
A Task Graph Approach for Efficient Exploitation of Reconfiguration in
Dynamically Reconfigurable Systems

Kyprianos Papademetriou and Apostolos Dollas ∗
Department of Electronic and Computer Engineering

Technical University of Crete
GR73100 Chania, Crete, Greece
{kpapadim, dollas}@mhl.tuc.gr

1 Introduction

Partial reconfiguration suffers from the inherent high la-
tency and low throughput which is more considerable when
reconfiguration is performed on-demand. This work deals
with this overhead in processors combining a fixed process-
ing unit (FPU), and a reconfigurable processing unit (RPU).
Static and dynamic prefetching [1], and instruction forecast-
ing [2] are targeting at reduction of the overhead through
preloading of configurations. Banerjee et al. [3] transform
the task graph of an application and a heuristic algorithm
evaluates the reduction in schedule length and selects the
most promising configuration. Tasks are scheduled accord-
ing to the physical resource constraints. In our work we
augment the prefetching model of [1] by taking into account
the hardware area constraints of a partially reconfigurable
system. Given the task graph of an application, tasks with
low probability to be executed are split and preloaded ac-
cording to the hardware in order to be fully utilized. Thus,
the time during which reconfiguration is overlapped with
processor execution is increased.

2 Proposed Model

We describe the problem and the proposed approach with
an illustrative example. Figure 1(a) has the graph of an ap-
plication wherein each task represents an RPU operation
(RPUOP). In t0, among other instructions, a decision is
made regarding which one of t1, t2 should be followed. If
all three tasks can be simultaneously placed onto the RPU,
no delay is incurred during transition from t0 to the next
task. On the contrary, if a resource-constrained RPU is em-
ployed that can at most hold t0 and one of the t1, t2 e.g.,
S(t0, t1) < A < S(t0, t1, t2), where S is the total size of
the tasks in parentheses and A is the size of the available
hardware, a delay might be incurred. Only tasks that stat-
ically fit in the chip are prefetched according to the static
prefetching model presented in [1]. Assuming that t1 is the
task most likely to be executed, its prefetch is placed before

∗Also at ITRI, Wright State University, Dayton, Ohio, USA

t0 as shown in Figure 1(a). If the outcome of t0 needs t2,
the execution is stalled waiting for the FPU to partially re-
configure the RPU; this is performed with the prefetch of
t2.

We augment the original model with a mechanism that
statically determines the best prefetching, which utilizes
all the physical resources. This is illustrated in Figure
1(b). Assume that the size of the available hardware is
A = S(t0, t1, t2 × 2/3). By performing transformations
on the task graph, t2 is split into two subtasks. Subtask t2a
is 2/3× the t2 size and the remaining 1/3 is the size of t2b.
Subtasks t2a and t2b are then processed as two different
tasks. The only factor that is changed for each subtask is
configuration latency (L) which is proportional to the area.
The t2a is prefetched as it fits the available hardware. In
Figure 1 configuration latency is expressed in quantities of
time, rather than in time units. Assuming that t2 is needed,
the original model incurs a configuration latency equal to
60. In the augmented model only t2b is needed to be loaded
which entails a latency of 20.

3 Experiments and Discussion

A reconfigurable processor and a simple application
were modelled with TGFF [4]. In the generated graph of
Figure 2, tasks t0 0, t0 1 and t0 3 are executed by the FPU
whereas tasks t0 2 and t0 4 are RPUOPs. The latter can not
coexist in the RPU due to its restricted area.

Fig 2 (a) illustrates the prefetch insertions for the origi-
nal model. In scenario A, t0 2 is prefetched before t0 0. If
t0 2 is to be executed no new prefetch is needed. If t0 4 is to
be executed the next prefetch is needed incurring a greater
reconfiguration overhead than the former case does. Figure
2(b) has the prefetches for the augmented model. In sce-
nario A t0 2 and t0 4a are prefetched. If t0 4 is to be exe-
cuted the prefetch for t0 4b is called. The incurred overhead
in this case is investigated in our experiments. We consider
whether reconfiguration of RPUOPs can overlap with the
tasks executed in the FPU i.e., t0 3 for scenario A or t0 1
for scenario B.

A limited testbench is constructed consisting of 20 sys-

1



t0


t1
 t2


L0 = 80


L1 = 100
 L2 = 60


...

Prefetch t0


…

Prefetch t1


...


t0


t1


L0 = 80


L1 = 100
 L2a = 40
 L2b = 20


a
 b


...

Prefetch t0


...

Prefetch t1


...

Prefetch t2a


...


Prefetch t2
 Prefetch t2b


(a)
 (b)


t2


Figure 1. (a) Initial graph and prefetches accord-
ing to the original static prefetching model. (b)
Transformed graph and prefetches according to
the augmented model.

tems which are randomly generated by TGFF for which the
structure of the task graph is common. Regarding the FPU it
is assumed that each task takes an execution of 100± 80µs.
The RPU roughly resembles a Virtex-II XC2V40 device
with 64 CLBs. It is assumed that CLBs are the only re-
sources used for the application. The average number of
CLBs required by a task is chosen to 30 ± 25. Configu-
ration latency is computed based on Xilinx’s data sheets.
Virtex-II devices are partially reconfigurable and the frame
is the smallest unit of reconfiguration. A pad frame is added
at the end of the configuration data. The XC2V40 has 404
frames and an 8-bit ICAP interface running at 66MHz be-
tween the FPU and the RPU. Therefore, the time needed to
configure all frames is 0.642ms whereas the time for one
frame is 1.58µs (pad frame not included). For sake of sim-
plicity configuration latency per CLB instead of frame is
used. 176 frames are needed to configure all CLBs which
gives 2.75 frames per CLB. The time needed to configure
one CLB is (1 × 2.75 × 1.58) + 1.58 = 5.92µs, for two
CLBs (2× 2.75× 1.58) + 1.58 = 10.27µs etc.

Table 1 has some results and the average of all ex-
periments regarding the reconfiguration overhead, i.e., the
amount of time that can not be hidden by overlapping recon-
figuration with processor execution. ROOM and ROAM are
the Reconfiguration Overhead for the Original Model and
the Augmented Model respectively, caused by the loading
of the prefetch after the branch. The positive and negative
numbers represent the configuration time that can/can’t be
hidden by processor execution respectively. In some cases
the augmented model completely hides configuration time,
and in all cases it performed better than the original model.

4 Conclusions and Future Work

In the future, we will evaluate the model with real
data. Moreover, we plan to incorporate communication and

B


A



Prefetch t0_2
Prefetch t0_4


A


B



A



A


Prefetch t0_2


Prefetch t0_2a


B



B


Prefetch t0_4b


A


Prefetch t0_4a


Prefetch t0_2b


B


Prefetch t0_4


(a)
 (b)


t0_0 (0)


t0_3 (3)
 t0_1 (1)


t0_4 (4)
 t0_2 (2)


t0_0 (0)


t0_3 (3)
 t0_1 (1)


t0_4 (4)
 t0_2 (2)


Figure 2. Prefetches according to the original (a)
and the augmented model (b). Two different sce-
narios regading the insertion of prefetches are
shown by the labels A and B.

Table 1. Experimental results for the two models.

E0 E1 E9 E15 E19 Avg
ROOM -193.4 -179.8 -100.8 -160.4 -377.3 -236.1
ROAM -38.7 68.3 54.7 108.5 -243.3 -59.6

memory issues to our experimental framework. Also, we
will investigate how transformations should affect the split
of a task i.e., parallelizable functional subtasks vs. non-
functional subtasks that are reassembled for execution.

5 Acknowledgements

We thank the Greek Ministry of National Education and
Religious Affairs for supporting Kyprianos Papademetriou
with a Ph.D fellowship under the program Heraklitus, grant
number 88727/11. We also thank Prof. Nikolaos Bourbakis,
Director of the ITRI Institute at Wright State University for
hosting Prof. Dollas during his sabbatical.

References

[1] Z. Li, “Configuration Management Techniques for Recon-
figurable Computing,” PhD thesis, Northwestern University,
2002.

[2] M. Iliopoulos and T. Antonakopoulos, “Run-Time Optimized
Reconfiguation Using Instruction Forecasting,” in Field Pro-
grammable Logic and Applications, 2001.

[3] S. Banerjee, E. Bozorgzadeh, and N. Dutt, “Considering Run-
Time Reconfiguration Overhead in Task Graph Transforma-
tions for Dynamically Reconfigurable Architectures,” in Field
Programmable Custom Computing Machines, 2005.

[4] R. Dick, D. Rhodes, and W. Wolf, “TGFF: Task Graphs For
Free,” in Proceedings of the International Workshop on Hard-
ware/Software Codesign, 1998.

2


