLE I
IMPROVEMENT IN THE MAXIMUM PACKET INJECTION RATE - PER CLOCK

CYCLE PER CPU - THAT SPIDERGON STNOC SERVES WITHOUT BEING
SATURATED, WHEN ENHANCED WITH ADDRESS INTERLEAVING.

interleaving step = 1 AND link width = 16 Bytes.

# channels max packet injection rate improvement
w/o interleaving (reference) 0.03 -

2 0.05 1.66x
4 0.07 2.33x

We then proceeded with experiments in which the DMA
engines perform write and read requests. We kept the in-
terleaving step equal to 1, which turned out to be the most
effective value in the previous setup, and varied the link-width
and the number of channels. We repeated the experiments for
different values of the DMA transfer length, between 16 and
128 Bytes, in powers of two. Figure 4 shows the aggregate
throughput results, i.e. total transfer data rate across the device,
for the 32-nodes setup in which 23 DMA engines initiate
requests. We varied the number of channels between 1, i.e.
case without address interleaving in which all requests are
headed to one memory controller only, and 8, i.e. maximum
number of channels. When channels are 2, 4 or 8, in a
sequence of transactions from any DMA engine, each new
transaction is sent to a different channel from the previous one.
All cases in Figure 4 illustrate that the benefits from enhancing
the NoC with address interleaving are higher for the narrowest
link; for link-widths equal to 16 or 32 Bytes the gains are
not that high. Table II shows this clearly by comparing the
improvement between the different cases.

Table II also shows that improvement increases with the
number of channels; we pointed this out previously as well in
the study for the 8-nodes setup. The maximum improvement
metric at the bottom of Table II refers to the comparison
between the setup without address interleaving and the setup
with 8 channels. On the other hand, improvement seems to
saturate, which is more obvious when link-width is 32 Bytes.
If this is not a “real” saturation coming from the performance
limitations of the address interleaving scheme itself, it is due
to a bottleneck, coming either by the rate at which DMA
requests arrive at the initiator NI prior to releasing them into
the NoC (the notion of injection rate is lacking here), or, by
the way the DMA operates, or, due to the access delay of
the specific DDR controllers. To identify the exact reason
behind this occurrence, further experimentation is needed.
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(0.03-0.07). Runs concern the 8-nodes setup, with 4 CPUs and 4 memory nodes, in which the CPUs are the initiators, and link-width is 16 Bytes.

One of the most valuable results in this experiment is that
by enhancing a narrow STNoC with address interleaving,
the achieved aggregate throughput is close to the aggregate
throughput of STNoC when link-width is 32 Bytes. Figure 4
illustrates that this holds for all DMA transfer lengths.

We conclude that it is possible to build large-scale systems
with 32-nodes around a NoC architecture with narrow link-
width. This accounts for considerable savings in wires and
routers, and for less power consumption. Table III has the
power results for different link-widths and number of channels.
It shows only the case in which the DMA transfer length is
128 Bytes, but the results and tendency are the same for
the rest transfer lengths as well, i.e. 16, 32, and 64 Bytes.
We observe that router’s total power is much higher when
STNoC is configured with a wide link. This is mainly due to
the router’s clock power; as a generic rule, when link-width
doubles, clock power also doubles. Thus moving from a link-

TABLE II
IMPROVEMENT IN THE AGGREGATE THROUGHPUT WHEN EMPLOYING

ADDRESS INTERLEAVING IN THE 32-NODES SETUP WITH THE 23 DMA
ENGINES, BY VARYING THE LINK-WIDTH (LW) AND THE NUMBER OF

CHANNELS. interleaving step = 1 AND
DMA transfer length = 128 Bytes.

aggregate throughput (MB/sec)
# channels lw=8 B lw=16 B lw=32 B

w/o interleaving (reference) 10,710.95 15,119.96 15,960.79
2 16,181.08 18,306.28 18,882.89
4 17,676.93 18,850.63 19,264.97
8 18,170.43 19,056.23 19,280.95

max improvement 69.64% 26.04% 20.8%

width of 8 Bytes to a link-width of 32 Bytes, this results in a
4x increase of the power consumption of router’s clock. In [13]
we are analyzing this by breaking down the power overhead.
Moreover, Table III shows that for each different link-width,
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Fig. 4. Aggregate throughput (MB/sec) in the 32-nodes Spidergon STNoC setup with 23 DMA engines, with and without address interleaving. We conducted
experiments with up to 8 channels, for various link-widths and DMA transfer lengths.

the power consumption increases slightly when the number of
channels increases. This is indicated by the maximum power
overhead added metric at the bottom of the Table, which
refers to the comparison between the setup without address
interleaving and the setup with 8 channels. It is worth noting
that the biggest increase in the power consumption appears
when link-width is 8 Bytes.

TABLE III
EFFECT FROM THE VARIATION OF LINK-WIDTH (LW) AND THE NUMBER OF

CHANNELS ON THE TOTAL POWER CONSUMPTION OF ROUTERS. VALUES
ARE AVERAGE AND CONCERN THE 32-NODES SETUP WITH THE 23 DMA

ENGINES. interleaving step = 1 AND
DMA transfer length = 128Bytes.

router power (watt)
# channels lw=8 B lw=16 B lw=32 B

w/o interleaving (reference) 1.194 1.721 2.759
2 1.274 1.769 2.823
4 1.307 1.786 2.845
8 1.321 1.798 2.856

max power overhead added 10.63% 4.47% 3.51%

We conducted the same experiments for the 16-nodes setup

with 7 DMA engines, but the benefits from enhancing the
initiators’ NIs with address interleaving were small. We varied
again the link-width, the number of channels, and the DMA
transfer length, but the improvement in the best case was less
than 2%. This holds for the specific setup, i.e. DMA engines
and selected DDR controllers, and cannot be attributed solely
to the address interleaving performance; further experiments
are needed to reveal the exact reason behind this result.

VII. IMPLEMENTATION COST OF ADDRESS INTERLEAVING

Implementation of STNoC address interleaving is based on
a non-disruptive modification of the STNoC routing function,
and is supported via the iNoC EDA configuration tool. We
implemented it by extending the address decoding mechanism
of the initiator’s network interface (INI). In particular, we
enhanced the address comparators with an additional output
signal indicating whether the incoming address belongs to an
interleaved memory region (IMR). During operation, if the
incoming address doesn’t belong to an IMR, the routing and
QoS setting corresponding to this address range are transferred
to the network layer header encoder, as normal. If the address
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belongs to an active IMR, interleaving function is triggered:

• reference routing for the destination channel is retrieved
from preconfigured - optionally reconfigurable - routing
tables;

• interleaving constants, i.e. channel offset, interleaving
step and number of channels, and QoS settings for the
current IMR are retrieved from preconfigured tables and
passed to the network interface encoder; these tables have
been set using the iNoC tool; and

• interleaving algorithm is executed to identify the new
destination channel.

In terms of RTL cost, implementation of address interleav-
ing typical configuration adds an overhead of 5% more gates in
the INI address decoding hardware when synthesized in 28nm
FSDOI ST technology. It reuses the already in place routing
function, and for concurrent solutions, i.e. multiple parallel
accesses with different IMRSets to the memory controllers,
it also requires de-interleaving support at the target’s network
interface (TNI). STNoC address interleaving relies on routing
packets to alternative destinations using different routing paths,
and the address signals are never modified in the process. Op-
tionally, address interleaving can be reprogrammed at runtime
to enable or disable a preconfigured setting. This is achieved
by writing a set of new registers located at the INI, and an
external STNoC driver which accesses them via the STNoC NI
programming port. To guarantee memory coherency and data
integrity, all INIs implied in an IMRSet must be reprogrammed
in a coherent way via System Coherent Reprogramming
(SCR). This allows for freezing data traffic, reprogramming
several INIs concurrently, and then restarting data traffic while
preserving data integrity and memory coherency.

VIII. DISCUSSION

We have analyzed the benefits from enhancing the Spider-
gon STNoC with the address interleaving scheme. We showed
that the smaller the interleaving step, and the more the number
of channels, the higher the improvement. We also showed that
the gains from enhancing the NI with address interleaving
are higher when link-width is 8 Bytes, and the aggregate
throughput in this case is close to the throughput when link-
width is 32 Bytes. Results concern experiments with a DDR2-
800 memory controller and we plan to extend them using a
faster memory controller, e.g. recent models of low power
DDR controllers such as LPDDR3 or LPDDR4. To gather
the results we analyzed three different setups, and we saw
that address interleaving might not be promising in all setups
with the DMA engines. In the 32-nodes setup the results were
outstanding, thus configuring the NoC with an 8 Bytes link-
width allows for significant savings in wires, router’s size, and
power consumption. Moreover, the setup with the CPUs acting
as initiators showed that interleaving relieves considerably the
NoC from saturation.

Our gem5 STNoC simulation environment and related
methodology can be used for high-level configuration of
address interleaving parameters. For instance, in use cases with
specific, well-defined communication patterns, our framework
can be used to explore and auto-generate different address

interleaving features, such as the number of interleaved mem-
ory regions (IMR), the default IMR start/end addresses in the
memory map, the offset, number of channels and default step
value for each IMR. In this respect, our framework can extend
the STNoC configuration toolsets, i.e. iNoC and Meta-NoC.
More specifically, it can interface with existing IP mapping and
partitioning tools able to configure the connectivity memory
map of IPs to STNoC network nodes and define the corre-
sponding routing paths and NI look-up tables for embedded
applications with well-defined access patterns.
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