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Abstract—We design a bandwidth regulation module, by adapting
and extending the algorithm of MemGuard Linux kernel module for
hardware implementation. Our extensions differentiate among NoC
sources with rate-constrained and best-effort traffic provisions, support a
violation free-guaranteed operating mode for rate-constrained flows, and
support dynamic adaptivity through EWMA prediction. Our strategies
enhance support for mixed criticality applications on MPSoCs. C++-based
statistical simulation shows improvements over hardware adaptation
of the original MemGuard algorithm without our extensions. Using
SystemC, we further evaluate MemGuard at the memory controller of a
NoC-based SoC model using an MPEG4 traffic model and compare its
hardware cost using synthesis from Xilinx Vivado HLS and Vivado, with
ARM AMBA AXI4 and a 4x4 STNoC instance.

I. INTRODUCTION

Multi-Processor Systems on Chip (MPSoC) offer tremendous po-

tential in embedded systems, due to combining computational ca-

pacity and energy efficiency. However, current MPSoC architectures

have significant limitations in supporting safety-critical applications

in space, avionics and transportation industry [1]. Thus, modern

shared memory-based MPSoCs must efficiently integrate mission-

critical and non-critical subsystems on the same platform to support

Quality of Service (QoS) features that provide latency and bandwidth

guarantees in an automated way [2].

Although scheduling mechanisms at the memory controller of

an MPSoC translate memory requests into sequences of SDRAM

commands [3] and manage memory traffic requests to achieve min-

imum latency and optimized bandwidth utilization, most memory

controllers usually suffer from high unpredictability of dense memory

accesses. Therefore, current memory controller technology experi-

ences frequent guaranteed bandwidth violations, which destabilize

system critical tasks.

Some previous attempts towards real-time guarantees, with soft

or hard real-time constraints, have relied on a hardware approach

at the router level, which stores packets in different queues based

on their criticality level and serves them (usually) in weighted

order based on a restrictive resource reservation model [4] [5] [6];

this model is usually non-adaptive, as it is unable to support look

ahead functions. Moreover, current memory controllers which support

mixed criticality applications focus on the worst-case execution time

(WCET) scenario, usually ignoring overall system efficiency (e.g.

bandwidth utilization) of soft real-time and non-critical tasks that

share the same resources [7].

In this context, modern SDRAM controllers are classified as

statically or dynamically scheduled [8]. The first class is highly

predictable in terms of memory performance (bounding the execution
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time), since they operate based on pre-computed SDRAM patterns

at design time (static schedules). In general, these controllers suffer

from poor performance and limited flexibility which restricts them

to a small set of applications. Conversely, the second class uses

smart on demand scheduling, based on the currently running tasks.

Therefore, these systems are much less predictable, but more flexible

in organizing concurrent accesses to multiple addresses.

Successful management of guaranteed bandwidth to achieve Qual-

ity of Service (QoS) is based on advanced traffic sharing and

reservation techniques. Different approaches have been developed to

successfully manage shared resources using hardware or software

techniques, e.g. at CPU [9] [10], GPU [11], router [4] [5] [10],

memory [6] [7] [8] [12], or network interface level [13]. However,

these approaches involve specialized hardware, and are not so generic,

autonomous and configurable, when they are deployed in software.

Commercial-Off-The-Shelf (COTS) systems may exploit efficient,

generic and easily manageable software algorithms that can be

directly installed (in user or kernel-space) as regulators of bandwidth

utilization, adjusting overall memory system scheduling. The Linux

Resource Kernel approach supports real-time resource management

and reservation, while serving tasks with real-time constraints [14].

It receives information about resource requirements from recently

activated threads during their initialization cycle, which means that

all user- and kernel-specific tasks must be aware a priori of their

maximum resource needs (during simultaneous access to multiple

resources), which is not always feasible. It is therefore not practical

for a single resource kernel to deal with the individual real time

deadlines and resource needs of all tasks.

II. BACKGROUND AND MOTIVATION

Unlike traditional state-of-the-art real-time scheduling algorithms,

which deploy weighted round robin (WRR), deficit round robin

(DRR), or aging protocols, the MemGuard algorithm by Heechul

Yun et al. [12] [15], distributes the minimum guaranteed mem-

ory bandwidth based on per-core reservations and a reclaiming

algorithm. Reclaiming, is based on past traffic demand (history)

and residual guaranteed bandwidth. Its self-adaptive mechanism is

similar to an extended self-adaptive Dynamic Weighted Round-Robin

(DWRR) [16], and is especially important for efficient management

of real-time traffic.

A. Genuine MemGuard Algorithm

The original MemGuard access control algorithm (called Genuine

MemGuard) is focused on per-core allocation of the minimum

guaranteed memory bandwidth (denoted rmin in the algorithm), i.e.,

the bandwidth that can be guaranteed even for the worst-case memory



access patterns. This metric intends to capture the effects of worst-

case DRAM traffic patterns, which consist of repeated accesses to

the same memory bank, on different bank rows each. It is essential

to note that guaranteed bandwidth (rmin) is significantly less than the

maximum attainable memory bandwidth (e.g., usually close to 20%),

thus, it is important to favour, as much as possible, best effort traffic

(BE), i.e., traffic in excess of rmin.

With MemGuard, any core can transmit critical, rate-constrained

(RC) traffic up to a reservation of a portion of the minimum

guaranteed bandwidth. MemGuard policy employs reservation and

reclaiming. To achieve this, the algorithm enables a global repos-

itory (called G) mechanism. In each regulation period, bandwidth

consuming components (e.g. cores) get an initial allocation of some

portion of their reservation quantum (according to history-based

prediction) and donate the rest of their reservation to G, from which

dynamic reclaiming will occur. Allocation of guaranteed bandwidth

from G, during the regulation period, is done on-demand, when a

source exhausts its previous allocation. For correct operation, the

aggregate bandwidth reservation to traffic sources must be less than

the minimum guaranteed bandwidth of the system.

Once all guaranteed bandwidth has been exhausted, in a regulation

period, MemGuard supports two approaches to distribute best effort

(BE) bandwidth. In one, it allows all cores to freely compete for band-

width, by posing regulation until the end of the period. In the other,

it applies sharing of BE bandwidth proportionally to reservations, by

immediately starting a new regulation period. There is no explicit

provision for best effort traffic sources in MemGuard algorithm. As

long as rmin is not exhausted, genuine MemGuard allows sources

with a zero reservation (or sources that have otherwise exceeded their

reservation), to repeatedly extract guaranteed bandwidth from G, up

to the configurable minimum allocation (Qmin) each time1.

B. Genuine MemGuard Weaknesses

In order to discuss some weaknesses in genuine MemGuard, in

the following, we refer to RC traffic sources, or simply RC sources

as the sources that have a non-zero reservation. With the MemGuard

implementation discussed above, the following side-effects may occur

during certain regulation periods:

(a) RC sources may steal guaranteed bandwidth from each other;

in fact, one RC source may exhaust the global repository, while

other RC sources have not yet demanded their full reservations;

(b) RC sources may overbook guaranteed bandwidth in excess of

their needs and, thus, unnecessarily stall best effort traffic; and

(c) Traffic sources with zero reservation will acquire part of guar-

anteed bandwidth, before non-zero reservations of RC sources

are satisfied, potentially leading to guarantee violations.

Therefore, in our view, MemGuard implementation choices target

average instead of peak bandwidth reservation for RC sources to

exploit bandwidth reclaiming. In fact, MemGuard provides a mode,

called reservation-only (RO), that avoids side-effects (a) and (c)

above, by removing prediction and reclaiming and allocating to

RC traffic sources their full reservation in each regulation period.

However, this mode performs poorly, in terms of executed instructions

per cycle.

Finally, Genuine MemGuard predicts memory bandwidth require-

ments of each core using two extreme cases of Exponentially

1Qmin should not be set to zero, in the Linux version of MemGuard, because
a core’s bandwidth request in excess of reservation would lead to an interrupt
on every cache miss, untill rmin is exhausted.

Weighted Moving Average (EWMA) that provide limited adaptivity.

More specifically,

• ALL PERIODS algorithm, uses average memory bandwidth

demands during all previous periods (does not adapt to short

bandwidth fluctuations);

• ONE PERIOD algorithm, examines only the memory band-

width demands of the previous period (adapts to abrupt changes).

III. HARDWARE MEMGUARD EXTENSIONS

Our MemGuard extension, intended for a hardware component

placed in front of the memory controller, aims awareness of regulation

decisions about concurrent RC and BE traffic sources, to prevent

stealing of RC bandwidth, without removing reclaiming, including

in violation-free (VF) mode. Furthermore, we detect overbooking

by RC sources, to allow more BE-traffic in its place, and target

more gradual bandwidth reclaiming, to allow adaptive targeting

of maximum bandwidth requirements of RC sources. Finally, we

extend traffic prediction, by exploiting more general EWMA, which

computes a weighted average of all past periods based on a parameter

lamda (λ) which determines the impact of history. For each CPU

core, when a new MemGuard period starts, EWMA is calculated

using the following formula:

St = λ ·Yt +(1−λ) ·St−1, for t > 1, 0 ≤ λ ≤ 1 and S1 = Y1

where St is the consumed bandwidth moving average and Yt is the

actually consumed bandwidth, for some core, in the tth regulation

period. We use St as the prediction for period t+ 1.

The following subsections explain the rationale in our implemen-

tation of hardware MemGuard focusing on its input interface (at

receive-side), as well as our proposed new MemGuard extensions.

A. Blocking Excessive BE Traffic

A bandwidth regulating component implemented at the receive-

side of a target device, such as a memory controller, needs a way

to block excessive traffic from some sources in order to prioritize

other sources. That is because, if a source is requesting excessively

more than its reserved memory bandwidth, its packets will appear

with a disproportionately high frequency at the on-chip network input

interface of the hardware component (i.e. the memory controller).

MemGuard would try to postpone the majority of these packets,

but it would also needs to dequeue packets from the NoC, in order

to advance RC traffic of other sources. Note that such misbehaving

sources would require large amounts of buffering within our band-

width regulating component, or could, otherwise, result in unbounded

delay for other RC traffic.

To resolve this issue, we assume that all traffic sources in our

system have a maximum number of outstanding accesses and, corre-

spondingly, our bandwidth regulating module provides per source

buffering of that amount. This allows postponing packets of a

traffic source that exceeds its reservation, for as long as necessary.

Notice that, such, per-source buffering is required, for a hardware

MemGuard implementation, at the receive-side of the bandwidth-

regulated system, regardless of whether we use the genuine, or our

extended algorithm.

Usually, core caches employ a small number of Miss Status Hold-

ing Registers (MSHRs –e.g, see [17]), which limits the maximum

number of outstanding accesses. This implies an access protocol that

requires either a response or an acknowledgement, to release initiator

resources. On the flip side, core uncached accesses and device DMA

(usually, to uncached memory) are seldomly implemented with a

maximum number of outstanding accesses, because initiator resources
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Fig. 1. Hardware MemGuard component system placement.

can be released immediately after the access is issued. Thus, our

proposed hardware bandwidth regulating design would not work

correctly in systems that support such memory traffic sources, without

an outstanding access upper bound (see also subsection III-B).

Nevertheless, our design supports an independent, relatively long

queue for traffic sources of zero reservation, which can tolerate a

number of accesses from sources without a maximum outstanding

access limit, without compromising bandwidth regulation.

B. Placement and Limitations of a Hardware MemGuard Component

Figure 1 shows the intended placement of a hardware MemGuard

component in a simple 4-core system. MemGuard is placed after

the input network interface of the DRAM controller, to manage the

order in which packets are delivered to the controller. Although such

a component could also be used to regulate access to other types of

memory (e.g., in section VI, we use it also for SRAMs), it is designed

for DRAM bandwidth management. Per-source buffering FIFOs are

presented as an independent part of our extentions, since they are not

associated specifically to the MemGuard algorithm extentions, which

we discuss in subsection III-C. The figure also shows a potential

DMA-capable device without an outstanding access upper bound,

which our design can tolerate up to a degree.

Other than such DMA devices, there are some other, potentially

limiting, factors for the effectiveness of a hardware MemGuard

component. Per-regulated-source buffering depends on the regulated

sources having an independent NoC access point, so that they can be

identified in the request packet header (to allow for an acknowledge-

ment) and be classified separately. The case of uncached core accesses

sharing the NoC access point of cached ones, would require special

provisioning in the per-source buffering FIFOs component, to identify

their protocol. More importantly, NoC access over shared caches, or

coherence directories with placement or protocols that mask, modify,

or completely remove the regulated source information from DRAM

accesses, would complicate and could even make unattainable the

design of a hardware MemGuard module.

C. Algorithm Extentions

Based on the discussion in subsections II-A, III-A and III-B,

Figure 2 shows the block diagram of the intended hardware module

for extended MemGuard. There is one FIFO per regulated source

(serving what we call an RC flow), plus a BE-traffic FIFO (8
and 8 · number of sources packet-entries respectively, in the

implementation and evaluations of following sections). In each cycle

of a regulation period, the algorithm accumulates some per FIFO state

data (in Prepare Make Traffic block) and computes the conditions

to pass a packet from each of the FIFOs (in Make RC/BE Traffic
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Fig. 2. Block diagram of Extended MemGuard.

blocks). A round robin (RR) scheduler iterates over Make Traffic

decisions, to pass or postpone a FIFO’s top packet, but only for non-

empty FIFOs, and selects the first positive one. State affected by

the Make Traffic decision is then updated. At the beginning of a new

regulation period, per FIFO state is reset and EWMA state is updated

(by Periodic State Reset block).

Figure 3 shows the implementation of Make Traffic, for reg-

ulated sources (make RC traffic, lines 1-20) and for BE traffic

(make BE traffic, lines 21-30). A source’s packets passed in the

regulation period up to the current cycle is represented by ui. The

total reservation for the source is Qi and the temporary allocation for

the source qi. For accounting in the hardware MemGuard compo-

nent, everything is measured in time-slots (cycles). Thus, bandwidth

(packets per time slot) is represented as a number of time-slots

in a period. During each period, the remaining unused guaranteed

bandwidth is monitored in guaranteed window, reserved bandwith

that is not yet granted to RC sources is tracked by reserved slots and

the number of remaining time-slots, past the current, is provided by

residual window. In make BE traffic, we allow a BE packet (from

the FIFO of BE sources) to pass if:

(a) Reserved RC traffic is fully served for this period (line 23);

or

(b.1) Remaining guaranteed slots exceed residual time slots in

period (line 24); and either

(b.2.1) No more than all residual time slots in period (except

current) are reserved (line 25); or

(b.2.2) There are no packets pending this cycle, in per-core FIFOs,

for RC sources that have residual reserved bandwidth slots

this period (line 26).

For the per-core FIFOs (make RC traffic), the case that ui is more

than qi is handled first (line 3). If the global repository is empty (line

4), we may decide pass only if we would pass a BE packet (same

condition as in make BE traffic, lines 5-8). If the repository is not

empty, we try to reclaim bandwidth (line 14), i.e., an update of qi,

which we discuss below. Then, if ui is less than qi (for the original

or updated value of qi), we decide pass (lines 15-18).

Finally, bandwidth reclaiming (reclaim bandwidth), shown in Fig-

ure 4, may extend qi by a minimum amount, based on configuration

parameter Qmin. In case ui is less than the total reservation for the

source (Qi), qi is extended by a portion of the residual reservation



1 function make RC traffic

7 ( reserved slots ≤ residual window OR

2 begin

3 if ( ui ≥ qi ) then

4 if ( G = 0 ) then

5 if ( reserved slots = 0 OR

6 ( guaranteed window > residual window AND

8 no critical exists ) ) ) then

9 update next EWMA prediction;

11 return true; // Let it pass

10 ui←− ui + 1;

12 else

13 return false; // Don’t let it pass

14 reclaim bandwidth();

15 if ( ui < qi ) then

16 update next EWMA prediction;

18 return true;

20 end

17 ui←− ui + 1;

19 return false;

21 function make BE traffic

22 begin

23 if ( reserved slots = 0 OR

24 ( guaranteed window > residual window AND

25 ( reserved slots ≤ residual window OR

26 no critical exists ) ) ) then

28 return true; // Let it pass

29 return false; // Don’t let it pass

30 end

27 uiBE FIFO←− uiBE FIFO + 1

Fig. 3. Extended MemGuard algorithm.

for the source (line 6). When the source already exceeds its total

reservation, if not in violation-free mode, we allow a minimum

allocation from G (line 9), which may result in side-effects (a) and

(c) of section II-B; in violation-free mode we only extend qi if, at

the beginning of the regulation period, there was in G guaranteed

bandwidth not allocated in Qi’s, in lines 11-13 (Gexcess = rmin-
∑

Qi).

IV. C++ TO SYNTHESIS RESULTS

We have used a high-level synthesis tool (Xilinx Vivado HLS)

on our component, described in C++ and bit-accurate SystemC. In

addition, we have optimized the hardware, initially using Vivado HLS

directives associated with code structures and, subsequently in an

iterative process, modifying the C++ code and adding or changing

directives (data pack for the data structures, horizontal array map

for the FIFOs, unroll for loops, and inlining for most function calls).

This process came across four reasons for modification of the original

code:

1. Introduction of additional C++ methods (operator() was required

for MemGuard class inclusion in a top-level function) and

classes (to replicate per-source structures);

3 minAlloc←− min( Qmin, G );

1 function reclaim bandwidth

2 begin

6 qi←− qi + min( (Qi - ui), minAlloc );

4 prev qi←− qi;

5 if ( ui < Qi ) then

7 else

9 qi←− qi + minAlloc;

10 else

11 minAlloc←− min( Qmin, Gexcess );

12 Gexcess←− Gexcess - minAlloc;

13 qi←− qi + minAlloc;

14 G←− G - (qi - prev qi);

15 end

8 if ( VF = false ) then

Fig. 4. Extended MemGuard algorithm (continued).

TABLE I
HARDWARE COST (4 REGULATED SOURCES).

Vivado HLS Vivado

Version
Before
Co-Sim

Co-Sim
Before
Co-Sim

Co-Sim

FF
(106400)

703
(0.66%)

776
(0.73%)

543
(0.51%)

599
(0.56%)

LUT
(53200)

2453
(4.61%)

2504
(4.71%)

802
(1.50%)

868
(1.63%)

BRAM 18K
(280)

2
(0.71%)

3
(1.07%)

2
(0.71%)

3
(1.07%)

DSP48
(220)

4
(1.81%)

4
(1.81%)

0
(0%)

0
(0%)

2. Changing method call order (to represent parallelism, available

in hardware);

3. To adhere to Vivado HLS coding style for loop boundaries (so

they can be optimized); and

4. To introduce a Round Robin (RR) scheduler, similar to the

way it is coded in Verilog (to represent parallelism available

in hardware, which requires logical operations on wide integers

to overcome usual software sequential semantics).

In addition, we had to modify our directives for minimizing logic

of interface ports (from using an ap none interface, to an ap hs

interface), so that Vivado HLS could co-simulate our final C++ code

with the resulting HDL code with the same synthetic traffic testbench,

allowing us to verify results.

After creating the IP using Vivado HLS tool, we imported it to

Vivado for synthesis and obtained the hardware cost for a Zedboard

Z7020 FPGA. Table I presents FPGA resource utilization, for an

extended MemGuard design with 4 bandwidth-regulated sources,

comparing Vivado HLS and Vivado, before and after modifying the

interface optimizations on top-level ports, for co-simulation. DSP48

modules have been used to implement integer multiplications, for

the EWMA calculations in Vivado HLS and have been replaced with

LUT-based logic in Vivavo.

Table II shows hardware cost scalability with the number of

regulated sources (power of two in our design), for the final Vivado

Co-Sim version. Our bandwidth regulation module scales well and

is always small, requiring less than 3531 FPGA LUTs (6.63% of the



TABLE II
HARDWARE COST SCALING (2, 4, 8, 16 SOURCES).

Sources
(#)

2 4 8 16

FF
(106400)

360
(0.33%)

599
(0.56%)

1213
(1.14%)

2250
(2.11%)

LUT
(53200)

471
(0.88%)

868
(1.63%)

1622
(3.04%)

3531
(6.63%)

BRAM 18K
(280)

2
(0.71%)

3
(1.07%)

2
(0.71%)

2
(0.71%)

F7 Muxes
(26600)

0
(0%)

0
(0%)

17
(0.06%)

0
(0%)

F8 Muxes
(13300)

0
(0%)

0
(0%)

95
(0.35%)

5
(0.03%)

TABLE III
LATENCY SCALING IN VIVADO HLS (2, 4, 8, 16 SOURCES).

Sources
(#)

2 4 8 16

Latency
(cycles)

1-9 1-12 1-20 1-32

Cycle-time
(Syn/IP)

8.72ns/
7.299ns

8.67ns/
6.783ns

13.82ns/
6.876ns

8.22ns/
8.914ns

TABLE IV
EXTENDED MEMGUARD (4 SOURCES) COMPARED TO

AXI BRIDGE AND STNOC INSTANCE.

Component LUTs FFs BRAMs

Extended
MemGuard

868 599 3

AXI Bridge 723 971

STNoC
(12-nodes,

4x4 routers)
24939 17983

low-end XC7Z020 FPGA) for 16 regulated sources. Flip-flop count

is small and also scales well with the number of sources. Table II

shows that Vivado can exchange a number of LUTs for F7/F8 MUX

primitives (about 6 LUTs each), in the larger designs.

Although we have exploited concurrency of the independent Make

RC/BE Traffic blocks, we have not attempted to also pipeline

our design. Nevertheless, timing results, shown in Table III, are

encouraging. Our design requires 9 to 31 clock cycles, for different

regulated source counts, with cycle times that Vivado HLS synthesis

estimates to be worse than 10ns only for 8 sources. Even in that case,

when extracting the RTL as intelectual property (IP) for Vivado, the

estimate improves to meet our timing constraint, for a 100 MHz

clock.

Finally, Table IV further shows the small cost of the Extended

MemGuard hardware module, compared to AMBA AXI4, and an

instance of STMicroelectronics STNoC on the same FPGA fabric.

V. SYNTHETIC TRAFFIC EVALUATION

To evaluate the relative performance of Genuine vs. Extended

MemGuard, we run experiments with annotated SystemC models

of our bandwidth regulating device, and different synthetic traffic

configurations (uniformly random, variable bit rate (VBR) and bursty)

arriving from two or more ”hypothetical” cores. We consider both

violation free (VF) and non violation free (non-VF) mode. Each core

reserves rmin/number of sources, except for one, which has a

zero reservation.

Fig. 5. Extended MemGuard with VBR traffic (4-cores).

For improved accuracy in our simulation experiments, we assume

n = 10240 periods and repeat each experiment for m = 100 times.

The regulation period duration is period = 20 units (i.e. up to 20

accesses can be forwarded to the memory controller during a period).

Hence, the total number of simulated memory accesses by all cores is:

(number of sources ·period ·n ·m). All MemGuard performance

metrics are normalized in a range from 0 to 100%, by taking into

account:

• The maximum number of bandwidth reclaims: period ·

number of sources · n;

• The maximum total number of accesses for all traffic sources

can be computed as: period · n;

• Since a guarantee violation may also lead to best effort, the

maximum number is: (period − rmin) · n for best effort

and (period − rmin) · number of sources · n for guarantee

violations.

Figure 5 shows average performance from 100 simulations of

a 4-core platform, using a VBR traffic scenario for the extended

MemGuard. The total used bandwidth (Ui) reaches up to 99.02%

(for Non-VF mode) and 88.87% (for VF mode) of the maximum

possible, and bears an almost linear relationship to the increase

in guaranteed bandwidth. In addition, our simulation experiments

reveal that for NonVF mode, guarantee violations increase with the

guaranteed bandwidth reaching maximum when rmin is equal to 95%,

and are always at low rates, less than 10% of the maximum possible.

For the VF mode, there are zero guarantee violations.

Similarly, for Genuine MemGuard (graph omitted due to space

limitations) we observe that: (a) used bandwidth is almost similar

in Non-VF mode, but much smaller on average in VF mode; (b)

bandwidth reclaim requests are much higher (e.g. 35% vs. 12.03%

in VF mode); (c) best effort packets are less by 10% in Non-VF and

20% or more in VF mode; and (d) the number of guarantee violations

is similar.

Figure 6 considers bursty traffic and compares performance of

Extended vs Genuine MemGuard. Results indicate that Extended

MemGuard continues to improve compared to Genuine algorithm

for a larger number of cores, as it manages a smaller number of

bandwidth reclaims (15 to 35 times less), has higher best effort

traffic rate (up to one order of magnitude), utilizes almost 100%

of the provided bandwidth, and generates a comparable number of

violations for non-VF mode; notice that for the sake of simplicity

only minimum and maximum bounds are shown for the same rmin

range as in Figure 5. Simulations based on random and VBR traffic

have drawn similar conclusions.



Fig. 6. Max/Min ranges for Bandwidth Reclaim (B/W R), Best Effort (BE), Used Bandwidth (Ui) and Guarantee Violations (GV) in VF and NonVF mode
for Genuine (left pair of bars) and Extended (right pair of bars) MemGuard for 2, 4, 8 and 16 cores.

Fig. 7. Mapping the MPEG4 task graph (shown on the left) on the custom 16-node hypercube NoC, where a separate MemGuard instance is located at each
memory component (SRAM1, SRAM2, SDRAM).

VI. NOC-BASED EVALUATION

MemGuard was originally proposed for Linux, thus, arbitrating

traffic consumption by different cores. However, the core part of

MemGuard algorithm is generic, and can be adapted for custom on-

chip network traffic management. In this case, RC and BE traffic

can be distinguished by NoC virtual channels, or by a special tag

in the packet, enabling finer granularity traffic classification, e.g., to

applications.

This section provides experiments towards this generalization of

the algorithm and evaluate relative performance of Genuine vs.

Extended MemGuard at multiple target devices (memory controllers)

in a cycle-approximate custom binary hypercube NoC topology, cf.

open source HSoC [18]. This NoC topology provides a rich set of

edge-disjoint paths which can be appropriately utilized for providing

static partitioning of the IPs in our proposed application scenario, and,

as we will discuss later, predictability of the traffic flows arriving at

each memory controller.

As a traffic pattern, we assume an MPEG4 decoding speed transfer

test [19]. In the MPEG4 graph, nine initiators (active cores) generate

and transmit packets at highly different rates, e.g. compare 1580 MB/s

bandwidth for UP-SAMP (core 6) to 0.5 MB/s for ADSP blocks (core

5), while three targets (SDRAM, SRAM1 and SRAM2) are passive

storage elements which are only receiving data.

As shown in Figure 7, we have used a best map of the MPEG4

task graph resources (IPs) onto the 16-node NoC topology using

offline partitioning via an efficient high-level partitioning tool called



TABLE V
GENERIC MEMGUARD INITIALIZATION FOR ALL THREE MEMORY CONTROLLERS (SRAM1, SRAM2, SDRAM).

Memory SRAM1 SRAM2 SDRAM

Initialize period=20 period=20 period=20

Packets
Relative

Percentage
Initial Qi Packets

Relative
Percentage

Initial Qi Packets
Relative

Percentage
Initial Qi

Packet
Distribution

40 50% Q1 = 2 250 15.69% Q1 = 1 600 33.46% 3

40 50% Q2 = 2 500 31.39% Q2 = 3 60 3.35% 1

173 10.86% Q3 = 1 32 1.78% 1

670 42.06% Q4 = 3 910 50.75% 6

0.5 0.03% 1

190 10.6% 1

0.5 0.03% 1

Total 80 100%

∑
Qi = 4

guaranteed
1593 100%

∑
Qi = 8

guaranteed
1793 100%

∑
Qi = 14

guaranteed

Scotch [16]. Idle cores are marked in yellow, active cores in brown,

and each of the three memory controllers in a different color (green,

red, blue). Moreover, the color of a hypercube link identifies the

destination of the packets that are transferred through that link, i.e.

if the color of a link is blue (e.g. the connection between Media

CPU and UP-SAMP), then all packets travelling through this link are

sent to the SDRAM memory device (i.e. the one with blue color).

Moreover, some links are marked with a Dual (or Triple) Share sign.

This symbol identifies that the link is actually shared by packets

originating from two (resp. three) different initiator cores and destined

to the same memory controller.

In this optimized mapping based on the underlying e-cube shortest-

path routing algorithm each memory controller receives packets

through edge-disjoint paths. More specifically, paths directed to any

memory controller are distinct from the paths to any other memory

controller. This aspect provides static partitioning at NoC-level and

allows for two important properties:

• Non-interaction of the traffic flows directed to different memory

controllers.

• Consequently, based on the underlying MPEG4 traffic model,

predictability of the traffic flow arriving at each memory con-

troller. In this case, certain links are actually shared by packets

originating from different initiator cores which are destined

to the same memory controller (cf. dual or triple shares in

Figure 7). However, this buffering issue does not actually affect

MemGuard performance.

Due to static partitioning which provides edge-disjoint paths to

each memory controller, the MemGuard instance on each memory

controller can be configured independently based on the number of

sources and guaranteed bandwidth.

More specifically, assuming an EWMA parameter λ = 0.2 (to

emphasize history) and a period of 20 quanta (time slots) for each

of the memory controllers in MPEG4, we use reservations of

• 4 time quanta for SRAM1 IP (receives from 2 sources);

• 8 quanta for SRAM2 IP (receives from 4 sources); and

• 14 quanta for SDRAM IP (receives from 7 sources).

Notice that the number of sources corresponds to the number of

make RC traffic blocks in each memory controller. Initial reservation

of the quanta to different traffic flows at each memory controller are

based on the MPEG4 rates as shown in Table V. Thus, the initial

reservations for the traffic sources of SDRAM IP are (3, 1, 1, 6, 1,

1, 1), with 6 corresponding to UP-SAMP and 3 to RAST (the two

maximum rates). Notice that, since EWMA is in place, algorithm

TABLE VI
PERFORMANCE AT DIFFERENT MEMORY CONTROLLERS (MPEG4).

NonVF (Genuine, Extended)

Memory B/W Reclaim BE GV
Delay

(MG periods)

SRAM1 (136, 62) (21, 69) (2, 4)

(300, 205)
SRAM2 (3661, 1167) (1082, 2309) (192, 153)

SDRAM (2691, 2490) (210, 2444) (66, 56)

Total (6488, 3719) (1313, 4822) (260, 213)

VF (Genuine, Extended)

Memory B/W Reclaim BE GV
Delay

(MG periods)

SRAM1 (441, 55) (15, 31) (0, 0)

(1698, 1675)
SRAM2 (22302, 2685) (16, 28) (0, 0)

SDRAM (14410, 3016) (0, 8) (0, 0)

Total (37153, 5756) (31, 67) (0, 0)

bandwidth reservations quickly adapt to the actual rates, especially

since a small period (20 quanta) is used for all cases.

Our simulation is based on MPEG4 traffic with more than 60K

packets; there is very small difference (1-2%) from large sets of

experiments with up to 998K packets. Results shown in Table VI

indicate that when using MPEG4 task graph to generate traffic, ex-

tended MemGuard generates a smaller number of bandwidth reclaims

(socalled interrupts) and more best effort traffic (in both NonVF

and VF mode) resulting in an improved bandwidth rate (routing all

packets with a smaller delay), while also generating less guarantee

violations in NonVF mode than the Genuine version. Finally, we

note that the actual value of λ (set to 0.2 in all experiments) does

not affect performance since MemGuard is able to adjust very quickly

to MPEG4 traffic rates.

We have also performed experiments involving distributed database

transactions based on parallel equi-join operations. Equi-joins are

implemented using parallel hashing of keys which results to an

all-to-all NoC communication pattern, whereas the length of each

vector depends on the distribution of the keys and the hash function.

In our model, 8 initiators make parallel accesses to 8 different

target memories via the hypercube NoC to access 2x5K records,

resulting in a total of 80.000 RC packets being transmitted to

all memory controller (with ideally 10.000 packets per memory

controller). In this scenario, we use a period of 20 time quanta,



for all MemGuard configurations and for guaranteed bandwidth all

possible values correspond to a minimum 8 to the maximum of

20 quanta. Our simulation results (graphs omitted due to space

limitations) show similar behavior characteristics as MPEG4, with

Extended MemGuard producing more Best Effort traffic and less

Bandwidth Reclaims in NonVF mode than the Genuine version, while

the number of guarantee violations is larger. Moreover, both Genuine

and Extended MemGuard take almost the same simulation time to

successfully schedule all packets.

VII. CONCLUSIONS

We have proposed a new efficient, low-cost hardware component

(called extended MemGuard) for bandwidth regulation at target

devices. Compared to the original (genuine) MemGuard, our extended

MemGuard component differentiates between rate-constrained and

best effort messages, supports a violation free operating mode for

rate-constrained flows, and provides dynamic adaptivity through

EWMA prediction. Considering both NoC-independent and NoC-

dependent traffic scenarios, we have shown that our extended hard-

ware MemGuard compares favorably with an equivalent implemen-

tation of genuine MemGuard.

In future work, we are interested in examining the precise interplay

between the proposed mechanisms and existing QoS techniques

at the network interface and router layer in NoC-based multicore

SoC. Moreover, we plan to experiment with alternative hardware

MemGuard implementations at network interface, router, and as a

Linux kernel scheduler extension for managing mixed criticality

traffic by different cores, processes or VMs.
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