
Architecture and Applications of PLATO, a Reconfigurable
Active Network Platform

 Apostolos Dollas, Dionisios Pnevmatikatos1,

 Nikolaos Aslanides, Stamatios Kavvadias,
 Euripides Sotiriades, Sotirios Zogopoulos ,

Kyprianos Papademetriou

Department of Electronic and Computer Engineering
Technical University of Crete

Chania, 73100
Greece

Contact e-mail: dollas@mhl.tuc.gr

Nikolaos Chrysos, Konstantinos Harteros

Institute of Computer Science (ICS) − FORTH
Heraklion, 71110

Greece

Emanouil Antonidakis, Nikolaos Petrakis
Department of Electronics

Technological and Educational Institute of Crete
Chania, 73100

Greece

1 Also at ICS-FORTH

Abstract
A new, configurable architecture has been designed and
built in order to serve as a platform for experimentation
with active networks. This architecture, named PLATO,
provides 4 physical bi-directional connections for ATM
networks, large reconfigurable resources, 256 Mbytes
SDRAM for buffer space, a PCI port, and auxiliary
expansion ports. Several applications are presented for
this platform, one of which has been prototyped on the
PCI Pamette and on PLATO. Detailed simulations and
experimental results show that, for some applications, a
significant improvement can be obtained using this
approach as compared to using conventional network
architectures.

KEYWORDS: Active networks, reconfigurable
computing, protocol boosting.

1. Introduction
The term “active networks” is the notion for smart
networks. It principally refers to extending the
functionality of networks to support useful computation
on the data sent over them, but it also includes the
increase of network flexibility, adaptability, security and
functionality in general. The typical flexibility offered by
active networks is automatic, rapid protocol deployment,
making networks programmable. This in turn, leads to
the necessity of processing power on active network
nodes. Conventional networks provide routing of cells
based on some information found in the header of each
cell. By comparison, in addition to the above functions,
active networks either use the payload of the cell for
routing purposes (e.g. for dynamic balancing of loads in

networks), or process the payload of the cell as it goes
through the network (e.g. for data extraction).

With very few exceptions, noted in section 2, below,
almost all active network projects are software based,
due to the (correct) assumption that networks of the
future will contain processing power comparable to high-
end processors of today. Whereas this approach is
excellent for the exploitation of new ideas, it leaves out
interesting areas such as real-time payload processing of
cells, which may be needed for important applications.
Such applications can be the detection of Denial-of-
Service (DoS) attacks, real-time load balancing for e-
commerce servers, real-time network based speech
recognition servers for v-commerce, protocol boosting,
etc. To experiment with such applications we have
developed PLATO, a reconfigurable platform for ATM
networks. PLATO has been implemented and is
undergoing tests, whereas the PCI Pamette[1] has been
used as a rapid prototyping tool, to test several
subsystems and applications. Although network
applications with FPGA’s have been implemented in the
past [2][3], the vast range of real-time active network
applications that can be developed with last generation,
large FPGA’s makes this project promising.

Section 2 presents related work, section 3 has the
architecture of the new platform, section 4 presents
examples of specific applications for the new platform,
section 5 presents performance results from simulations
and from prototyping with the PCI Pamette, section 6 has
the present status of the project, and section 7 has
conclusions and future work, followed by the
acknowledgements and bibliography.

2. Related Work
In order to investigate the design space for an active
network node's architecture, research has spread between
two discrete approaches: in-band and out-of-band node
programming. The in-band or integrated approach uses
cells containing both program and data, which are called
capsules. When a capsule arrives at a network node, the
program that is contained in the capsule is executed using
the data in the capsule. In the out-of-band or discrete
approach, code implementing a service is loaded on the
network node(s), and passing traffic can then utilize the
service. In this last case, a process of upgrading the
node's capabilities is needed, in contrast to the dynamic
nature of the integrated approach. On the other hand, the
need to efficiently address the wide range of possible
active network applications, and the indispensability of
security and bandwidth considerations, seem to lead to a
convergence of the two extremes mentioned above.

As we move towards less dynamic network programming
models, it becomes easier to capture hardware
implementations, without the need for extensive
operating system and language support on the active
node. Towards the opposite direction, we find increased
flexibility in network application programming and
service deployment, at some potential cost in efficiency
since extra latencies are introduced by the software
approach taken.

The ANTS project at MIT [4][5] introduced the notion of
capsules. An ANTS capsule integrates a cell’s data and a
reference to a Java forwarding routine, which must be
loaded (if not present) on the active node before the
capsule can be processed. ANTS runtime must be
installed on active nodes, to do the processing introduced
by the forwarding routine and also handle security issues
through techniques like sandboxing and Java bytecode
verification. Smart Packets at BBN [6], also uses
capsules to extend the diagnostic functionality in the
network, using a specially developed language (Spocket)
and run-time environment. The SwitchWare project at
the University of Pennsylvania and Bellcore [7] relies on
active packets, carrying limited functionality programs
written in PLAN [8], resident or loaded out-of-band
active extensions to provide additional functionality and
an active router infrastructure. Verification,
authentication and secure bootstrap techniques are
applied to insure integrity, safety and security.

In the CANES project at Georgia Tech and the
University of Kentucky [9][10], the functionality of an
active network node is divided between the Node
Operating System and Execution Environments running
on top of it, the latter of which correspond to

composition methods for defining new services (e.g.
ANTS, PLAN).

Open signaling (Opensig), refers to an instance of
programmable networks that clearly separates network
control from information transport [11]. The Xbind [12]
broadband kernel abstracts node resources and supports
the programmability of the management and control
planes in ATM networks, based on CORBA [13]
middleware to incorporate multiple vendor switches. The
Genesis project [14] at Columbia, implements the
Virtuosity kernel, which automates the spawning of
network architectures in a process of profiling, spawning
and management. Profiling captures a "blueprint" of the
architecture. Spawning sets up the virtual network's
topology and address space and binds transport control
and management objects. Management supports virtual
network architecture refinement and resource
management.

To our knowledge, only two projects have considered
hardware platforms for active networks. The ANN
project [15][16] at the Washington University in St.
Louis devised a hardware implementation for a scalable
active network node architecture for gigabit
environments. Their platform consists of a general
purpose CPU, one or two FPGA’s, 64MB of memory and
an ATM Port Interconnect Controller (APIC) chip
connected on a PCI bus. In addition, their Router Plugins
[17] research software platform is used as a framework
for the development of a NodeOS. The Programmable
Protocol Processing Pipeline (P4) project [18][19], has
implemented a platform comprised of a set of ALTERA
FLEX8000 FPGAs acting as processing elements (PEs)
and a switching array selecting which devices are
engaged in processing. The PEs are arranged in a
pipeline exchanging data through FIFOs and FPGAs can
be moved in and out of the pipeline to be reconfigured.
This testbed has been used to implement forward error
correction (FEC) protocol processing (boosting), on a
single OC-3 ATM link.

Active network applications include active reliable
multicast [5], self-organizing network caching [10],
multicast video distribution [15], online auctions [4],
active bridging [7], protocol boosters [19], active
congestion control, distributed firewalls, and packet
filtering. Software approaches to such services (e.g.
ANTS, Smart Packets, PLAN and CANES), have
historically been implemented over IP networks. In the
context of ATM networks, even though QoS features are
inherent, signaling complicates service creation. Our
platform, introduced in the next section, has the potential
to explore the capabilities of an active, 155 Mbps per
link, 4x4 ATM switch.

3. PLATO Architecture
The architecture of PLATO will be presented together
with one particular design, as shown in Figure 1. This is
deliberate, because the platform is mainly aimed to be a
tool for experimentation and design library development,
and hence was derived from a minimum set of
functionality requirements, as follows:

•= Ability to be connected to fiber or copper ATM
networks, ability to be connected in the future
with Ethernet (10/100 or Gigabit)

•= Minimal delay in hardware processing of the
cells, and ability to implement protocols with no
need to communicate with the host processor

•= On-board buffer space for streams of cells, on
the payload of which, processing will be
performed

•= Ability to communicate with a general purpose
computer, for further processing, downloading
of statistics, or partial reconfiguration of the
FPGA

•= Extra connectors for expansion
The PLATO platform has a large FPGA (versions with
Xilinx Virtex XCV 1000 and ALTERA 20K400 have
been designed), which in addition to the clock generation
circuit, programming ports, etc. has four main ports:

•= A UTOPIA level 2 port, to provide the
physical connection to daughterboards with
copper or optical fiber outputs – the
daughterboard also has the UTOPIA level 2 -
ATM framing circuitry

•= A 256 MB 133MHz SDRAM port for buffer
space

•= An auxiliary port which will be used in another
project [20] for SRAM look up tables

•= A PCI bus port for communication with the
host.

Although the general topology resembles several existing
products, the need for new hardware was largely
mandated by the numbers of pins needed for each port, as
well as the voltages in each case (e.g. PCI at 5V,
SDRAM at 3.3V, etc.).

PLATO has several similarities with that of the
Washington University ANN active network project, as
well as with general-purpose FPGA platforms, such as
the SLAAC. A notable difference with ANN is that
PLATO does not have a general-purpose processor
embedded in it. Although we recognize the usefulness of
such a processor, the goal of PLATO was to experiment
with the performance that the reconfigurable resources
offer in several applications, and, the development of
VHDL design libraries for operations such as cell
disassembly and reassembly, payload extraction, etc.

PROM1 PROM2

M
ul

tiL
IN

X
C

on
ne

ct
or

JMP

PL
L

cl
k

ou
tVirtex's configuration pins

BO
AR

D
 T

O
 B

O
AR

D
C

O
N

N
EC

TO
R Sram-Virtex

CLK

168 pin 3.3V Unbuffered SDRAM 133MHz

MultiLINX
 Cable

Vi
rte

x-
Sd

ra
m

Virtex
XCV1000

BG560

PLL

C
LK

VR
X

cl
k

ou
t

Pc
i

C
on

ne
ct

io
n

PCI SLOT at 5 Volt

Virtex-Utopia

BO
AR

D
 T

O
 B

O
AR

D
C

O
N

N
EC

TO
R

Sd
ra

m
's

 c
lk

� 64 Data
� 14 Adrress
� 15 Control
Total - 93 Pins

� 32 AD
signals

� 24 control
signals.

Support all the
PCI operations.

� 134 I/O
signals.

� 9 3.3 Volt
Vcc .

� 10 Gnds.

102 I/O
signals.

Total
UTOPIA's
I/O signals
= 89.

2 Proms in chain.
Programed
on-board from
MultiLINX cable.

Figure 1. Architecture and Block Diagram of PLATO

The general architecture is independent of the FPGA
vendor, and indeed we have proceeded with the design of
two versions, one with Xilinx Virtex and one with
ALTERA 20K400 FPGA’s. This way we hope to get
results and gain insight on how the architecture of the
FPGA’s and the corresponding CAD tools affect the
system level performance. As the Xilinx version of the
architecture has already been implemented, the remainder
of this paper will focus on this version.

4. Applications
Several applications are under development for PLATO,
including the implementation of a real-time continuous
speech recognition server [20] for ATM networks, and
experimental work on Denial of Service (DoS) attack
detection. In this section we will present two
applications: an active 4x4 ATM switch with simple
processing capabilities, and a protocol boosting
application. The first application has already been
prototyped in hardware using the PCI Pamette, and
subsequently ported on PLATO. Therefore we have
performance results to report even before our platform is
fully functional. The second application gives a clearer
picture of the kind of processing that can be performed
by our system.

4.1 Active 4x4 ATM Switch
Recognizing that most every active network application
for PLATO will involve cell disassembly and
reassembly, cell routing, and the ability to perform some
processing (however sophisticated) on the header and the
payload, the first application is a 4x4 switch with the
ability to screen some types of cells. These are initially
“ping” cells because they are short and they are
associated with some forms of DoS attacks. This switch
will form the foundation for subsequent applications, as it
implements all the basic and necessary functions that a
common ATM switch does. The switch is divided in
three parts: the input Header Processor, the multiplexing
and application interface (which interfaces with the
hardware that makes the network “active”) and the
Output Header Processor.
When the UTOPIA level 2 interface of the switch
receives an ATM cell, it places it in a FIFO (there is one
FIFO per incoming link). The switch starts to process the
cell by disassembling it and loading the respective
registers with all the fields of the header (VPI, VCI, PT,
CLP, and HEC). When the VPI and VCI of a cell have

been received, the ATM switch evaluates, according to
an internal look up table, the output VPI, VCI and
physical link. The ATM switch has four internal look up
tables, one per incoming link. Each look up table is
memory based with 256 positions each. This way the
switch can handle cells in all four input ports
simultaneously. The size of the tables is small for an
ATM switch, but it is big enough for experiments on
active network applications. As the header is processed,
data from the payload of the cell continues to be received
from the UTOPIA level 2 interface for six system cycles.
Since the payload may determine whether a cell will be
rejected or not, and until conflict handling circuitry
determines availability of the necessary output link, all
the data are stored in an input FIFO. The number of the
positions that the FIFO should have is also six, but
depending on the technology that is used (Xilinx or
ALTERA) the number of positions can be either six or
fifteen.

On the multiplexing and application interface, the control
circuitry checks if there are any collisions, and gives
permission or rejection to every cell. This part also
gathers all the signals from every input and output port of
the switch, and performs the actual switching of cells.
Internal input and output port busses are 48 bits wide.
This is the number of the header bits plus the number of
the bits of the first payload word. The priority of a cell to
get output permission is based on the time of its arrival.
If two or more cells are received on the same cycle from
different input ports and they need the same output port
for transmission, then the cell that came from the lowest
numbered input port passes and the others are rejected.
This arbitrary algorithm was used for reasons of rapid
prototyping and is not inherent to the architecture. Due
to the wide bus that is connected to the multiplexing unit
and the open architecture of the control of this unit, this
is where processing of cell payload can take place, by
interfacing additional application modules to it. For
example, assuming that the cells of the application have a
specific VPI and VCI, the switch can easily detect them
and regard the application as a fifth input/output port of
the switch. Applications on the PLATO architecture can
have access to 256 MB of SDRAM and can process
single cells, or up to a large number of cells, or even keep
multiple copies of the cells. As the switch regards every
application as another input/ output port, more than one
application can be connected to the switch in parallel.

The third part of the switch is the output header
processor. When a cell gets permission to pass to an
outgoing link, the output processor starts to reassemble
the header of the cell. It reads the 48-bit bus, loads the
respective output registers and then initiates transmission
to the UTOPIA level 2 interface.

4.2 Wormhole IP over ATM Routing Filter
Fast network access and throughput is of capital
importance in today’s Internet. Meanwhile, IP is the
uncontested protocol of choice for data communications.
ATM technology finds widespread use, mostly because
of its use of (relatively) small, fixed-size "cells" as the
transfer unit. The use of small cells allows for high-speed
hardware switching, while quality-of-service (QoS) is
possible through the use of preemption of cells in
different service classes. Several techniques have been
proposed and are being used for routing IP packets over
ATM networks: LAN emulation, classical IP over ATM,
ATM under IP [21], etc. Generally, these software
methods have a number of costs, overheads and
associated delays: (i) a very large number of VP/VC
labels are consumed, or (ii) until a flow has been
recognized, the first few cells in the flow are not
switched; and (iii) new connections for new flows are
established in software (e.g. ATM signaling), thus
suffering long delays.

Wormhole IP over ATM (WIPoATM) [22] is a solution
that combines the following characteristics: (i) it
performs full IP routing per IP packet, (ii) it overlaps (in
a pipelined fashion similar to the wormhole routing in
computer networks) the transmission of IP packets over
different VP/VCs, (iii) it does so without suffering the
initial connection set-up delays. WIPoATM is a routing
filter that sits in the entry point(s) of an ATM network
exclusively for the support of IP traffic. When the first
cell of an IP packet is received, WIPoATM performs the
necessary IP routing table lookup using a fast IP routing
lookup [23] implemented in hardware, and allocates a
(pre-established) VP/VC for the transmission of this IP
packet. Subsequent cells of this packet will use the
chosen VP/VC. The process is repeated for the next IP
packet choosing a possibly different VP/VC. By
managing dynamically a number of VP/VCs, WIPoATM
can avoid the (high) latency of establishing connections
using ATM signaling. The rest of the ATM network
knows nothing of IP packets, just receives and switches
the cells as received from the WIPoATM routing filter.
This way, the hardware can balance the IP traffic and
manage network resources (VP/VC) and the rest of the
network does not know anything about IP packets. On the
other end a second filter recomposes the ATM cells so
that they arrive at the recipient from the known VP/VCs

and be accepted as legitimate IP over ATM traffic. The
proposed Wormhole IP routing filter has a number of
advantages:
•= it works together with standard, existing ATM

equipment and allows the seamless integration of
both IP and native ATM traffic in the same
networks;

•= the quality of service of native ATM traffic can stay
unaffected by the added IP traffic, while IP can
benefit from ATM's QoS capabilities;

•= cell routing delay is minimized owing to virtual-cut-
through routing --segmentation and reassembly
delays at intermediate routers are eliminated;

•= the number of pre-established connections (labels) is
small and fixed, and does not grow with the size of
the total network (as in tag switching), yet all cells
are routed through pre-established connections.

4.2.1 Organization and Operation of the Wormhole
IP over ATM Routing Filter
The organization of a Wormhole IP over ATM routing
filter is shown in Figure 2, and consists of the ATM
connection table, the IP Routing table, the VC ID free list
and an optional buffer memory. The filter operates by
looking at each ATM cell that passes through it. For each
incoming cell, we look up its virtual path (VP) and
virtual circuit (VC) identifiers in the filter's ATM
Connection Table. If the cell belongs to a native-ATM
connection, it is forwarded to the output, possibly after
undergoing VP/VC translation. Otherwise, the cell
belongs to IP traffic and we distinguish three possible
cases:
1. This is the first cell of an IP packet. The cell

contains the IP destination address (either without or
with multi-protocol encapsulation) that must be
looked up in the IP Routing Table. The routing table
specifies the desired output VP; an unused VC
identifier in that VP is then requested from the VC
ID free-list. If no such unused VC currently exists,

Figure 2. Functional Block Diagram of the WIPoATM
Routing Filter

then the cells of this packet must be buffered in
expectation of some VC getting freed, or the cell can
be dropped.

2. This is a middle cell of an IP packet. The ATM
Connection Table contains all the necessary
information for the VP/VC translation, and the cell is
forwarded to the ATM network without further
processing.

3. This is the last cell of an IP packet (indicated by the
PTI field of the cell header according to the AAL5
segmentation). The temporary, wormhole connection
that had been established for this IP packet has to be
torn down; this is accomplished simply by marking
its state as inactive in the connection table, and by
returning the output VP/VC identifier to the free list.

4.2.2 Mapping the Wormhole IP over ATM Routing
Filter on PLATO
WIPoATM fits very nicely in the PLATO architecture.
The ATM Connection Table, and the IP Routing Table
can be stored in the SDRAM module(s) while the VC ID
list can be kept either in memory inside the processing
FPGA, or in the SDRAM. While PLATO offers up to 4
bi-directional 155Mbps links for input and output,
WIPoATM requires 2 bi-directional links (as it is a bi-
directional filter). The remaining 2 ports can be used to
implement a second WIPoATM filter on the same
prototype, or to double the bandwidth of a single
WIPoATM Routing Filter. The amount of logic offered
by PLATO is more than enough for the implementation
of two such filters.

5. Performance
There are several published results from projects similar
to PLATO (e.g. ANN), with a hardware approach to
active networks, as well as results from software
approaches, in which ATM or 100Mbps Ethernet data
are sent via a network interface card to a CPU for
processing. Although, as expected, some projects are
complete and their results are based on older technology
(e.g. PLAN) and some projects are just now producing
results and these are not fully optimized yet (e.g. ANN,
PLATO), the similarity of applications in several of these
projects allows for conclusions to be drawn in terms of
general characteristics, rather than specific numbers. The
goal of this section is to demonstrate that reconfigurable
hardware offers real and tangible advantages over
software approaches in active networks, for some types
of applications. Such advantages may stem from the
elimination of the protocol processing, or from the
elimination of the operating system overhead required to
pass the cell payload information to an application. In
either case, to the extent that the benefit is real, it is
worth reporting, even as an indication of what functions

can be performed in hardware in the future.The overall
latencies we are interested in take into account the cut-
through latency from the time a cell enters the switch
from the UTOPIA interface, until the time the cell exits
the switch towards the UTOPIA interface. No
adjustments have been made for implementation
inefficiencies of the 4x4 switch in PLATO vs. highly
optimized commercial switches. The PLATO results
come from two sources: simulated operation of the
switch at 60MHz on a Xilinx Virtex, and, actual
operation of the switch at 33MHz on the PCI Pamette.
Because to date simulation frequencies have been found
to be conservative, the 60MHz Virtex results are used,
and we consider the Pamette results to be useful as
functional verification of the system and not indicative of
its performance bounds. Although we do have results
from the Virtex-based PLATO, these are (at present) on
functional correctness only.

5.1 PLATO Performance
In order to measure the PLATO latency, a simple active
network application has been designed. This application
“cuts” every cell that performs an ICMP ECHO (i.e. in
Unix terms a “ping” or a “ping reply”), and passes
through the switch all other cells. This application will be
compared to similar operations in other active networks,
including the processing of a zero payload capsule, IP
forwarding, and ICMP ECHO.

The PLATO latency in cycles that a cell needs to pass
through the switch is:

Cycles for cell switching = Cycles for Header
disassembly + Cycles for Look up table access + Cycles
for Rejection/Pass decision + Cycles for header
Reassembly =4 + 1 +2 + 1 = 8 Cycles.

The total number of cycles, including the UTOPIA
interface is:

Total Cycles = Cycles to receive the cell from UTOPIA
+ cycles for cell switching + cycles to transmit the cell
to UTOPIA = 29 + 8 + 28 = 65 Cycles

Thus, 65 cycles are needed for PLATO, including cell
disassembly and reassembly. For the ICMP ECHO (ping)
screening, detection, drop of ECHO packets, and pass of
non-ECHO packets, an additional 27 cycles are needed,
raising the total cycles to 92 cycles.

The net results (Virtex, simulated, with post place and
route indicated frequency of 60MHz) are:

µs 1.08
MHz 60
cycles 65 (switch) Latency PLATO ==

5.2 Network Interface Performance
Some older results from our group [24] as well as from
other groups [25][26] measure the latencies of a network,
including processor overhead and full protocol
implementation. We include these results for
completeness, because the detection of a simple ECHO at
the processor level incurs the network interface overhead,
as well as the appropriate protocol processing, operating
system, and application overheads.

Performance measurements were made in [24] with a
LAN emulation device driver using an 133MHz Pentium
processor running Windows NT 4.0. The Network
Interface is IDT77901 ATM (NICStAR controller),
plugged on a PCI bus running at 33MHz. A socket-based
application was developed for the experiments. The
NICStAR controller uses DMA on the host memory to
reassemble CS-PDUs from the ATM cell payloads which
are received from the network. When transmitting, as CS-
PDUs become ready, they are queued in host memory
and segmented by the NICStAR into ATM cell payloads.
Software Echo Latency (SEL) is the time needed to
transfer the data to the host memory, collected by the
application and then transmitted to the PCI bus (read
back operation). SEL numbers have very small variations
for messages up to 100 bytes. The numbers presented
below correspond to a 1 byte message transmitted
to/received from the application. The times, below, were
measured with a logic analyzer. The total time to read a
cell from a physical link and write it back to the physical
link is:

Time_IDT = Reassembly Lat.+ PCI BAL (NIC Initiator)
+ SEL + PCI BAL (NIC Target) + Segmentation Lat.
 For UDP: 3.66 + 0.15 + 407.1 + 0.39 + 27.07 = 438.37
µs

Performance measurements in [25] have been done using
a “pure” device driver, allowing to send/receive cells via
the kernel. The experimental set-up consists of a 60 MHz
SPARCstation-20 running SunOS 4.1. The Network
Interface is FORE Systems SBA-100 ATM (No co-
processor on the NI) located on the Sbus (32-bit bus
running at 20 or 25 MHz). The only function performed
in hardware beyond serializing cells onto the fiber is
ATM header CRC calculation. The card does not
calculate the required AAL5 CRC. No DMA or
segmentation and reassembly of multi-cell packets are
supported by the interface. The segmentation/reassembly

of the cells and the send/receive operation for individual
ATM cells (controlled by the device driver) are located
on the kernel. The benchmarks show that the timings for
a single cell are:

Write system call: 28.2 µs
Read system call: 34.1 µs

Time_FORE_SBA = 34.1 + 28.2 = 62.3 µs

The U-Net architecture developed at Cornell University
[26] is an application which sends/receives cells directly
via MUX to/from a Network Interface. The kernel is only
involved in connection to set-up/shut-down. The
experiments have been done with a Pentium 133MHz
workstation, running the Linux operating system. The
network interface is the FORE Systems PCA-200 that
includes an on-board processor which performs the
segmentation and reassembly of cells as well as transfers
data to/from host memory using DMA. The PCA-200
consists of a 25 MHz Intel i960 processor, 256Kbytes of
memory, a DMA-capable PCI-bus interface at 33MHz, a
simple FIFO interface to the ATM fiber and an AAL5
CRC generator/checker. The U-Net implementation uses
custom firmware to implement the U-Net architecture
directly on the PCA-200 NI. The total send/receive
operation time is:

Time_UNET = 11.5 + 13 = 24.5µs.

We observe that the 438.37 µs of the IDT results include
full protocol overhead for UDP/IP over ATM (which is
slightly faster than TCP/IP over ATM). The 62.3 µs of
the earlier Cornell measurements protocol-wise include
only the ATM and AAL5. Lastly, the 24.5 µs of the
UNET measurements are obtained by bypassing the
kernel, and using a processor on the network card. Even
accounting for newer technologies (for which we do not
have published measurements) we notice that there is
substantial overhead to reach the application at the
processor from that network card.

5.3 Active Networks Performance
The ANTS experiments [28] have been done on a SUN
Ultra 1 running Solaris 2.6, and with a 100Mbps Ethernet
network interface. For a zero-payload capsule with built-
in Java run-time facilities, the overall send/receive
operation takes roughly 525µs. This time includes IP
processing for the forwarding of the capsule.

The PAN project [29] is implemented on a 200MHz P-
Pro with 64MB RAM, running Linux, having a 100Mbps
Fast Ethernet Network Interface. For an ICMP ECHO

µs 1.53
MHz 60
cycles 92 app.) ECHO (switch Latency PLATO ==+

experiment which includes IP forwarding in the
intermediate node, which is essentially identical to our
application, using the active mode of the network, the
latency is 70 µs to process an ICMP ECHO by the kernel,
133 µs for the same operation from user space in x86
code, and 448 µs for the same operation in Java code.

The PLANet project [30] at the University of
Pennsylvania is an active network architecture
implementation. It uses the PLAN language for programs
within packets of the network, which are subsequently
executed in the network nodes. The hardware comprises
of two 300MHz Pentium II processors running Linux,
and the network interfaces are 100Mbps Ethernet cards.
The PLANet application we will consider is an ICMP-
based ping program (ping application using the PLAN
language), and its latency is 100 µs when running in user
space.

The ANN project [31] comprises of several experiment
configurations, e.g. with a 233MHz Ppro host processor
having an 155Mbps ATM interface, and several versions
of the Washington University hardware platform (cards
with one or two FPGA’s plus embedded 166MHz
Pentium MMX processor). The main source for results
from the ANN project is their URL [31]. Several
software experiments have been conducted, and we will
include in this comparison the results for IP forwarding,
which do not come from the ANN hardware card. The
latency is 84.5 µs for a router plug-in architecture
implemented in the kernel. We have not seen
experimental results from the ANN hardware
implementation, but we expect that these would be
similar to ours.

5.4 Overall Comparisons
The basic characteristic of PLATO is that it connects
directly the Network Interface with the application,
bypassing the kernel. In Table 1, the 1.08µs (without
ECHO processing) of PLATO are compared to the
corresponding times in Section 5.2. It should be noted
that we are not merely comparing the time of a switch to
the time of a similar function in software, but rather the
time to take the data to the application and back. In
PLATO, the application is within the switch. This
approach simplifies the network interface and speeds up
the latency for data transfer to the application (run in
hardware on PLATO), as shown in Table 1.

We understand that some published network interface
measurements are for older technologies, however,
Cornell’s U-Net measurements correspond to quite recent

network interfaces, and the 22.68 speedup cannot be
affected substantially even with faster processors.

 Experiment Time
(µs)

PLATO
Speedup

PLATO ATM
Cutthrough

1.08 1.00

TUC
Measurements

UDP/IP 438.37 405.89

CORNELL’s
Experiments

Pure Device
Driver

62.3 57.68

CORNELL’s
U-Net Trap code 24.5 22.68

Table 1 PLATO SpeedUp vs. Network Interfaces

(no application)

Speedup for measurements taken for an active node
running the ECHO application (and in the case of ANTS
for the similar IP forwarding application) on software vs.
PLATO are shown in table 3. To compute the speedup,
we used the overhead from the ECHO screening
application running on PLATO, i.e. 1.53µs.

 Experiment Time
(µs)

PLATO
Speedup

PLATO ICMP ECHO
Screening App.
(ATM)

1.53 1.00

ANTS Zero Payload
Capsule, IP
Forwarding
(100Mbps Ethernet)

525 343.13

PLANet Zero Payload packet,
ping application
(100 Mbps Ethernet)

100 65.35

ANN
(SW
Impl.)

IP Forwarding
(ATM)

84.5 55.22

Kernel active x86,
ICMP ECHO
(100Mbps Ethernet)

70 45.75

User Space Active
x86 ICMP ECHO

133 86.92

PAN

User Space Active
Java ICMP ECHO

448 292.80

Table 2 PLATO SpeedUp vs. Software Approach on

ECHO Application

5.5 Flexibility vs. Speed
All the above comparisons show how PLATO can
improve performance over software approaches for

specific applications. Several arguments could be
established regarding the technology of the available
measurements in the software approach (no results for
more recent technology are known to us). There are other
arguments too, e.g. about Java flexibility vs. hardware
flexibility. Java is certainly much more flexible than any
kind of hardware, but the available resources on a recent
generation FPGA allow for a large amount of area to be
used for useful processing. Indeed, the entire 4x4 switch
plus the ECHO application take less than 15% of the
Virtex resources. Even with a PCI interface and the
SDRAM controller, roughly 70% of the Virtex can still
be used for payload processing. Through reconfiguration,
additional applications can run on PLATO, including
Wormhole IP over ATM. It seems apparent that the use
of reconfigurable resources allows for a broad range of
applications to be performed in real-time, and the lack of
flexibility vis a vis a pure software approach is offset by
the performance gains, whereas the reconfigurable
processing is much more flexible than a VLSI approach.

6. Present Status
The Virtex-based PLATO platform has been designed at
the Technical University of Crete (TUC). The 560 pin
BGA package necessitated an 8-layer PCB design, which
was fabricated by INTRACOM SA, a large electronics
manufacturer in Greece. Assembly of the board, and the
design of the UTOPIA daughterboard took place at the
Institute of Computer Science (ICS)–FORTH. A PCI
interface for PLATO has been designed at the
Technological Educational Institute (TEI).

Substantial prototyping of the 4x4 ATM active switch
core has been done with the PCI Pamette [32]. The
prototype design has been successfully ported (in four
person-days) to the actual PLATO hardware, using the
PCI Pamette as I/O for PLATO. In addition, preliminary
results for “ping” detection (i.e. processing of the
payloads of ATM cells containing ICMP ECHO
commands) have been fully simulated for the Virtex part
and were found to run well (post place and route
simulation) at 60 MHz. The “ping” application will form
the basis for future DoS attack screening applications.

The ALTERA 20K400 (650-pin) version of the system
has been designed at TUC and ICS, and its 10-layer
printed circuit board is in fabrication by INTRACOM
SA. The connectionless IP over ATM has been simulated
at ICS for the ALTERA implementation.

Two more applications which are in advanced stages of
development, are: (a) a dynamic cell routing scheme, in
which routing is based on the payload of a cell, and, (b) a
TCP/IP priority enforcement scheme based on the IP

priority field. These applications are aimed at e-
commerce speedup, as at present the routing of requests
is done by servers which run the entire protocol stack,
with all the performance limitations that were presented
in section 5.

7. Conclusions and Future Work
PLATO, a new, reconfigurable platform was designed
and implemented for experimentation with active
networks. Initial results are very encouraging, both in
terms of speed vs. traditional approaches and in terms of
available FPGA resources for applications after the low-
level protocol operations are performed. Over the next
year we will continue to develop reusable code and
develop more complex applications. Our goal is not only
to achieve high performance vs. traditional approaches,
but to have entirely new and unavailable to date
capabilities as well, including DoS attack screening,
connectionless wormhole IP over ATM , and network-
based, real time, continuous speech recognition.

Acknowledgements

This work was supported by the Greek Secretariat for
Research and Technology (GSRT) and the European
Social Fund through the PENED 99 program under
contract 99E∆ 408. We thank the Xilinx Corporation and
the ALTERA Corporation for significant donations to
our institutions. We are indebted to Dr. Laurent Moll and
Dr. Mark Shand of Compaq Labs for the loan of a PCI
Pamette, and for generous allocation of their time to
transfer their PCI Pamette know-how to us. Lastly, we
thank Mr. George Kalokairinos and Mr. Michalis
Ligerakis for their invaluable assistance in the design of
the printed circuit board.

Bibliography
 [1] L. Moll, M. Shand, “Systems Performance Measurement

on PCI Pamette”, In Proceedings of FCCM `97, pp. 125-
133, April, 1997.

[2] T. McDermott, P. Ryan, Mshand, et al., A Wireless LAN
Demodulator in a PAMETTE: Design and Experiences,
In Proceedings of FCCM `97, pp. 40-45, April, 1997.

 [3] J. McHenry, P.Dowd, T. Carrozzi, et al., “An FPGA-
Based Coprocessor for ATM Firewalls”, Proceedings,
FCCM `97, Napa, California, pp. 30-39, April, 1997.

[4] D. Wetherall, U. Legedza, and J. Guttag, “Introducing
New Internet Services: Why and How”, IEEE Network
Magazine, July/August 1998.

[5] L. Lehman, S. Garland and D. Tennenhouse, “Active
Reliable Multicast”, In IEEE INFOCOM'98, San
Francisco, CA, March 1998.

[6] B. Schwartz, A. Jackson, W. Strayer, W Zhou, D.
Rockwell, and C. Partridge, “Smart Packets for Active
Networks”, BBN technologies, In Proceedings of the
Second IEEE Conference on Open Architectures and
Network Programming (OPENARCH’99), March 1999.

[7] D. Alexander, M Shaw, S. Nettles, and J. Smith, “Active
Bridging”, Proceedings of the ACM SIGCOMM'97
Conference, Cannes, France, September 1997.

[8] M. Hicks, P. Kakkar, J. Moore, C. Gunter and S. Nettles,
“PLAN: A Packet Language for Active Networks”, In
Proceedings of the International Conference on
Functional Programming (ICFP '98), 1998.

[9] S. Merugu, S. Bhattacharjee, E. Zegura and K. Calvert,
“Bowman: A Node OS for Active Networks”, In
Proceedings of IEEE Infocom 2000, March 2000.

[10] S. Bhattacharjee, K. Calvert and E. Zegura, “Self-
Organizing Wide-Area Network Caches”, In Proceedings
of IEEE Infocom'98, San Francisco, CA, March 1998.

[11] A. Campbell, H. De Meer, M. Kounavis, K. Miki, J.
Vicente, and D. Villela, "A Survey of Programmable
Networks", ACM Computer Communications Review,
April 1999.

[12] A. Lazar, K. Lim, and F. Marconcini, "Realizing a
Foundation for Programmability of ATM Networks with
the Binding Architecture", IEEE Journal on Selected
Areas in Communications (JSAC), Special Issue on
Distributed Multimedia Systems, Vol. 14, No. 7,
September 1996, pp. 1214-1247.

[13] S. Vinoski, “CORBA: Integrating Diverse Applications
Within Distributed Heterogeneous Environments”, IEEE
Communications Magazine, Vol. 14, No. 2, Feb 1997.

[14] A. Campbell, M. Kounavis, D. Villela, J. Vicente, K.
Miki, H. De Meer, and K. Kalaichelvan, "Spawning
Networks", IEEE Network Magazine July/August 1999.

[15] R. Keller, S. Choi, M. Dasen, D. Decasper, G.
Fankhauser, B. Plattner, "An Active Router Architecture
for Multicast Video Distribution", In IEEE INFOCOM
2000, March 26 - 30, 2000.

[16] S. Choi, D. Decasper, J. Dehart, R. Keller J. Lockwood,
J. Turner and T. Wolf, "Design of a Flexible Open
Platform for High Performance Active Networks",
Allerton Conference, September 1999.

[17] D. Decasper, Z. Dittia, G. Parulkar, B. Plattner, “Router
Plugins - A Software Architecture for Next Generation
Routers”, In Proceedings of SIGCOMM’98, September
1998.

[18] I.Hadzic, J.M.Smith, W.S. Marcus, "On-the-fly
Programmable Hardware for Networks", In Proceedings
of Globecom, 1998.

[19] W. Marcus, I. Hadzic, A. McAuley, J. Smith, "Protocol
Boosters: Applying Programmability to Network
Infrastructures", IEEE Communications Magazine, vol.
36, no. 10, pp. 79-83, October 1998

[20] P. Stogiannos, A. Dollas, V. Digalakis, “A Configurable
Logic Based Architecture for Real-Time Continuous
Speech Recognition using Hidden Markov Models”,
Journal of VLSI Signal Processing, Kluwer Academic
Publishers, vol. 24/(2/3), pp.223-240, March, 2000.

[21] P. Newman, G. Minshall, T. Lyon: “IP Switching: ATM
Under IP”, IEEE/ACM Transactions on Networking, vol.
6, no. 2, April 1998, pp. 117-129.

[22] M. Katevenis, I. Mavroidis, I. Mavroidis, and G.
Glykopoulos, “Wormhole IP over (Connectionless)
ATM”, Institute of Computer Science (ICS), FORTH.
http://archvlsi.ics.forth.gr/wormholeIP

[23] P. Gupta, S. Lin, N. McKeown: “Routing Lookups in
Hardware at Memory Access Speeds”, Proceedings of
IEEE INFOCOM’98, San Francisco, CA USA, April
1998.

[24] A. Dollas, K. Papademetriou, C. Mathioudakis, E.
Markatos, M. Katevenis. “Experimental ATM Network
Intrerface Performance Evaluation”. Technical Report
FORTH-ICS/TR-244, February 1999.

[25] T. von Eicken, A. Basu and V. Buch. “Low-Latency
Communication Over ATM Networks Using Active
Messages”, IEEE Micro, Feb. 1995, pages 46-53.

[26] M. Welsh, A. Basu, and T. von Eicken. “ATM and Fast
Ethernet Network Interfaces for User-Level
Communication”, In Proc. of Third IEEE Symposium on
High-Performance Computer Architecture (HPCA-3),
San Antonio, February 1997.

[27] J. Moore and S. Nettles. ``Towards Practical
Programmable Packets.'' Technical Report MS-CIS-00-
12, Department of Computer and Information Science,
University of Pennsylvania, May 2000.

[28] D. Wetherall. Active Network vision and reality: Lessons
from a capsule-based system. In Proceedings of the 17th
ACM Symposium on Operating System Principles
(SOSP'99), Kiawah Island, SC, December 1999.

[29] E. Nygren, S. Garland, and M. Kaashoek. PAN: A high-
Performance active network supporting multiple mobile
code systems. In Proceedings of the Second IEEE
Conference on Open Architectures and Network
Programming (OPENARCH’99), March 1999.

[30] M. Hicks, J. Moore, D. Alexander, C. Gunter, and S.
Nettles. PLANet: An active internetwork. In Proceedings
of the 1999 IEEE Conference on Computer
Communications (INFOCOM’99), January 1999.

[31] J. Turner, G. Parulkar, D. Dehart, S. Choi. T. Wolf, B.

Platter, R. Keller. Design of a High Performance Active
Router. In http://www.arl.wustl.edu/arl/projects/ann/

[32] A. Dollas, D. Pnevmatikatos, N. Aslanides, et al., Rapid

Prototyping of a Reusable 4x4 Active ATM Switch Core
with the PCI Pamette, In Proceedings of the 2001 IEEE
International Workshop on Rapid System Prototyping,
Monterey, CA , June, 2001(accepted, to appear).

