

Toward Precision Agriculture: Building a Soil Wetness Multi-Hop WSN from First Principles

Aggelos Bletsas, Aikaterini Vlachaki, **Eleftherios Kampianakis**, George Sklivanitis, John Kimionis, Konstadinos Tountas, Megasthenis Asteris and Panagiotis Markopoulos

> Telecom Lab Department of Electronic and Computer Engineering (ECE) Technical University of Crete (TUC)

> > April 5, 2011

Why

What

Omparison

Why reinventing the wheel?

- Cost reduction: from ${\in}120$ per WSN node ${\rightarrow}$ ${\in}20$ per node!
- Research: Low-cost testbed for telecom research (localization, cognition, mobility, etc).
- Research: New sensors, new applications.
- Teaching: Telecom Synthesis course.
- FUN :)

What

Omparison

WHAT? (Hardware - (1))

- iCubes are WSN nodes.
- SiLabs C8051F320 MCU.
- TI/Chipcon CC2500.
- $2 \times$ AA battery operation.
- Custom PCB design.

- Emphasis to simplicity and flexibility.
- Extension Board (XT) for **iCube** (power jack, UART, JTAG and MCU pinouts).
- iCube + XT = iCube Gateway.

The Humidity Sensor (Hardware - (2))

Ultra low power (300 μ A max), low cost (×5 cheaper compared to prior art).

Manufacturer		iCubes		Honeywell	Honeywell	Sensirion	Sensirion		Sensirion
Model	Custom	-with HC	CH1000	HIH3610	HIH4000	SHT1x	SHT7x		SHT21
Range (%RH)		0-100		0-100	20-95	0-100	0-100		0-100
Supply Voltage (V)		2-18		4-5.8	4-5.8	5	5		2.1 - 3.6
Current Consumption (µA)		300		200	500	550	550		270
Accuracy (%RH)	±3			± 0.2	± 3.5	±2 - 3	±1.8 - 3	± 2	
Response Time (sec)	15			15	15	4	4	8	
Output Type	Voltage Pulses (var. freq.)			Voltage	Voltage	Data (2-wire)	Data (2-wire)	Data (2-wire)	
Cost (€)		6		30	24	19 - 22	22 - 25.5		15

The iCubes Software

• Flexibility of C routines

- BOOL send_packet(BYTE destination_id, bit pack_type, bit wait_for_ack, UINT16 timeout, BYTE max_tries, BYTE sn)
- BOOL receive_packet(BYTE *length, BYTE source_id, bit type, BYTE packet_acceptance_level, UINT16 timeout, BYTE sn)
- Over the air programming capability (OTAP) has been developed.

Successful iCubes WSN demo set up taking humidity and temperature measurements (built-in thermistor).

400

Time in minutes

100

17.59 19.39 21.19 22.59 03:59 05:39 Due to simple gateway - PC interface (single UART buffer), development of another UI is trivial.

Sensor Network Host Ap	oplicatio	n						
e Help								
Input Device						_	•	_
	-						~ A	~
C USB Update	Device Lis				Ŧ	•	ိ ြု	/ p/
Polling Interval						69	/ Ì Ì	-•]
0.000000 sec	5	itop				NX.		
						<u> </u>	•	J
 Timestamp 	Status	Nod	Sen	S. Type	S. Value	Interpretation	Last Recorded V	LRV Timesta
2010-06-03 14:23:03	OK	5	1	HUMIDITY RES	674	DRY	DRY	2010-06-03
2010-06-03 14:23:03	OK	6	2	TEMPERATURE	1035	27.756757 oC	27.756757 oC	2010-06-03
2010-06-03 14:23:03	OK	6	1	HUMIDITY RES	1267	DRY	DRY	2010-06-03
2010-06-03 14:23:03	OK	1	2	TEMPERATURE	990	26.540541 oC	26.540541 oC	2010-06-03
2010-06-03 14:23:03	WARN	1	1	HUMIDITY RES	0		WET	2010-06-03
2010-06-03 14:23:03	OK	2	2	TEMPERATURE	1009	27.054054 oC	27.054054 oC	2010-06-03
2010-06-03 14:23:03	OK	2	1	HUMIDITY RES	587	DRY	DRY	2010-06-03
2010-06-03 14:23:03	OK	3	2	TEMPERATURE	1048	28.108108 oC	28.108108 oC	2010-06-03
2010-06-03 14:23:03	OK	3	1	HUMIDITY RES	1903	DRY	DRY	2010-06-03
2010-06-03 14:22:55	OK	4	2	TEMPERATURE	1032	27.675676 oC	27.675676 oC	2010-06-03
2010-06-03 14:22:55	OK	4	1	HUMIDITY RES	2335	DRY	DRY	2010-06-03
2010-06-03 14:22:55	OK	5	2	TEMPERATURE	1061	28.459459 oC	28.459459 oC	2010-06-03
2010-06-03 14:22:55	OK	5	1	HUMIDITY RES	670	DRY	DRY	2010-06-03
2010-06-03 14:22:55	OK	6	2	TEMPERATURE	1035	27.756757 oC	27.756757 oC	2010-06-03
2010-06-03 14:22:55	OK	6	1	HUMIDITY RES	1264	DRY	DRY	2010-06-03
2010-06-03 14:22:55	OK	1	2	TEMPERATURE	990	26.540541 oC	26.540541 oC	2010-06-03
2010-06-03 14:22:55	OK	1	1	HUMIDITY RES	45	WET	WET	2010-06-03
							Clea	r List Export List

MAC / Routing

- Packet driven multi-hop TDM/FDM routing protocol.
- No need for clock synchronization.
- Packet-driven with highly unsynchronized WSN nodes.
- Tree-based hierarchy.
- Exploiting multiple carriers (one for each subtree).

What

Omparison

- iCubes cost: ~ 30€(quantities of 10)
 Prior art: ~ 120€(of similar functionality).
- Power consumption: comparable to prior art.
- iCube humidity sensor is power/cost competitive to commercial products.
- iCubes development cycle: short (simple C based on structured and embedded programming).
- OTAP capable without the use of RTOS!

What

Omparison

Capability of sending data through GPRS to remote database.

Renewable energy sources

Solar/Wind power utilization.

Website: http://www.telecom.tuc.gr/~aggelos/tel412_fall2010/

Bletsas et al. (TUC)

Ecosense 2011, Belgrade, Serbia

Testing Emergency Radio Applications

- Perhaps <u>first of a kind</u> collaborative beamforming demonstration.
- Zero-feedback, zero CSI distributed beamforming.
- Ideal for reachback communication in low-cost WSNs.

• Low-cost testbed (iCubes and USRP BS).

A. Bletsas, A. Lippman and J.N. Sahalos, "Simple, Zero-Feedback, Distributed Beamforming with Unsynchronized Carriers", IEEE Journal on Selected Areas of Communications (JSAC), Special Issue on Simple Sensor Networking Solutions, Vol. 28, No. 7, pp.1046-1054, Sept. 2010.

Backscatter Sensor Networks

- Single transistor WSN radio.
- Ultra low cost.
- Ultra low power.
- Ideal for environmental WSNs.
- Challenge: increase range.

G. Vannucci, A. Bletsas and D. Leigh, "A Software-Defined Radio System for Backscatter Sensor Networks", IEEE Transactions on Wireless Communications (TWC), Vol. 7, No. 6, pp. 2170-2179, June 2008.

- WSNs can be low cost, easy, modular and fun!
- New disruptive technologies are being developed @ TUC/Telecom Lab.

Eleftherios Kampianakis (kampianakis@gmail.com)

Contact info: Aggelos Bletsas

Assistant Professor Telecom Lab Electronic & Computer Engineering Dept. Technical University of Crete, Greece

aggelos@telecom.tuc.gr aggelos@media.mit.edu

website: http://www.telecom.tuc.gr/ \sim aggelos