
Experimental ATM Network Interface Performance Evaluation

Apostolos Dollas Kyprianos Papadimitriou Constantinos Mathioudakis

Department of Electronic and Computer Engineering

Technical University of Crete

����� Chania� Crete

Greece

Evangelos Markatos Manolis Katevenis

Institute for Computer Science

Foundation of Research and Technology � Hellas

Irakleion� Crete

Greece

Abstract

Traditional methods of measuring network interface performance have been based on throughput�sensitive bench�
marks� However� the performance of an ever�increasing number of applications depends on the latency� and not on
the throughput of the underlying communication network system� Experimental performance evaluation of latency
and its constituent parts for high speed network interfaces of personal computers has not been studied in depth
to date� We have developed performance evaluation methods that derive detailed PCI to ATM network interface
latency results for personal computers� based on a combined software�hardware cooperation� Our methods address
the seamless data collection of events that have six orders of magnitude di�erence in their duration� and range
from user level requests down to segmentation latencies for packets within the network interface� As a result�
all steps which contribute to the total transmission latency have been accurately measured for a speci�c network
interface type� Experimental results derived with the new method are presented� and its adaptation to vendor�
independent measurements is described� Our experience suggests that measuring network interface latency using
our methods is entirely feasible with equipment normally found in digital design laboratories� Furthermore it may
lead to a deep understanding of the underlying communication system� which would be di�cult �if not impossible�
to acquire only with throughput�sensitive benchmarks�

KEYWORDS� Network Interface� PCI� ATM� Performance Evaluation� Experimental

� Introduction

High performance networking has entered the mainstream of the workspace computing environment� With the
proliferation of high speed networks such as ATM and new services employing them� it is important to evaluate
the performance of network interfaces in order to achieve better quality of service� and locate bottlenecks in the
transmission process� Some issues that complicate this task are�

� the plethora of factors a�ecting network performance�

�

� the multitude of steps that comprise the transmission of even a single byte of data�

� the substantially dissimilar results from systems with seemingly minor variations� and�

� the dependence of performance metrics on the user application and needs�

To illustrate these issues� some of the factors a�ecting the performance of networks include the speed of the
CPU and the method with which the operating system translates user requests to network transmissions� It is
desirable but not always possible to bypass the operating system� and signi�cant work has been done to accomplish
this goal ���� �� �� �� 	� ��
� Two additional factors a�ecting network performance are the architecture of the
system �e�g� whether network operations are mapped to I�O or to memory� the bus on which the network interface
is connected� and the network protocol that is employed� Some of the steps involved in the transmission may
be a system call from a user�s application� invocation via some device driver of the network protocol� access of
the network interface� conversion of the data into packets� and transmission thereof with additional information
such as error checking codes� Network performance strongly depends on seemingly minor factors� For example�
the exact same con�guration of a hardware platform performs substantially di�erently if only di�erent drivers
are used in the system� Lastly� application characteristics also in�uence what is important and what is not� a
networked server for large �le transfers will behave di�erently from a system that handles many small interactive
transactions� such as a web server�
Two metrics associated with network performance are the bandwidth or throughput and the latency� The

bandwidth is associated with the aggregate capacity of the network and corresponds to total information �ow
rate� whereas the latency is associated with the time to transfer one packet of information� Depending on
application� the metric of importance varies� for a multimedia application transferring video over a network�
the bandwidth is of primary importance� and the initial delay of a few milliseconds until the stream reaches
its destination is tolerable� on the other hand� in multiprocessor synchronization� a single token passed among
processors determines the continuation of execution� and a few millisecond delay may mean that the time for over
one million instructions is wasted�
In general� bandwidth is easier to measure because a long transmission can amortize startup e�ects� Bandwidth

can be adequately measured with software based methods �e�g� the Netperf tool which can be obtained from
http���www�cup�hp�com� Latency is more di�cult to measure because it requires simultaneous monitoring of
multiple subsystems and in general requires hardware based methods �e�g� fast oscilloscope or logic analyzer ���
��
�
Performance evaluation of computer networks is an important task because it provides valuable data with

respect to actual vs� ideal performance� as well as insight into the reasons for any delays� In recent years new
architectures ranging from the low level protocol itself �e�g� ATM to the processor �e�g� Pentium II ���MHz
have emerged� Despite the great number of high performance network products that have emerged on the personal
computer market� very little has been reported in the literature on PC systems ��� �
� Indeed the publications to
date are largely on RISC computer architectures with the Unix operating system which dominated until now the
high�performance networked computer market ��� �� ��� �� �
� Many of the papers on Unix systems report studies
which include switches or routers�
The purpose of this work was to develop performance evaluation methodologies for personal computer network

interfaces� and use them to evaluate in depth one ATM network interface for the PCI bus� The work was performed
from May� ���� through September� ����� and therefore the actual computers involved in our experiments are not
high performance by today�s standards� The development of our methodology� however� allows for performance
evaluation of PCI�to�ATM network interfaces on any kind of personal computer� Furthermore� our use of the
logic analyzer allows for a breakdown of the transmission into its constituent parts� which have not been studied
in detail to date� In order to isolate the e�ects of the network interface itself� the measurements were made for
point�to�point connections� with no switch in between the observed systems�
Section � describes our experimental setup and the transmission characteristics that we measure� Section �

presents in detail our methods� Section � contains experimental results and is followed by a brief section with
conclusions from our work� One forewarning to the reader is that the network community at large has speci�c
names and acronyms� We have maintained these names and acronyms in order to present a realistic picture� but
in order to make this paper readable we have included two sidebars� on protocols and on the PCI bus� introducing
most of the arcane nomenclature� the remaining terms are introduced within the paper as they appear� NOTE

�

TO REVIEWERS� This paper can be revised without major loss of its key contributions� such that

the nomenclature and acronyms can be substantially reduced� We elected not to do so in order to

maintain a realistic picture � your feedback on the readability of this paper is appreciated�

� Experimental Setup

The setup for our experiments was comprised of two PC computers� one ���MHz Pentium based system and
one ���MHz Intel �	� DX�� based system� Both computers had ��Mbytes of RAM� The choice of two di�erent
computers was deliberate� since we could measure how the processor speed di�erence a�ected the performance of
the network interface cards �NIC� We used the Integrated Device Technology �IDT network interface IDT������
which runs on PCI v����� bus and has ���Mbps ATM outputs on optical �ber transmissionmedium� The Windows
NT ��� operating system with the IDT supplied drivers were used� The Windows NT was found to be a robust and
reliable operating system� and it was observed to be faster than Windows ��� too� in accordance with previously
published results ��
� The organization of the NIC� the PCI bus and the host system are shown in Figure ��

��� The Network Interface Card

The methods and measurements described in this paper were made on the IDT����� card� but they can be
thought of as vendor independent for PCI to ATM network interfaces� Practically all ���Mbps ATM cards use
the UTOPIA bus� and their architectural di�erences are centered on whether they support on�board SRAM or
the host�s memory is used� how the FIFO�s and control registers are structured� and of course how fast the
vendor�speci�c integrated circuits perform the segmentation and reassembly of packets�
The main component of the network interface is the IDT����� NICStAR integrated circuit which is an ATM

Segmentation and Reassembly �SAR controller� As shown in Figure �� the SAR controller accesses directly the
PCI bus� it is also connected to four ��K�	 ��nsec SRAM integrated circuits� and to the ATM physical layer
�PHY integrated circuit IDT������ The PHY chip is connected to the SAR controller via three separate busses�
two UTOPIA busses for transmitted and received data� plus a control bus called the utility bus� In addition� the
PHY drives directly the Hewlett Packard HFBR����� Optical Data Link chip on which the pair of optical �bers
are connected for full duplex transmission� The general organization of the IDT����� network interface is fairly
typical of its kind and therefore its study can be fairly readily adapted to other network interfaces�
During operation� the data originally exists in a bu�er up to ��Kbytes� located in the host�s main memory�

This bu�er corresponds to the largest data transmission supported by AAL� �see sidebar on protocols and is
called CS�PDU �Convergence Sublayer�Protocol Data Unit� During the initialization of a transfer� i�e� when the
VPI and VCI are determined� the corresponding information is placed on the SRAM of the NIC� Subsequently�
data is transferred from the CS�PDU to the SAR via the PCI bus� Within the SAR� the data gets assembled into
ATM cells which are then transmitted by the SAR via the TxUTOPIA bus to the PHY physical layer integrated
circuit� The PHY chip serializes the data transmission from the 	�bit TxUTOPIA bus to the physical link �which
can be SONET or SDH� adds the ��byte ATM header� and with a �����MHz clock produces the ������Mbps
serial data transmission ������� � 	� ������
The reverse process is also supported� i�e� reception of serial data by the PHY chip� transfer to the SAR via

the RxUTOPIA bus to the SAR and bu�ering of the data into the SAR on�chip FIFO memory� stripping of the
header� entering the data at the appropriate SRAM bu�er� and passing the data via the PCI bus to the host� In
terms of control signals �which are used to determine status of the cell transmission� the control signal TSOC
indicates when a new cell is transmitted from the SAR to the PHY� TWRENB� indicates the entry of a new
cell into the FIFO of the PHY� In the opposite data transfer direction� the RSOC signal from the PHY to the
SAR indicates that a received cell is passed to the SAR� and the RRDENB� signal from the SAR to the PHY
indicates that the SAR can read data from the incoming FIFO of the PHY chip�

��� Latency Breakdown

In order to gain complete understanding of the delay within a network interface� we need to de�ne what are the
latencies that add up to it� Figure � shows a simple client�server model� in our case two personal computers� The

�

��� ���� ��	
�� ��� ��	� �
������

P C I b u s 3 2 - b i t 3 3 M H z

D M A

H O S T M E M O R Y

H O S T / P C I B R I D G E

C P U

I D T 7 7 2 0 1
1 5 5 M b p s
N I C S t A R

(S A R)

S R A M

I D T 7 7 1 5 5
(P H Y)

�� ������ 	
�

�� ������ 	
�

8

3 2

8

���� ��������	��
��� ����� �����

��� ���

������

������

����

����

�������

�����
�� ����� ���

��	� �
������

Figure �� Organization of the IDT����� Network Interface

arrows with names in the �gure correspond to the processes that the network interface performs� For one�way
data transmission� these are the following�

� PCI Bus Access Latency �NIC Initiator� is the time to transfer data from the host to the NIC card� and
can be determined by observing the PCI bus signals TDRDY� and REQ�� This latency is a�ected by the
processor speed� the overall load of the PCI bus� and the design of the NIC �if it inserts wait states�

� SAR Segmentation Latency� is the time to perform segmentation of the packet transferred via the PCI bus
from the CS�PDU into ATM cells� It can be observed by monitoring the delay from the PCI bus access to
the TxUTOPIA bus for the same packet�

� Serialization and Transmission Latency� is determined from the time a packet enters the TxUTOPIA bus
of the sender �e�g� PHY� until it emerges at the RxUTOPIA bus of the receiver �e�g� PHY�� A latency
breakdown for the actual physical transmission would require optical probing and its synchronization with
the logic analyzer� but since the speed of light is known for optical �bers this latency can be calculated
rather than measured� In our experiments it was less than ��nsec and could be safely ignored�

� SAR Reassembly Latency� is determined from the time data crosses the RxUTOPIA bus until the SAR is
ready to place it on the PCI bus by asserting the REQ� signal� This time includes the latency to enter
a cell in the �receive cell FIFO� �RCFIFO� as well as the update of the receive connection table on the
SRAM of the SAR� In case the received cell is not the �rst in a packet� the receive connection table is
checked rather than updated�

�

� PCI Bus Access Latency �NIC Target� is determined similarly to the PCI Bus Access Latency of the NIC
Initiator�

In our experiments� the server echoes the data back to the client� with a Software Echo Latency �SEL which
largely depends on the processing power of the server� the protocol used� and the load of the processor� The
method to measure the SEL time will be presented in Section ��
The remaining components in Figure � are shown as clouds� to represent the cloudy indeed situation that

corresponds to the Software Transmission Latency �STL and Software Reception Latency �SRL from�to the
user�s application to�from the PCI bus� In many respects these times are more interesting than the corresponding
times of the network interfaces� because they come from complex behavior of many components� and are much
higher than the times we measured �hence� the true bottleneck in transmissions� The factors a�ecting STL and
SRL are the user level system calls� the relatively slow software execution of protocols such as TCP �which often
and for good reason introduce new idle delays and hence latencies of their own� the architecture of the processor�
and its load�

��� �������	�
��

�	����

�� ���� � ���

���� �	����

��� ��� ����

�	���� ����

�	�����

��� ��� ����

�	���� ����

��
�
	����

��� ��	���� !�

�	����

��� ��	���� !�

�	����

�� ���� � ���

���� �	����

��� ��� ����

�	���� ����

�	�����

��� �������	�
��

�	����

��"�#	�� $%�

�	���� ��$��

�!
������&��

��"�#	��

��	���
��
��

�	����

�����

��"�#	��

���'�
��

�	����

�����

��� ��� ����

�	���� ����

��
�
	����

Figure �� Network Access Latency and its Components

The reverse process has corresponding times� as shown in Figure ��

��� The Logic Analyzer

The usefulness of a logic analyzer is its ability to accurately resolve time down to a few nanoseconds� and to
monitor simultaneously dozens of binary signals� We used the Hewlett�Packard ����A logic analyzer� which has
�� channels� it can resolve time �depending on the mode used down to � nsec� and can store up to 	K words of
data� The above features� however� are not su�cient to perform the task at hand� otherwise the data collection
would be a trivial exercise� The main challenges come from the limitations in the number of channels and in
the memory depth of the instrument� To illustrate� in order to capture all major signals �including data values
on the PCI and the UTOPIA busses of the server and the client� over ��� signals would need to be monitored�

�

Even a large number of channels and a deep memory� however� would not solve all our problems� because in that
case huge amounts of data would be produced during each run� With a total of over ����� runs performed for
various experiments� including multiple runs for each set of parameters� it is evident that a better methodology
was needed� rather than brute force�
The continuous data collection mode of the logic analyzer� called �timing analysis� was invaluable in providing

detailed snapshots of various aspects of the operation� These were in turn used to determine the �big picture�
which was captured in the �state analysis� mode� State analysis allows for up to 	K states to be stored in the
logic analyzer�s memory� even though a great number of cycles might take place between successive states� A
�nite state machine �FSM controls the transition of the logic analyzer from state to state� Our methodology is
largely based on the mapping of various events� some of which take a few nanoseconds and some of which take a
few milliseconds into a FSM which captures the entire process� The economy of event representation into states
was also of importance� as several multi�step capture sequences exceeded the ability of the instrument to store
them�
With the �� channels of the logic analyzer and a appropriate structure of the data to be transferred� only

a small number of data lines needed to be monitored� whereas six control signals for each side of the PCI and
the UTOPIA bus control signals adequately produce the piece�wise latencies� Of great value was our ability to
initialize and arm the logic analyzer from software events� Any kind of scheme can be used� but in our case the
serial port of the PC�s was used�

��� Experiment Parameters

Experimental work is tricky in general� It is possible to have irreproducible results because they depend on
factors that cannot be controlled� To illustrate� experimental performance evaluation of network interfaces would
be most interesting if it were performed on systems having a normal load of applications� In this case� however�
two systems with the same CPU load could exhibit substantially di�erent network behavior because one might
have few PCI bus transactions whereas the other may be I�O intensive and thus allow for little bandwidth for
the network interface� For this reason there were no other PCI cards present in the bus� other than the network
interface� and there were no user applications other than the ones developed for the actual performance evaluation�
Few results are presented in detail in this paper� despite a broad number of results that were derived� Results

were derived for one way data transmission of varying lengths which were very useful in showing some protocol�
related performance data� echoed back data transmission also of varying lengths� with either the �	����� or the
Pentium���� serving as the host� and for di�erent protocols �mostly TCP�IP and UDP�IP� The methods are of
more general usefulness than the speci�c numbers which could �ll pages upon pages of data regarding obsolete
by now machines�
The last parameter a�ecting the experiments was the statistical collection of data� For every set of the

experiment parameter values� a minimum of ten runs �and as appropriate� many more were performed�

� Hardware�Based PCI�to�ATM Performance Evaluation

��� Experiment Methodology

The previous sections largely indicate which signals are involved in the piece�wise latencies� Based on the above�
the patient reader would be able to reproduce our results after a few months of experimentation� This section
aims at the presentation of the speci�c methods used and how they were derived� The logic analyzer control FSM
in Figure � is not the only one we used� but it encompasses the full complexity of measurements from the time the
user application initiates an experiment up to the time that received data reaches a user application� Before this
experiment was derived� a large number of experiments with the logic analyzer in timing mode was performed
in order to characterize the piece�wise latencies� Figure � shows the FSM which controls the logic analyzer� and
Figure � shows a corresponding trace� It is interesting to note that the relative times of signals in Figure � do
not correspond to the physical time scale of these signals due to the sampling in state mode� Each state sampled
takes one logic analyzer memory word� and if two states are sampled successively after a long wait period the
corresponding signals will appear adjacent to each�other� The annotations in Figure � demonstrate which state

�

of the FSM corresponds to each transition� and the associated logic analyzer produced times� To illustrate the
opposite case� Figure � corresponds to the capture of one ATM cell in timing mode� from a di�erent run �the
FSM does not apply here�

����� ���	�
� ���� ��
� � ����	�
��

�� ������

����� ���	�
� �
� ������ ���
 ��
� �

����	�
��

�� ��������

����� ���	�
� �
� ������ ���
 ��
� �

����	�
��

�� ���������

����� ���	�
� �
� ������ ���
 ���� ���

����	
�� ���� ������

����� ���	�
� �
!����� ���
 ��
�

���"�"��#$�� ����	

�%��&'���() %���*+����(�

���� , - ������ % -) -�.-
� (�
 /�����

����� ���	�
� �
� ������ ���
 ��
� �

����	�
��

�� �%�"�"��#$�() %��*+����(�

����� ���	�
� �
� ������ ���
 ��
� �

����	�
��

�� ��������

����� ���	�
� �
� ������ ���
 ��
� �

����	�
��

�� ���������

����� ���	�
� ���� �011� �
 ������

� ��2�

���	� ����

&
 ��
!������ �� �� ��3�� 4

%�(

%5(

%-(

%$(

%6(

%7(

%8(

%�(

%4(

%��(

��� ��� ���	��

��	�� ����

���������

��� �	���	����

��	��

� ���� � ���

����
��	��

��� �	 �	�����

��	��

��� ��� ���	��

��	�� ����

!�� 	��

��"�#��	

!���������

��	��

��!
�

��"�#��	

�	�	$���

��	��

���
�

�% �&'

�()
*

+

, -

�#����

�	���� ����

Figure �� Finite State Machine for Logic Analyzer

The methodology of the trace capture will be presented by examining the FSM state�by�state� Every wait
period will be explained in detail so that there are no aspects of the methodology that appear as black magic�
The su�xes S and C in control signals denote the server and the client machine� respectively� and the � denotes
an �active�low� signal �i�e� corresponds to signals denoted with � in the PCI nomenclature� The logic analyzer
is connected to the PCI clock� and therefore each sampling period is ���� nseconds�
The best way to initialize the FSM from a user application without taking too many signals of the logic analyzer

was the usage of the serial port of each machine� This way� and with experimentally characterized system call
and serial port latencies� the cloudy parts in Figure � can be determined too� albeit with less precision than the
rest of the measurements because they correspond to aggregates of many factors� The indication of what state is
stored during each sampling of the logic analyzer enables us to have a sequence of events which do not correspond
to memory usage �indicated as �While storing �no state�� until one single event occurs ���nd � occurrence of��
other states sample inputs on every sampling period ��While storing �anystate���

�

� � �� �� � � ��

����� ����� �� ���	 ��
	 �� ������ �� ����	 �� �	� ��

������ ��

Figure �� State Mode Trace of Network Access

The code� below� is the actual sockets code for the PC which sends one byte at the serial port� The data value
does not matter for the experiment because the logic analyzer triggers on the start bit bringing the normally ���
line to ���� The code is for the transmission process �i�e� it triggers the logic analyzer during the client STL for
the TCP protocol� Similarly� upon reception of data from the network� a character is output in the serial port�
Similar codes exist for the UDP protocol� codes exist for the reception� as well as for the UDP protocol�

�� PC code associated with STL ��

�� Write to serial port the character ��� ��

WriteFile� hCom� �� hCom determines COM��COM	 ��

���� �� character to write ��

�� �� number of bytes in the buffer ��

WrittenBytes� �� number of bytes written ��

Overlpd� � �� the call results in overlapped operation ��

�� Commence network transmission ��

WSASend � socket� �� opened socket ��

�LPWSABUF�
WsaBufOut��� pointer to array of buffers containing

data to be transmitted ��

�� �� number of buffers in the array ��

BytesSent� �� number of correctly transmitted bytes ��

SentFlags� �� flags ��

NULL�NULL�� �� Non overllaped socket ��

	

Each step of the logic analyzer FSM is analyzed below� with the numbers corresponding to the state numbers
in Figure ��

�� Wait for a ��� at the RS line �which is connected to the serial port of the client in Figure �� This is the
�rst step� associated with STL�

�� Wait until the REQ� signal of the PCI bus of the client is asserted� denoting that the application is
requesting to become bus master �see sidebar� At this point STL has been completed and the time
measured is the actual STL plus the cost of the serial port access�

�� The logic analyzer waits until TRDY� is asserted� which concludes the PCI access� upon which data will
be transferred� This time between states � and � is the PCI bus access latency�

�� Wait for 	�� clock cycles without storing data� so that logic analyzer memory is not excessively used up�

�� Sample on every clock period until the actual �rst byte of data of our application �in this case the value
F�H appears on the RxUTOPIA bus of the client� The latency from state � to state � represents the SAR
latency� We note that the condition which is evaluated is quite complex and requires the comparison of
variables which appear within three cycles� In order for the logic analyzer to evaluate this condition� it
must sample on every cycle �and use its memory up accordingly�

�� Determine when the server�s RxUTOPIA bus starts to send the data received from the network to the SAR
of the server� The latency from state � to state � is the PHY� IN to PHY� OUT latency� The same data
�F�H is expected to be found in the RxUTOPIA bus so that the measurement is accurate�

�� Wait until the server�s REQ� signal is asserted� to determine the reassembly latency of the SAR�

	� Wait until the server�s PCI arbitration process is complete� when the TRDY� signal is asserted� signifying
that the server�s NIC is now the bus master�

�� To determine the time until the data reaches the user process� wait until anything appears on the serial
port of the server�

��� The loop between states � and �� forms the sink state to end the run�

Figure � shows an actual logic analyzer trace captured with the above state machine� It is annotated with the
numbers ��	 which correspond to the same�numbered states of the FSM� In the case of the complex state �� the
annotations �a and �b show the three cycles during which the condition gets evaluated� The non�uniformity of
time in this capture is clearly demonstrated in many cases� e�g� when the �� nsec between �a and �b correspond
to more samples and appear longer than the ��	���sec between states � and ��
Although the mapping of the states corresponds directly to the arrows in one�way data transmission as shown

in Figure �� the actual choice of conditions came from substantial study and experimentation� Let us consider
the 	�� cycle delay in state �� although the manual of the NIC indicated that the control signals in the UTOPIA
bus are asserted during packet transmission� we found that they were asserted at times not associated only with
our packets� If these signals were used� we would obtain erroneous results �too fast� The actual value of the
data �F�H in this example allows us to con�rm that the appropriate cell crosses the UTOPIA bus but we also
want the control signals associated with the transaction so that there would not be false readings for the payload
of some unrelated cell� The wait period in state � was introduced to save state memory on the logic analyzer�
since state � has to sample on every period� The actual value of 	�� cycles corresponds to ������sec� It was
chosen to be safely smaller than the �����sec minimum cell assembly latency by the SAR which we determined
experimentally with the logic analyzer in timing mode� The 	�� clock cycles are shown in Figure � as period Z�
State � need not have such an elaborate setup because the only data transmitted after state � is the correct data�
Finally� the loop between states � and �� is used to end the capture� The serial port user level call of state �
corresponds to the server receiving the data� which is not shown in Figure ��

�

Figure �� Timing Mode Trace of Single ATM Cell Transmission

Figure � shows in more detail the transmission of the beginning of an ATM cell through the TxUTOPIA bus�
Although it was captured with a di�erent FSM on the logic analyzer and on di�erent runs than those described
above� it corresponds to the same user cell transmission and contains the characteristic F� pattern� In actuality
the F� pattern is not part of the payload of the cell� but the third byte of the header and belongs to the VCI
�bits ����� It was chosen because it was the �rst byte that could be modi�ed during the setting of the network
interface� The usage of the TSOC control line status and the F� pattern within a three cycle window in the state
mode logic analyzer FSM allowed for proper capture of the beginning of an ATM cell transmission even if some
cell contained the F� pattern as part of its payload� The usefulness of the timing mode of the logic analyzer
in order to determine how to set it up in state mode is evident in this case� which resulted in two FSM states
combining a wait period and capture based on appropriate control and data patters within a three cycle window�

��� Conducting the Experiments

The methods shown in the previous section were used repeatedly to measure all aspects of the latency� as
shown in Figure �� The �rst set of experiments recorded in detail the latency from the client to the server� and
was described in the previous subsection� We note� however� that in order to terminate the acquisition� the server
needs to access its serial port once it has received data from the network� Such an action would add system call
delays to the measurements of the Software Echo Latency� In e�ect� the previous experiment records the server�s
SRL in addition to the transmission latency� A second experiment was conducted in a very similar way� to record
the latency of the return path of the data� This experiment includes the �ultimately unwanted STL of the server�
To complete the picture� a third experiment was conducted such that the server did not output anything in its
serial port� but rather performed the return of the data at the fastest possible rate� During the third experiment
the piece�wise latencies of the data transmission could not be captured for lack of channels and FSM states on
the logic analyzer� Rather� the system was probed at the PCI bus of the client� and at the RxUTOPIA and
TxUTOPIA busses of the server� With the usage of the client�s serial port� these measurements accounted for

��

these times�

� User�s process to client PCI �i�e� the STL plus one access to the client�s serial port

� Client PCI to RxUTOPIA of server NIC

� RxUTOPIA to TxUTOPIA of server NIC �i�e� the SEL plus two SAR accesses plus two PCI bus accesses

� Server TxUTOPIA to client PCI bus

� Client PCI bus to client application �i�e� the SRL plus one access to the client�s serial port

The reason that SEL was not captured on the server�s PCI is that the bus might be active with additional
received data while it returns the �rst packet� and thus there would be confusion as to what should be captured�
Furthermore� in systems with several PCI cards the bus may be used for other purposes too� By capturing
SEL at the UTOPIA busses and knowing the PCI bus access latency and the SAR latencies� the SEL can be
determined� The aggregate latencies PCI to RxUTOPIA and TxUTOPIA to PCI in the third experiment were
veri�ed against the detailed measurements from the previous experiments and found to be correct� This way�
a complete breakdown of the delays that a�ect network latency was possible� Additional experiments were
performed to fully characterize the PCI access latency and the user application�s access to the serial port�

� Experimental Results

Many experiments were conducted with the setup and methodology described in this paper� Given that for
each case many runs �usually ten to �fteen were conducted with the same parameters to obtain minimum�
average� and maximum times� and each class of experiments was conducted with a multitude of transmission size
parameters� we could include here tables upon tables� Rather� we chose to present three tables� Table � shows
the breakdown of the latencies as described in this paper� Table � shows the measured STL and SRL latencies
for the Pentium as the client� Finally� Table � shows the measured SEL for the two machines�

�	� to Pentium Pentium to �	�
Min Avg Max Min Avg Max

PCI Bus Access Latency��sec ���� ���� ���� ���� ���� ��	�
�NIC is PCI Target
SAR Segmentation Latency��sec ����� ����� ����� ����� ����� �����
�for �rst cell
IN PHY�����OUT PHY���� ����� ����� ����� ����� ����� �����
Latency ��sec
SAR Reassembly Latency��sec ���� ���� ��	� ���� ���� ��	�
�for �rst cell
PCI Bus Access Latency��sec ���� ���� ���	 ���� ���� ����
�NIC is PCI Initiator

Table �� Network Interface Latency Breakdown

In Table � we observe that the latencies associated with the NIC do not vary with respect to whether the NIC
is the server or the client� but there is a signi�cant di�erence between the segmentation and reassembly times�
On the other hand� there is a substantial variation on the PCI Bus Access Latency depending on the machine
and whether it was used as the server or the client� but the PCI bus access times are very small with respect to
the NIC times� There is a ��sec worst case latency for the PCI bus whereas assuming that the PHY OUT and
PHY IN times are symmetrical the best case is when a cell is received which would have a NIC associated time

��

of �������� � ����	 � ���sec� To demonstrate though how latency and throughput are often related in strange
ways� after the initial latencies shown in Table �� the NIC can send and receive an ATM cell every �����sec� This
rate can be derived from ATM speci�cations� and it was indeed observed by us experimentally� In this case� the
PCI bus of a loaded system receiving ATM packets can be the bottleneck during long transmissions and as a
result cells can be lost� Of course� the culprit in these cases is not the PCI bus itself� but the speed of the CPU
which determines how quickly a transfer will take place� as demonstrated by comparing the �	� to the Pentium
times when the NIC is the target� The converse does not hold� because during the transmission of ATM cells the
drivers use DMA from the host memory CS�PDU bu�er to the NIC� which is accomplished with the burst mode
of the PCI�

STL SRL
Data TCP �sec UDP �sec TCP �sec UDP �sec
� ������ �����	 ������ �	����
�� ������ ������ ������ ������
��� ������ ������ ����	� ������
��� ������ ������ ������ ����	�
���� ������ �����	 ������ ������
���� ������ � ������ �
���� � ������ � ������

Table �� Software Transmission Latency and Software Reception Latency for Pentium

The Table � has the STL and SRL for the Pentium processor only �the Pentium is the client� Actually� these
are the experimentally produced times and therefore each entry includes a 		���sec serial port access latency� We
determined that on the Pentium machine� the 		���sec did not vary at all between runs� and as a result we could
accurately take into account the e�ect of the serial port� In the case of the underpowered �	� the serial port
access latency not only was higher but also it varied considerably among runs� We did not make the adjustments
in order to present the actual experimental data� The SRL times are for unloaded server� as experiments with
the server sending large amounts of data at the same time it received data would skew the results� We notice
that the SRL times are much higher than the STL times� �almost twice as high in the TCP case for ���� bytes
transmission� Since all entries correspond to latencies it should not be assumed that the transmission times for
the longer transmissions are practically the same as for short ones� these are the latencies for the �rst cell of each
transmission� In e�ect� these times show protocol and bu�ering induced delays�
The entries for transmission of ���� bytes in the TCP case and ���� bytes in the UDP case correspond to the

Maximum Segment Size �MSS of the TCP and the corresponding quantity of UDP�
We observe that the UDP latencies are higher than the associated TCP ones for small transmissions� and lower

for large transmissions� These latencies are the release latencies and do not correspond to the throughput that
the user will observe with the respective protocols� Indeed� the lack of establishment of connection by UDP makes
the protocol appear slow with respect to the TCP which establishes connection prior to sending data� In di�erent
experiments� with software�only methods� UDP throughput was found to be close to two times that of TCP� but
also UDP had as much as �� lost datagrams as compared to ��� retransmissions of TCP� These results too
show how di�erent the latency can be from the inverse of the throughput�
Table � shows the measured SEL for both the Pentium and the �	�� We included data for both processors

because SEL signi�cantly depends on processing power� and because these measurements do not include system
calls to the serial port� The measured times� of course� do include two PCI bus accesses� one SAR reassembly and
one SAR segmentation latency� the sum of which in the worst case is less than ���sec �as derived from Table ��
This table was largely included to complete the experimental data associated with the Figure � experiments�

��

Pentium �	�
Data TCP �sec UDP �sec TCP �sec UDP �sec
� ����� ����� ���		�� �������
�� ����� ����� ������� �������
��� ����� ����� ������� �������
��� �	��� �	��� ����	�� �������
���� ����� ����� ������� �������
���� ����	 � ���		�	 �
���� � ����� � ��	����

Table �� Software Echo Latency for Pentium and �	�

� Conclusions

In conclusion� we presented hardware methods to characterize the piece�wise latencies that form the �nal
network transmission latency for ATM networks� We also showed that these latencies are asymmetric with
respect to the transmitter and the receiver� and that more often than not the latency in high speed networks
cannot be derived from the inverse of the throughput� As a result� hardware based performance evaluation
methods are e�ectively mandatory for complete evaluation of high performance network interfaces� and networks
in general�

Acknowledgements

We wish to express our appreciation to Mr� Giorgos Kalokairinos for his valuable assistance regarding the
�ne aspects of the PCI bus� and to numerous members of the technical community at large who responded via
Internet to many technical questions ranging from device driver issues to Windows NT subtleties�

References

��
 R� Ahuja� S� Keshav� and H� Saran� Design� Implementation� and Performance Measurement of a Native�
Mode ATM Transport Layer �Extended Version� IEEE	ACM Transactions on Networking� �������!����
August �����

��
 Matt Buchanan and Andrew A� Chien� Coordinated Thread Scheduling for Workstation Clusters Under
Windows NT� In Proceedings of the USENIX Windows NT Workshop� pages ��!��� August �����

��
 J� Bradley Chen� Yasuhiro Endo� Kee Chan� David Mazieres� Antonio Dias� Margo Seltzer� and Michael
Smith� The Measured Performance of Personal Computer Operating Systems� In Proceedings of the
�th
ACM Symposium on Operating System Principles� volume ��� pages ���!���� ACM SIGOPS Operating
System Review� December �����

��
 Aloke Guha� Allalaghatta Pavan� Jonathan Liu� Ajay Rastogi� and Todd Steeves� Supporting Real�Time
and Multimedia Applications on the Mercuri Testbed� IEEE Journal on Selected Areas in Communications�
��������!���� May �����

��
 Dilip D� Kandlur� Debanjan Saha� and Marc Willebeek�LeMair� Protocol Architecture for Multimedia Ap�
plications Over ATM Networks� IEEE Journal on Selected Areas in Communications� ���������!�����
September �����

��

��
 Jonathan Kay and Joseph Pasquale� Pro�ling and Reducing Processing Overheads in TCP�IP� IEEE	ACM
Transactions on Networking� ����	��!	�	� December �����

��
 Evangelos Markatos and Manolis Katevenis� User�Level DMA without Operating System Kernel Modi�ca�
tion� In �rd International Symposium on High�Performance Computer Architecture �HPCA�� IEEE Computer
Society� February �����

�	
 Shubhendu S� Mukherjee and Mark D� Hill� The Impact of Data Transfer and Bu�ering Alternatives on
Network Interface Design� In th International Symposium on High�Performance Computer Architecture
�HPCA�� pages ���!��	� IEEE Computer Society� January ���	�

��
 John H� Naegle� Steven A� Gossage� Nickolas Testi� Michael O� Vahle� and Joseph H� Maestas� Building
Network for the Wide and Local Areas Using Asynchronous Transfer Mode switches and Synchronous Optical
Network Technology� IEEE Journal on Selected Areas in Communications� ��������!���� May �����

���
 Allyn Romanow and Sally Floyd� Dynamics of TCP Tra�c over ATM Networks� IEEE Journal on Selected
Areas in Communications� vol�
�� no�� pages ���!���� May �����

���
 Ioannis Schoinas and Mark D� Hill� Address Translation Mechanisms in Network Interfaces� In th Inter�
national Symposium on High�Performance Computer Architecture �HPCA�� pages ���!���� IEEE Computer
Society� January ���	�

���
 Thorsten von Eicken� Anindya Basu� Vineet Buch� and Werner Vogels� U�Net� A User�Level Network
Interface for Parallel and Distributed Computing� In Proceedings of the
�th ACM Symposium on Operating
Systems Principles� IEEE Computer Society� December �����

���
 Matt Welsh� Anindya Basu� and Thorsten von Eicken� Incorporating Memory Management into User�Level
Network Interfaces� In Proceedings� Hot Interconnects Symposium V
���� IEEE Computer Society� August
�����

��

SIDEBAR� NETWORK PROTOCOLS

Although network protocols are the subject of many books� we brie�y present here the protocols involved in
our experimental study� The OSI has standardized networks in terms of a hierarchy of seven layers� the lowest of
which is the physical layer and the highest layer is the application layer� It is therefore possible to have TCP�IP
over ATM� or TCP�IP over Ethernet� etc� The diagram shows the hierarchy of protocols� Although in principle
a network interface could potentially process high level layers of the OSI protocol stack� in practice the high level
layers are handled by the operating system and�or device drivers� whereas the network interfaces perform low
level tasks such as packet assembly and transmission through the physical link�

TCP� Transmission Control Protocol

The TCP is aimed at the reliable data transfer among networked stations� It is in the transport layer� the
top layer of the OSI protocol stack� which o�ers end�to�end connection� Its operation and characteristics are
summarized below�

� Connection�oriented� It establishes connection and delivers packets serially�

� Completely reliable� In addition to using checksum error checking on each packet� plus acknowledgement
of the receiver for every packet received� Timeouts or transmission errors result in retransmission�

� Data bu�ering� The TCP protocol maintains its own bu�er of data transmitted and received� and delivers
to the application packets in order even if they were received by the TCP out of order�

� Data Segmentation� Through the Maximum Segment Size �MSS parameter� the user data is segmented�

� Flow Control� The receiving end performs �ow control on the transmitting end�

� Header� �� bytes�

UDP� User Datagram Protocol

This is an alternative OSI transport layer protocol which does not o�er the reliability of data transmission
of TCP and incurs less overhead than TCP� Its purpose is to produce packets �called datagrams as quickly as
possible� regardless of whether they arrive in their �nal destination� Its characteristics are�

� Connectionless protocol� It does not perform establishment of the connection and it does not guarantee in
order arrival of the packets to the application�

� Potential information loss� Unlike TCP� UDP does not support acknowledgement or retransmission of
data� but it does transmit a checksum with each datagram so that erroneous ones can be rejected at the
destination�

� UDP Header� 	 bytes�

IP� Internet Protocol

The IP is an OSI Network Layer protocol� and its purpose is to route datagrams� The main characteristics of
v���� which was used in this work are�

� Connectionless Protocol

� IP Fragmentation

� Header checksum� it allows for detection of errors on each header during transmission�

� IP Header� �� bytes�

When the network layer is Ethernet� the best Maximum Transmission Unit �MTU that has been reliably trans�
mitted is ���� bytes� The corresponding number for ATM is ��	� bytes�

��

ATM� Asynchronous Transfer Mode

The ATM protocol is at the OSI Data Link layer and can be summarized as follows�

� Connection oriented protocol�

� Supports static �VPI and dynamic �VCI connections�

� Fixed packet size of �	 bytes payload plus � header bytes�

� Depending on the application� it supports several Application Adaptation layers� AAL ��������� which
determine Quality of Service �QOS�

� Supports statistical multiplexing �but depending on QOS criteria �xed bandwidth can be allocated too�

� Supports �leaky bucket� transmission �ow control�

The ATM protocol runs on optical �ber links or on unshielded twisted pair links� which have very low information
loss probability� Nonetheless� due to the leaky bucket �ow control� ATM can loose cells due to congestion at the
switch level�

API� Application Program Interface

The API is an alternative to TCP�IP� especially appropriate for personal computer communication� The lack of
existing API drivers for the network interface at the time of this work� however� would mandate the development
of new ones using tools such as the Device Driver Kit �DDK� As a result API alternatives were not examined in
this work�

Figure �� Network Layers

��

SIDEBAR� PCI BUS

The Peripheral Component Interconnect �PCI bus is the most common bus used in personal computers
today� Although the PCI bus is actually a collection of standards which correspond to busses with di�erent
datapath width ��� or �� bit and speed� a commonality of control signals allows for upward compatibility and
interoperability of PCI cards� The bus used in this work follows version ���� of the standard� and supports ���bit
datapath� With a clock of ��MHz and a minimum of one clock cycle for a bus transaction in burst mode� the
maximum theoretical bandwidth of this bus is � � �� Mbytes�sec � ��� Mbytes�sec � �� ��� Gbit�sec� or�
roughly seven times the theoretical maximum speed of the ATM network we examined� We will introduce a
minimum of concepts regarding the PCI bus� and mostly in the context of signals that this paper refers to�
In each PCI bus transfer there is an initiator and a target� The initiator �or bus master is the device that

originates the transaction and con�gures the target �or slave for the data transfer� Data can be transferred
in either direction� i�e� it is not necessary that data is transferred from the initiator to the target� The PCI
bus supports burst mode transfers� which is the transmission of a single address �address phase followed by two
or more data phases� The initiator controls how long the bus is occupied during burst transfers� The starting
address and transaction type are determined at the address phase� The target device latches the start address in
an address counter and increments it automatically between successive data phases�

PCI Control Signals

Every device that can be a PCI bus master has one pair of control signals which can be directly connected to
the PCI arbiter� REQ� and GNT� �The � sign signi�es an active low signal� The REQ� signal is asserted
to request control of the bus� and the arbiter asserts the GNT� signal to enable the corresponding device to
become bus master� This way there can be di�erent bus masters at di�erent times� The following �small subset
of control signals is important in determining PCI bus transactions�
The table below shows in summary the operation of the PCI bus as it is determined by the above signals being

asserted �A or deasserted �D� The � entries indicate �don�t care� situations�

FRAME� IRDY� DEVSEL� TRDY� REQ� GNT�
D � � D � A Bus is given from the arbiter to the bus master
A D D D � � Initiator transmits initial

address phase� to be decoded
by the target

A A � � � � Initiator is ready to send�receive data
A A A � � � Target has decoded the address

from the initiator
A � A A � � Target is ready to send�receive data
D A � � � � Last data phase transmission

Table �� PCI Control Signals and Bus States

� FRAME�� is asserted by the initiator for the duration of the transaction�

� TRDY� �target ready� is asserted by the target device and indicates that the target can send or receive
data �as appropriate during the data phase�

� IRDY� �initiator ready� is asserted by the initiator and indicates that the initiator can send or receive �as
appropriate data to or from the target�

� DEVSEL� �device select� is asserted by the target after it has decoded the initiator requested address and
has determined that belongs to itself�

��

PCI Bus Access latency

The total time from the assertion of REQ� by the initiator until the assertion of the TRDY� by the target is
called the �bus access latency�� The times that constitute the bus access latency are summarized below� It can
be clearly seen that the theoretical bus transfer rate of ���Mbytes�sec is attainable after the initial bus access
latency� and only for burst transfers�

� Arbitration Latency� The time from the assertion of REQ� by the initiator unitl the reception of the
asserted GNT� by the initiator�

� Bus Acquisition Latency� The time from the reception of the asserted GNT� by the initiator until the
assertion of the FRAME� by the initiator�

� Target Latency� The time from the assertion of the FRAME� by the initiator until the assertion of TRDY�
by the target�

These latencies are shown graphically below�

Figure �� PCI Latencies

�	

