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Abstract 
A new, configurable architecture has been designed and 
built in order to serve as a platform for experimentation 
with active networks. This architecture, named PLATO,  
provides 4 physical bi-directional connections for ATM 
networks, large reconfigurable resources, 256 Mbytes 
SDRAM for buffer space, a PCI port, and auxiliary 
expansion ports. Several applications are presented for 
this platform, one of which has been prototyped on the 
PCI Pamette and on PLATO. Detailed simulations and 
experimental results show that, for some applications, a 
significant improvement can be obtained using this 
approach as compared to using conventional network 
architectures.  
 
KEYWORDS: Active networks, reconfigurable 
computing, protocol boosting. 

1. Introduction 
The term “active networks” is the notion for smart 
networks. It principally refers to extending the 
functionality of networks to support useful computation 
on the data sent over them, but it also includes the 
increase of  network flexibility, adaptability, security and 
functionality in general. The typical flexibility offered by 
active networks is automatic, rapid protocol deployment, 
making networks programmable. This in turn, leads to 
the necessity of processing power on active network 
nodes. Conventional networks provide routing of cells 
based on some information found in the header of each 
cell. By comparison, in addition to the above functions, 
active networks either use the payload of the cell for 
routing purposes (e.g. for dynamic balancing of loads in 

networks), or process the payload of the cell as it goes 
through the network (e.g. for data extraction).  

With very few exceptions, noted in section 2, below, 
almost all active network projects are software based, 
due to the (correct) assumption that networks of the 
future will contain processing power comparable to high- 
end processors of today. Whereas this approach is 
excellent for the exploitation of new ideas, it leaves out 
interesting areas such as real-time payload processing of 
cells, which may be needed for important applications. 
Such applications can be the detection of Denial-of-
Service (DoS) attacks, real-time load balancing for e-
commerce servers, real-time network based speech 
recognition servers for v-commerce, protocol boosting, 
etc. To experiment with such applications we have 
developed PLATO, a reconfigurable platform for ATM 
networks. PLATO has been implemented and is 
undergoing tests, whereas the PCI Pamette[1]  has been 
used as a rapid prototyping tool, to test several 
subsystems and applications. Although network 
applications with FPGA’s have been implemented in the 
past [2][3], the vast range of real-time active network 
applications that can be developed with last generation, 
large FPGA’s makes this project promising.   
 
Section 2 presents related work, section 3 has the 
architecture of the new platform, section 4 presents 
examples of specific applications for the new platform, 
section 5 presents performance results from simulations 
and from prototyping with the PCI Pamette, section 6 has 
the present status of the project, and section 7 has 
conclusions and future work, followed by the 
acknowledgements and bibliography. 



 

2. Related Work 
In order to investigate the design space for an active 
network node's architecture, research has spread between 
two discrete approaches: in-band and out-of-band node 
programming. The in-band or integrated approach uses 
cells containing both program and data, which are called 
capsules. When a capsule arrives at a network node, the 
program that is contained in the capsule is executed using 
the data in the capsule. In the out-of-band or discrete 
approach, code implementing a service is loaded on the 
network node(s), and passing traffic can then utilize the 
service. In this last case, a process of upgrading the 
node's capabilities is needed, in contrast to the dynamic 
nature of the integrated approach. On the other hand, the 
need to efficiently address the wide range of possible 
active network applications, and the indispensability of 
security and bandwidth considerations, seem to lead to a 
convergence of the two extremes mentioned above. 

As we move towards less dynamic network programming 
models, it becomes easier to capture hardware 
implementations, without the need for extensive 
operating system and language support on the active 
node. Towards the opposite direction, we find increased 
flexibility in network application programming and 
service deployment, at some potential cost in efficiency 
since extra latencies are introduced by the software 
approach taken. 

The ANTS project at MIT [4][5] introduced the notion of 
capsules. An ANTS capsule integrates a cell’s data and a 
reference to a Java forwarding routine, which must be 
loaded (if not present) on the active node before the 
capsule can be processed. ANTS runtime must be 
installed on active nodes, to do the processing introduced 
by the forwarding routine and also handle security issues 
through techniques like sandboxing and Java bytecode 
verification. Smart Packets at BBN [6], also uses 
capsules to extend the diagnostic functionality in the 
network, using a specially developed language (Spocket) 
and run-time environment. The SwitchWare project at 
the University of  Pennsylvania and Bellcore [7] relies on 
active packets, carrying limited functionality programs 
written in PLAN [8], resident or loaded out-of-band 
active extensions to provide additional functionality and 
an active router infrastructure. Verification, 
authentication and secure bootstrap techniques are 
applied to insure integrity, safety and security. 

In the CANES project at Georgia Tech and the 
University of Kentucky [9][10], the functionality of an 
active network node is divided between the Node 
Operating System and Execution Environments running 
on top of it, the latter of which correspond to 

composition methods for defining new services (e.g. 
ANTS, PLAN). 

Open signaling (Opensig), refers to an instance of 
programmable networks that clearly separates network 
control from information transport [11]. The Xbind [12] 
broadband kernel abstracts node resources and supports 
the programmability of the management and control 
planes in ATM networks, based on CORBA [13] 
middleware to incorporate multiple vendor switches. The 
Genesis project [14] at Columbia, implements the 
Virtuosity kernel, which automates the spawning of 
network architectures in a process of profiling, spawning 
and management. Profiling captures a "blueprint" of the 
architecture. Spawning sets up the virtual network's 
topology and address space and binds transport control 
and management objects. Management supports virtual 
network architecture refinement and resource 
management. 

To our knowledge, only two projects have considered 
hardware platforms for active networks. The ANN 
project [15][16] at the Washington University in St. 
Louis devised a hardware implementation for a scalable 
active network node architecture for gigabit 
environments. Their platform consists of a general 
purpose CPU, one or two FPGA’s, 64MB of memory and 
an ATM Port Interconnect Controller (APIC) chip 
connected on a PCI bus. In addition, their Router Plugins 
[17] research software platform is used as a framework 
for the development of a NodeOS. The Programmable 
Protocol Processing Pipeline (P4) project [18][19], has 
implemented a platform comprised of a set of ALTERA 
FLEX8000 FPGAs acting as processing elements (PEs) 
and a switching array selecting which devices are 
engaged in processing. The PEs are arranged in a 
pipeline exchanging data through FIFOs and FPGAs can 
be moved in and out of the pipeline to be reconfigured. 
This testbed has been used to implement forward error 
correction (FEC) protocol processing (boosting), on a 
single OC-3 ATM link. 

Active network applications include active reliable 
multicast [5], self-organizing network caching [10], 
multicast video distribution [15], online auctions [4], 
active bridging [7], protocol boosters [19], active 
congestion control, distributed firewalls, and packet 
filtering. Software approaches to such services (e.g. 
ANTS, Smart Packets, PLAN and CANES), have 
historically been implemented over IP networks. In the 
context of ATM networks, even though QoS features are 
inherent, signaling complicates service creation. Our 
platform, introduced in the next section, has the potential 
to explore the capabilities of an active, 155 Mbps per 
link, 4x4 ATM switch. 



 

3. PLATO Architecture 
The architecture of PLATO will be presented together 
with one particular design, as shown in Figure 1. This is 
deliberate, because the platform is mainly aimed to be a 
tool for experimentation and design library development, 
and hence was derived from a minimum set of 
functionality requirements, as follows: 

•= Ability to be connected to fiber or copper ATM 
networks, ability to be connected in the future 
with Ethernet (10/100 or Gigabit) 

•= Minimal delay in hardware processing of the 
cells, and ability to implement protocols with no 
need to communicate with the host processor 

•= On-board buffer space for streams of cells, on 
the payload of which, processing will be 
performed 

•= Ability to communicate with a general purpose 
computer, for further processing, downloading 
of statistics, or partial reconfiguration of the 
FPGA 

•= Extra connectors for expansion 
The PLATO platform has a large FPGA (versions with 
Xilinx Virtex XCV 1000 and ALTERA 20K400 have 
been designed), which in addition to the clock generation 
circuit, programming ports, etc. has four main ports: 

•= A UTOPIA level 2 port, to provide the 
physical connection to daughterboards with 
copper or optical fiber outputs – the 
daughterboard also has the UTOPIA level  2 - 
ATM framing circuitry 

•= A  256 MB 133MHz SDRAM port for buffer 
space 

•= An auxiliary port which will be used in another 
project [20] for SRAM look up tables 

•= A PCI bus port for communication with the 
host. 

Although the general topology resembles several existing 
products, the need for new hardware was largely 
mandated by the numbers of pins needed for each port, as 
well as the voltages in each case (e.g. PCI at 5V, 
SDRAM at 3.3V, etc.).  

PLATO has several similarities with that of the 
Washington University ANN active network project, as 
well as with general-purpose FPGA platforms, such as 
the SLAAC. A notable difference with ANN is that 
PLATO does not have a general-purpose processor 
embedded in it. Although we recognize the usefulness of 
such a processor, the goal of PLATO was to experiment 
with the performance that the reconfigurable resources 
offer in several applications, and, the development of 
VHDL design libraries for operations such as cell 
disassembly and reassembly, payload extraction, etc.  
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Figure 1. Architecture and Block Diagram of PLATO 



 

The general architecture is independent of the FPGA 
vendor, and indeed we have proceeded with the design of 
two versions, one with Xilinx Virtex and one with 
ALTERA 20K400 FPGA’s. This way we hope to get 
results and gain insight on how the architecture of the 
FPGA’s and the corresponding CAD tools affect the 
system level performance. As the Xilinx version of the 
architecture has already been implemented, the remainder 
of this paper will focus on this version. 

4. Applications 
Several applications are under development for PLATO, 
including the implementation of a real-time continuous 
speech recognition server [20] for ATM networks, and 
experimental work on Denial of Service (DoS) attack 
detection. In this section we will present two 
applications: an active 4x4 ATM switch with simple 
processing capabilities, and a protocol boosting 
application. The first application has already been 
prototyped in hardware using the PCI Pamette, and 
subsequently ported on PLATO. Therefore we have 
performance results to report even before our platform is 
fully functional. The second application gives a clearer 
picture of the kind of processing that can be performed 
by our system. 

4.1 Active 4x4 ATM Switch  
Recognizing that most every active network application 
for PLATO will involve cell disassembly and 
reassembly, cell routing, and the ability to perform some 
processing (however sophisticated) on the header and the 
payload, the first application is a 4x4 switch with the 
ability to screen some types of cells. These are initially 
“ping” cells because they are short and they are 
associated with some forms of DoS attacks. This switch 
will form the foundation for subsequent applications, as it 
implements all the basic and necessary functions that a 
common ATM switch does. The switch is divided in 
three parts: the input Header Processor, the multiplexing 
and application interface (which interfaces with the 
hardware that makes the network “active”) and the 
Output Header Processor. 
When the UTOPIA level 2 interface of the switch 
receives an ATM cell, it places it in a FIFO (there is one 
FIFO per incoming link). The switch starts to process the 
cell by disassembling it and loading the respective 
registers with all the fields of the header (VPI, VCI, PT, 
CLP, and HEC). When the VPI and VCI of a cell have 

been received, the ATM switch evaluates, according to 
an internal look up table, the output VPI, VCI and 
physical link. The ATM switch has four internal look up 
tables, one per incoming link. Each look up table is 
memory based with 256 positions each. This way the 
switch can handle cells in all four input ports 
simultaneously. The size of the tables is small for an 
ATM switch, but it is big enough for experiments on 
active network applications. As the header is processed, 
data from the payload of the cell continues to be received 
from the UTOPIA level 2 interface for six system cycles. 
Since the payload may determine whether a cell will be 
rejected or not, and until conflict handling circuitry 
determines availability of the necessary output link, all 
the data are stored in an input FIFO. The number of the 
positions that the FIFO should have is also six, but 
depending on the technology that is used (Xilinx or 
ALTERA) the number of positions can be either six or 
fifteen. 

On the multiplexing and application interface, the control 
circuitry checks if there are any collisions, and gives 
permission or rejection to every cell. This part also 
gathers all the signals from every input and output port of 
the switch, and performs the actual switching of cells. 
Internal input and output port busses are 48 bits wide. 
This is the number of the header bits plus the number of 
the bits of the first payload word. The priority of a cell to 
get output permission is based on the time of its arrival. 
If two or more cells are received on the same cycle from 
different input ports and they need the same output port 
for transmission, then the cell that came from the lowest 
numbered input port passes and the others are rejected. 
This arbitrary algorithm was used for reasons of rapid 
prototyping and is not inherent to the architecture.  Due 
to the wide bus that is connected to the multiplexing unit 
and the open architecture of the control of this unit, this 
is where processing of cell payload can take place, by 
interfacing additional application modules to it. For 
example, assuming that the cells of the application have a 
specific VPI and VCI, the switch can easily detect them 
and regard the application as a fifth input/output port of 
the switch. Applications on the PLATO architecture can 
have access to 256 MB of SDRAM and can process 
single cells, or up to a large number of cells, or even keep 
multiple copies of the cells. As the switch regards every 
application as another input/ output port, more than one 
application can be connected to the switch in parallel. 



 

The third part of the switch is the output header 
processor. When a cell gets permission to pass to an 
outgoing link, the output processor starts to reassemble 
the header of the cell. It reads the 48-bit bus, loads the 
respective output registers and then initiates transmission 
to the UTOPIA level 2 interface. 

4.2 Wormhole IP over ATM Routing Filter 
Fast network access and throughput is of capital 
importance in today’s Internet. Meanwhile, IP is the 
uncontested protocol of choice for data communications. 
ATM technology finds widespread use, mostly because 
of its use of (relatively) small, fixed-size "cells" as the 
transfer unit. The use of small cells allows for high-speed 
hardware switching, while quality-of-service (QoS) is 
possible through the use of preemption of cells in 
different service classes. Several techniques have been 
proposed and are being used for routing IP packets over 
ATM networks: LAN emulation, classical IP over ATM, 
ATM under IP [21], etc. Generally, these software 
methods have a number of costs, overheads and 
associated delays: (i) a very large number of VP/VC 
labels are consumed, or (ii) until a flow has been 
recognized, the first few cells in the flow are not 
switched; and (iii) new connections for new flows are 
established in software (e.g. ATM signaling), thus 
suffering long delays. 
 
Wormhole IP over ATM (WIPoATM) [22] is a solution 
that combines the following characteristics: (i) it 
performs full IP routing per IP packet, (ii) it overlaps (in 
a pipelined fashion similar to the wormhole routing in 
computer networks) the transmission of IP packets over 
different VP/VCs, (iii) it does so without suffering the 
initial connection set-up delays. WIPoATM is a routing 
filter that sits in the entry point(s) of an ATM network 
exclusively for the support of IP traffic. When the first 
cell of an IP packet is received, WIPoATM performs the 
necessary IP routing table lookup using a fast IP routing 
lookup [23] implemented in hardware, and allocates a 
(pre-established) VP/VC for the transmission of this IP 
packet. Subsequent cells of this packet will use the 
chosen VP/VC. The process is repeated for the next IP 
packet choosing a possibly different VP/VC. By 
managing dynamically a number of VP/VCs, WIPoATM 
can avoid the (high) latency of establishing connections 
using ATM signaling. The rest of the ATM network 
knows nothing of IP packets, just receives and switches 
the cells as received from the WIPoATM routing filter. 
This way, the hardware can balance the IP traffic and 
manage network resources (VP/VC) and the rest of the 
network does not know anything about IP packets. On the 
other end a second filter recomposes the ATM cells so 
that they arrive at the recipient from the known VP/VCs 

and be accepted as legitimate IP over ATM traffic. The 
proposed Wormhole IP routing filter has a number of 
advantages:  
•= it works together with standard, existing ATM 

equipment and allows the seamless integration of 
both IP and native ATM traffic in the same 
networks;  

•= the quality of service of native ATM traffic can stay 
unaffected by the added IP traffic, while IP can 
benefit from ATM's QoS capabilities;  

•= cell routing delay is minimized owing to virtual-cut-
through routing --segmentation and reassembly 
delays at intermediate routers are eliminated;  

•= the number of pre-established connections (labels) is 
small and fixed, and does not grow with the size of 
the total network (as in tag switching), yet all cells 
are routed through pre-established connections.  

4.2.1 Organization and Operation of the Wormhole 
IP over ATM Routing Filter  
The organization of a Wormhole IP over ATM routing 
filter is shown in Figure 2, and consists of the ATM 
connection table, the IP Routing table, the VC ID free list 
and an optional buffer memory. The filter operates by 
looking at each ATM cell that passes through it. For each 
incoming cell, we look up its virtual path (VP) and 
virtual circuit (VC) identifiers in the filter's ATM 
Connection Table. If the cell belongs to a native-ATM 
connection, it is forwarded to the output, possibly after 
undergoing VP/VC translation. Otherwise, the cell 
belongs to IP traffic and we distinguish three possible 
cases: 
1. This is the first cell of an IP packet. The cell 

contains the IP destination address (either without or 
with multi-protocol encapsulation) that must be 
looked up in the IP Routing Table. The routing table 
specifies the desired output VP; an unused VC 
identifier in that VP is then requested from the VC 
ID free-list. If no such unused VC currently exists, 

Figure 2. Functional Block Diagram of the WIPoATM 
Routing Filter 



 

then the cells of this packet must be buffered in 
expectation of some VC getting freed, or the cell can 
be dropped. 

2. This is a middle cell of an IP packet. The ATM 
Connection Table contains all the necessary 
information for the VP/VC translation, and the cell is 
forwarded to the ATM network without further 
processing. 

3. This is the last cell of an IP packet (indicated by the 
PTI field of the cell header according to the AAL5 
segmentation). The temporary, wormhole connection 
that had been established for this IP packet has to be 
torn down; this is accomplished simply by marking 
its state as inactive in the connection table, and by 
returning the output VP/VC identifier to the free list.  

4.2.2 Mapping the Wormhole IP over ATM Routing 
Filter on PLATO 
WIPoATM fits very nicely in the PLATO architecture. 
The ATM Connection Table, and the IP Routing Table 
can be stored in the SDRAM module(s) while the VC ID 
list can be kept either in memory inside the processing 
FPGA, or in the SDRAM. While PLATO offers up to 4 
bi-directional 155Mbps links for input and output, 
WIPoATM requires 2 bi-directional links (as it is a bi-
directional filter). The remaining 2 ports can be used to 
implement a second WIPoATM filter on the same 
prototype, or to double the bandwidth of a single 
WIPoATM Routing Filter. The amount of logic offered 
by PLATO is more than enough for the implementation 
of two such filters. 

5. Performance 
There are several published results from projects similar 
to PLATO (e.g. ANN), with a hardware approach to 
active networks, as well as results from software 
approaches, in which ATM or 100Mbps Ethernet data 
are sent via a network interface card  to a CPU for 
processing. Although, as expected, some projects are 
complete and their results are based on older technology 
(e.g. PLAN) and some projects are just now producing 
results and these are not fully optimized yet (e.g. ANN, 
PLATO), the similarity of applications in several of these 
projects allows for conclusions to be drawn in terms of 
general characteristics, rather than specific numbers. The 
goal of this section is to demonstrate that reconfigurable 
hardware offers real and tangible advantages over 
software approaches in active networks, for some types 
of applications. Such advantages may stem from the 
elimination of the protocol processing, or from the 
elimination of the operating system overhead required to 
pass the cell payload information to an application. In 
either case, to the extent that the benefit is real, it is 
worth reporting, even as an indication of what functions 

can be performed in hardware in the future.The overall 
latencies we are interested in take into account the cut-
through latency from the time a cell enters the switch 
from the UTOPIA interface, until the time the cell exits 
the switch towards the UTOPIA interface. No 
adjustments have been made for implementation 
inefficiencies of the 4x4 switch in PLATO vs. highly 
optimized commercial switches. The PLATO results 
come from two sources: simulated operation of the 
switch at 60MHz on a Xilinx Virtex, and, actual 
operation of the switch at 33MHz on the PCI Pamette. 
Because to date simulation frequencies have been found 
to be conservative, the 60MHz Virtex results are used, 
and we consider the Pamette results to be useful as 
functional verification of the system and not indicative of 
its performance bounds. Although we do have results 
from the Virtex-based PLATO, these are (at present) on 
functional correctness only. 

5.1 PLATO Performance 
In order to measure the PLATO latency, a simple active 
network application has been designed. This application 
“cuts” every cell that performs an ICMP ECHO (i.e. in 
Unix terms a “ping” or a “ping reply”), and passes 
through the switch all other cells. This application will be 
compared to similar operations in other active networks, 
including the processing of a zero payload capsule, IP 
forwarding, and  ICMP ECHO.  
 
The PLATO latency in cycles that a cell needs to pass 
through the switch is: 

Cycles for cell switching = Cycles for Header 
disassembly + Cycles for Look up table access + Cycles 
for Rejection/Pass decision + Cycles for header 
Reassembly =4 + 1 +2 + 1  =  8 Cycles. 

The total number of cycles, including the UTOPIA 
interface is:  

Total Cycles = Cycles to receive  the cell from UTOPIA 
+ cycles for cell switching + cycles to transmit  the cell 
to UTOPIA = 29 + 8 + 28 = 65 Cycles  

Thus, 65 cycles are needed  for PLATO, including cell 
disassembly and reassembly. For the ICMP ECHO (ping) 
screening, detection, drop of ECHO packets, and pass of 
non-ECHO packets,  an additional  27 cycles are needed, 
raising the total cycles to 92 cycles.  
 
The net results (Virtex, simulated, with post place and 
route indicated frequency of 60MHz) are: 

 

µs 1.08
MHz 60
cycles 65 (switch) Latency PLATO ==



 

 

5.2 Network Interface Performance 
Some older results from our group [24] as well as from 
other groups [25][26] measure the latencies of a network, 
including processor overhead and full protocol 
implementation. We include these results for 
completeness, because the detection of a simple ECHO at 
the processor level incurs the network interface overhead, 
as well as the appropriate protocol processing, operating 
system, and application overheads.  
 
Performance measurements were made in [24] with a 
LAN emulation device driver using an 133MHz Pentium 
processor running Windows NT 4.0. The Network 
Interface is IDT77901 ATM (NICStAR controller), 
plugged on a PCI bus running at 33MHz. A socket-based 
application was developed for the experiments. The 
NICStAR controller uses DMA on the host memory to 
reassemble CS-PDUs from the ATM cell payloads which 
are received from the network. When transmitting, as CS-
PDUs become ready, they are queued in host memory 
and segmented by the NICStAR into ATM cell payloads. 
Software Echo Latency (SEL) is the time needed to 
transfer the data to the host memory, collected by the 
application and then transmitted to the PCI bus (read 
back operation). SEL numbers have very small variations 
for messages up to 100 bytes. The numbers presented 
below correspond to a 1 byte message transmitted 
to/received from the application. The times, below,  were 
measured with a logic analyzer. The total time to read a 
cell from a physical link and write it back to the physical 
link is: 
 
Time_IDT  = Reassembly Lat.+ PCI BAL (NIC Initiator) 
+ SEL + PCI BAL (NIC Target) + Segmentation Lat. 
 For UDP: 3.66 + 0.15 + 407.1 + 0.39 + 27.07 = 438.37 
µs 
 
Performance measurements in [25] have been done using 
a “pure” device driver, allowing to send/receive cells via 
the kernel. The experimental set-up consists of a 60 MHz 
SPARCstation-20 running SunOS 4.1. The Network 
Interface is FORE Systems SBA-100 ATM (No co-
processor on the NI) located on the Sbus (32-bit bus 
running at 20 or 25 MHz). The only function performed 
in hardware beyond serializing cells onto the fiber is 
ATM header CRC calculation. The card does not 
calculate the required AAL5 CRC. No DMA or 
segmentation and reassembly of multi-cell packets are 
supported by the interface. The segmentation/reassembly 

of the cells and the send/receive operation for individual 
ATM cells (controlled by the device driver) are located 
on the kernel. The benchmarks show that the timings for 
a single cell are:  
 

Write system call: 28.2 µs 
Read system call: 34.1 µs 

 
Time_FORE_SBA  =  34.1 + 28.2  = 62.3 µs 

 
The U-Net architecture developed at Cornell University 
[26] is an application which sends/receives cells directly 
via MUX to/from a Network Interface. The kernel is only 
involved in connection to set-up/shut-down. The 
experiments have been done with a Pentium 133MHz 
workstation, running the Linux operating system. The 
network interface is the FORE Systems PCA-200 that 
includes an on-board processor which performs the 
segmentation and reassembly of cells as well as transfers 
data to/from host memory using DMA. The PCA-200 
consists of a 25 MHz Intel i960 processor, 256Kbytes of 
memory, a DMA-capable PCI-bus interface at 33MHz, a 
simple FIFO interface to the ATM fiber and an AAL5 
CRC generator/checker. The U-Net implementation uses 
custom firmware to implement the U-Net architecture 
directly on the PCA-200 NI. The total send/receive 
operation time is: 

Time_UNET  = 11.5 + 13 = 24.5µs. 

 
We observe that the 438.37 µs of the IDT results include 
full protocol overhead for UDP/IP over ATM (which is 
slightly faster than TCP/IP over ATM). The 62.3 µs of 
the earlier Cornell measurements protocol-wise include 
only the ATM and AAL5. Lastly, the 24.5 µs of the 
UNET measurements are obtained by bypassing the 
kernel, and using a processor on the network card. Even 
accounting for newer technologies (for which we do not 
have published measurements) we notice that there is 
substantial overhead to reach the application at the 
processor from that network card.  

5.3 Active Networks Performance 
The ANTS experiments  [28] have been done on a SUN 
Ultra 1 running Solaris 2.6, and with a 100Mbps Ethernet 
network interface. For a zero-payload capsule with built-
in Java run-time facilities, the overall send/receive 
operation takes roughly 525µs. This time includes IP 
processing for the forwarding of the capsule. 
 
The PAN project [29] is implemented on a 200MHz P-
Pro with 64MB RAM, running Linux, having a 100Mbps 
Fast Ethernet Network Interface. For an ICMP ECHO 
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experiment which includes IP forwarding in the 
intermediate node, which is essentially identical to our 
application, using the active mode of the network, the 
latency is 70 µs to process an ICMP ECHO by the kernel, 
133 µs for the same operation from user space in x86 
code, and 448 µs for the same operation in Java code.  
 
The PLANet project [30] at the University of 
Pennsylvania is an active network architecture 
implementation. It uses the PLAN language for programs 
within packets of the network, which are subsequently 
executed in the network nodes. The hardware comprises 
of  two 300MHz Pentium II processors running Linux, 
and the network interfaces are 100Mbps Ethernet cards. 
The PLANet application we will consider is an ICMP-
based ping program (ping application using the PLAN 
language), and its latency is 100 µs when running in user 
space.   
 
The ANN project [31] comprises of several experiment 
configurations, e.g. with a 233MHz Ppro host processor 
having an 155Mbps ATM interface, and several versions 
of the Washington University hardware platform (cards 
with one or two FPGA’s plus embedded 166MHz 
Pentium MMX processor). The main source for results 
from the ANN project is their URL [31]. Several 
software experiments have been conducted, and we will 
include in this comparison the results for IP forwarding, 
which do not come from the ANN hardware card. The 
latency is 84.5 µs for a router plug-in architecture 
implemented in the kernel. We have not seen 
experimental results from the ANN hardware 
implementation, but we expect that these would be 
similar to ours.  
 

5.4 Overall Comparisons 
The basic characteristic of PLATO is that it connects 
directly the Network Interface with the application, 
bypassing the kernel. In Table 1, the 1.08µs (without 
ECHO processing) of PLATO are compared to the 
corresponding times in Section 5.2. It should be noted 
that we are not merely comparing the time of a switch to 
the time of a similar function in software, but rather the 
time to take the data to the application and back. In 
PLATO, the application is within the switch. This 
approach simplifies the network interface and speeds up 
the latency for data transfer to the application (run in 
hardware on PLATO), as shown in Table 1. 
 
We understand that some published network interface 
measurements are for older technologies, however,  
Cornell’s U-Net measurements correspond to quite recent 

network interfaces, and the 22.68 speedup cannot be 
affected substantially even with faster processors.  
 

 Experiment Time 
(µs) 

PLATO 
Speedup 

PLATO ATM 
Cutthrough 

1.08 1.00 

TUC 
Measurements 

UDP/IP 438.37 405.89 

CORNELL’s 
Experiments 

Pure Device 
Driver  

62.3 57.68 

CORNELL’s 
U-Net Trap code 24.5 22.68 

 
Table 1 PLATO SpeedUp vs. Network Interfaces  

(no application) 
 

Speedup for measurements taken for an active node 
running the ECHO application (and in the case of ANTS 
for the similar IP forwarding application) on software vs. 
PLATO are shown in table 3. To compute the speedup, 
we used the overhead from the ECHO screening 
application running on PLATO, i.e. 1.53µs. 
 

 Experiment Time 
(µs) 

PLATO 
Speedup 

PLATO ICMP ECHO 
Screening  App. 
(ATM) 

1.53 1.00 

ANTS Zero Payload 
Capsule, IP 
Forwarding 
(100Mbps Ethernet) 

525 343.13 

PLANet Zero Payload packet, 
ping application 
(100 Mbps Ethernet)  

100 65.35 

ANN 
(SW 
Impl.) 

IP Forwarding 
(ATM) 

84.5 55.22 

Kernel active x86, 
ICMP ECHO 
(100Mbps Ethernet) 

70 45.75 

User Space Active 
x86 ICMP ECHO 

133 86.92 

PAN 

User Space Active 
Java ICMP ECHO 

448 292.80 

 
Table 2  PLATO SpeedUp vs. Software Approach on 

ECHO Application 

5.5 Flexibility vs. Speed 
All the above comparisons show how PLATO can 
improve performance over software approaches for 



 

specific applications. Several arguments could be 
established regarding the technology of the available 
measurements in the software approach (no results for 
more recent technology are known to us). There are other 
arguments too, e.g. about Java flexibility vs. hardware 
flexibility. Java is certainly much more flexible than any 
kind of hardware, but the available resources on a recent 
generation FPGA allow for a large amount of area to be 
used for useful processing. Indeed, the entire 4x4 switch 
plus the ECHO application take less than 15% of the 
Virtex resources. Even with a PCI interface and the 
SDRAM controller, roughly 70% of the Virtex can still 
be used for payload processing. Through reconfiguration, 
additional applications can run on PLATO, including 
Wormhole IP over ATM. It seems apparent that the use 
of reconfigurable resources allows for a broad range of 
applications to be performed in real-time, and the lack of 
flexibility vis a vis a pure software approach is offset by 
the performance gains, whereas the reconfigurable 
processing is much more flexible than a VLSI approach. 

6. Present Status 
The Virtex-based PLATO platform has been designed at 
the Technical University of Crete (TUC). The 560 pin 
BGA package necessitated an 8-layer PCB design, which 
was fabricated by INTRACOM SA, a large electronics 
manufacturer in Greece. Assembly of the board, and the 
design of the UTOPIA daughterboard took place at the 
Institute of Computer Science (ICS)–FORTH. A PCI 
interface for PLATO has been designed at the 
Technological Educational Institute (TEI).  
 
Substantial prototyping of the 4x4 ATM active switch 
core has been done with the PCI Pamette [32]. The 
prototype design has been successfully ported (in four 
person-days) to the actual PLATO hardware, using the 
PCI Pamette as I/O for PLATO. In addition, preliminary 
results for “ping” detection (i.e. processing of the 
payloads of ATM cells containing ICMP ECHO 
commands) have been fully simulated for the Virtex part 
and were found to run well (post place and route 
simulation) at 60 MHz. The “ping” application will form 
the basis for future DoS attack screening applications.  
 
The ALTERA  20K400 (650-pin) version of the system 
has been designed at TUC and ICS, and its 10-layer 
printed circuit board is in fabrication by INTRACOM 
SA. The connectionless IP over ATM has been simulated 
at ICS for the ALTERA implementation.  
 
Two more applications which are in advanced stages of 
development, are: (a) a dynamic cell routing scheme, in 
which routing is based on the payload of a cell, and, (b) a 
TCP/IP priority enforcement scheme based on the IP 

priority field. These applications are aimed at e-
commerce speedup, as at present the routing of requests 
is done by servers which run the entire protocol stack, 
with all the performance limitations that were presented 
in section 5. 

7. Conclusions and Future Work 
PLATO, a new, reconfigurable platform was designed 
and implemented for experimentation with active 
networks. Initial results are very encouraging, both in 
terms of speed vs. traditional approaches and in terms of 
available FPGA resources for applications after the low-
level protocol operations are performed. Over the next 
year we will continue to develop reusable code and 
develop more complex applications. Our goal is  not only 
to achieve high performance vs. traditional approaches, 
but to have entirely new and unavailable to date 
capabilities as well, including DoS attack screening, 
connectionless wormhole IP over ATM , and network-
based, real time, continuous speech recognition.   
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