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Background
Smart mobile devices such as smartphones and tablets are becoming more power-
ful every day with the advancement of mobile computing chips, while at the same time 
major software and operating system companies develop their products in a single code 
base suitable for many platforms [1]. In addition, a 2013 survey [2] placed smartphone 
popularity at around 85%, surpassing all other kinds of computing devices. The above 
facts seem to point towards a future where smart mobile devices might replace comput-
ers completely, in personal and corporate environments.

On the other hand, users still want to use a large display, keyboard and mouse for con-
tent creation and when they are not on the move. This use case has been addressed using 
tether technology such as the mobile high-definition link (MHL) [3], however to main-
tain the grab-and-go experience there is a trend of replacing the need for cables with 
a wireless link that connects the mobile device to a wireless docking station. In such a 
setup, the video on the mobile device display is mirrored on a larger display. Low-latency 
connection is required to ensure the interactivity of the end-user is maintained, but the 
actual latency limits are application dependent. Its widespread adoption and high band-
width make Wi-Fi a key candidate for carrying this docking traffic. Miracast [4], which 
was recently ratified as a standard to allow mobile device display mirroring over Wi-Fi, 
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is also a candidate for enabling the video component of any docking station. Miracast 
is widely adopted across a variety of devices, with more than 7000 devices certified, 
including most leading smartphone, tablet and smart TV brands [5]. Screen mirroring 
is already an integral part of many video mediated collaborations [6] and used to give 
presentations through smart phones [7].

At the heart of a Miracast source, an H.264 encoder streams over a Wi-Fi peer-to-
peer (P2P) mode without needing access to an overlaid Wi-Fi network. However, in 
enterprise environments where an overlaid Wi-Fi network is not only present but heav-
ily used, contention due to medium access between the Wi-Fi P2P docking link and the 
overlaid Wi-Fi network will have a direct impact on the quality of experience (QoE) for 
the docking video. The impact and potential QoE degradation will depend, among many 
other factors, on the network’s resiliency [8], as well as on the characteristics of the video 
traffic, which in turn is dependent on the video content being compressed, the encoder 
implementation and the target latency profile.

Hence, careful network design is necessary to ensure efficient use of the network’s lim-
ited resources [9]. Given that video processing requires tremendous resources in terms 
of computation and transmission of the encoded video [10] it is an uphill battle to deploy 
innovative services on existing wireless networks [11]. For this reason, traffic characteri-
zation and modeling of multimedia services are very important for achieving efficient 
network operation. The generated models can be used as traffic rate predictors dur-
ing the network operation phase (online traffic modeling). Traffic models are very use-
ful for traffic management algorithms and congestion control schemes, which prevent 
the network from possible overload [12]. Dynamic Resource Allocation (DRA) schemes 
are especially important for live streams, where the video stream characteristics are 
not known in advance. In order to accurately estimate the required network resources 
for a certain flow the chosen DRA scheme must be able to predict the required band-
width for future video frames. To adjust the bandwidth assignment for a certain video 
stream, DRA renegotiates the assigned bandwidth for that flow. The main goals for a 
DRA scheme are: to predict the longest possible period with the least prediction error, 
and to provide the best possible resource utilization with the lowest achievable frame 
delay [13]. This will ensure that the QoE of accepted video sessions is not degraded [14].

Hence, in our recent work in [15] we developed H.264 video traffic models for low-
latency, candidate Miracast source implementation for content that resembles a typical 
desktop user in an enterprise-like environment. We proposed an accurate model based 
on the combination of clustering with Markov chains and the use of the Jaccard index 
similarity coefficient.

In order to provide the required quality of service (QoS) and QoE guarantees, network 
resources need to be reserved according to both the QoS/QoE requirements and the 
specified traffic parameters of each application. The role of source policing mechanisms 
is critical towards this goal. The source policing mechanism protects network resources 
against intentional or unintentional traffic overflow from certain sources. Several polic-
ing mechanisms have been proposed for network control in the literature. Traffic that 
is considered by the mechanisms to be exceeding a user’s contract is either dropped 
immediately or marked as non-conforming, in order to be dropped if needed at any net-
work node, depending on the total traffic load (this approach is relevant both to an edge 
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router and to software-defined networking [16]). Four of the mechanisms which have 
been most extensively studied, all of them static in nature, are: the token bucket and its 
variations [17–19]; the jumping window [20, 21]; the moving window (also known as the 
sliding window) and the exponentially weighted moving average (EWMA) [20].

The token bucket mechanism has been widely studied, is currently used in Cisco 
equipment [22] and has been widely integrated into home routers [23]. The reason for its 
popularity is its ability to verify easily whether a source conforms to its declared (at call 
setup) traffic parameters. It allows a certain amount of burstiness (which is necessary for 
video traffic) while imposing a limit on the average source transmission rate [24].

The upper bound on the source’s burst length is equal to the token bucket size and this 
bound can be described by the formula

where A(s, t) denotes the amount of traffic leaving the bucket between times s and t, σ is 
the maximum burst size and ρ is the token generation rate.

The jumping window (JW) mechanism uses windows of a fixed length T side by side 
through time. A new window starts immediately after the conclusion of the previous 
one. During a window, only K bytes (or packets) can be submitted by the source to the 
network. In the case that a source attempts to transmit more than K bytes, the excessive 
traffic is dropped (or marked as nonconforming, as in the case of the token bucket). The 
mechanism is implemented with the use of a token counter, similar to the one of the 
token bucket, and in each new window the associated packet counter is restarted with 
an initial value of zero [20].

The moving window (sliding window) mechanism is similar to the jumping window, 
but more stringent and more complex to implement. This mechanism again ensures that 
the maximum number of bytes transmitted by a source within any given time interval of 
duration equal to the fixed window size, T, is upper bounded by K bytes. The difference 
with the Jumping Window mechanism is that each video frame size is remembered for 
the width of exactly one window, starting with the specific video frame and ending T 
frames later. This mechanism can be interpreted as a window which is steadily moving 
along the time axis, with the requirement that the frame sizes of T frames are stored for 
the duration of one window [20].

The EWMA mechanism uses consecutive-time windows like the JW mechanism. 
The difference is that the maximum number of accepted packets in a time window is a 
function of the allowed mean value of the video trace per interval and an exponentially 
weighted sum of the number of accepted packets in the preceding intervals.

In [25], it has been shown that dynamic traffic policing based on accurate H.263 vide-
oconference traffic modeling can clearly outperform the classic static mechanisms, in 
terms of the percentage of marked packets of conforming users (i.e., users that adhere 
to their declared traffic parameters). The reason is that the static mechanisms are unable 
to cope with the burstiness of video traffic, and hence cause the marking of a significant 
percentage of the transmitted packets. However, accurate prediction is not possible for 
all types of video sequences, and even when it is, it often involves a higher degree of 
complexity which would incur additional computational requirements for the system.

(1)A(s, t) ≤ σ+ ρ(t− s), s < t
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In our work in [26] we proposed a new traffic policing mechanism, the Frame Size 
Aware Token Bucket (FSA-TB), which was shown to outperform all of the widely used 
mechanisms in the literature. However, FSA-TB is based on the standard group of pic-
tures (GoP) structure of a video and for this reason, as we will explain in “The Jaccard 
index-infused Markovian clustering policer (JIMC-P)” of the paper, it cannot be used 
for policing video encoded in a similar way to a Miracast hardware encoder. The use of 
classic traffic policing mechanisms, on the other hand, can lead to significant and unnec-
essary packet dropping, which especially for screen mirroring traffic would be unaccep-
table. Users transmitting from their smart device to a screen, in a shared environment, 
would expect the highest QoS and QoE.

For this reason, in this work we propose a new traffic policing mechanism for screen 
mirroring traffic, which is based on the accurate model proposed in [15]. We use two 
different datasets for our experiments and we compare the performance of our proposed 
mechanism against nine other policing mechanisms for both datasets. To the best of our 
knowledge, this is the first time in the relevant literature that traffic policing on screen 
mirroring traffic is studied.

The paper is structured as follows. “Video encoding and data collection methodology” 
presents the relevant details for video encoding and for the way we collected our data. In 
“Traffic policing mechanisms” we present existing traffic policing mechanisms, against 
which we will compare our proposed mechanism. “The Jaccard index-infused markovian 
clustering policer (JIMC-P)” presents our new proposed mechanism for screen mirror-
ing traffic. In “Results and discussion” we discuss our results. “Conclusions” includes our 
conclusions and ideas for future work.

Video encoding and data collection methodology
In our work in [15] we worked with two different datasets, encoded with the H.264 video 
coding standard. H.264 or MPEG-4 Part 10, AVC is a video coding standard developed 
by ITU-T video coding experts group (VCEG) and the ISO/IEC moving picture experts 
group (MPEG). It is the most widely accepted video coding standard (since MPEG-2) 
and it covers a wide area of video applications ranging from mobile services and vide-
oconferencing to IPTV, DTV and HD video storage [27]. According to the H.264 stand-
ard, an encoded video trace features two distinct characteristics: (1) Every video frame 
comes from one of three different types of frames, and (2) video frames are organized in 
groups with a specific structure.

There are three different types of frames, I-Frames (Intra-coded Frames), P-Frames 
(Predicted Frames) and B-Frames (Bi-directional predicted Frames). P-Frames are 
smaller than I-Frames and B-Frames are the smallest [28]. Video frames are grouped 
together in GOP structures that specify the order in which intra- and inter-frames are 
arranged. A GOP pattern specifies the amount and order of P and B-Frames between 
two successive I-Frames. Every GOP contains a single I-Frame with which it starts. The 
GOP pattern is defined by the distance X between I-Frames and the distance Y between 
P-Frames or between the I-Frame and the succeeding P-Frame. In general, in the H.264 
standard the amount of B-Frames is greater than the amount of I or P-Frames inside a 
GOP structure.
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Our work is based on real user-generated data from a large shared cube space resem-
bling an enterprise environment. Each participant in the data collection ran trace collec-
tion scripts for about a month. One script polled the operating system every 33.3 ms to 
record the name of the main application that the participant was working on. Another 
script recorded the participant’s screen at 30 fps using encoding parameters that resem-
bled a Miracast hardware encoder as closely as possible. The actual video was not 
recorded, but only the statistics of the encoded video were collected (i.e., I and P frame 
sizes). The scripts started automatically each work day at 8 am and stopped at 7 pm. 
When a participant locked his/her screen the scripts would report that the user is idle 
for that duration and video traces collection would stop till the user unlocks his/her 
machine. All of the users were using Windows 7 machines.

Some details on the network architecture follow. A smartphone will either host appli-
cations natively (e.g. Windows Mobile Phone) or will act as a thin client to a back-
end computing platform (e.g. Citrix Thin Client running on Android Phone). In both 
instances the actual applications will be rendered by the smartphone GPU before being 
re-encoded and sent over Wi-Fi to a Miracast dongle connected to a large display. 
Applications will appear on the phone and on the large display exactly as if they were 
being rendered onto a desktop PC with one application in the foreground and multi-
ple applications in the background (i.e. either docked or in the background of the dis-
play, so users were allowed to use multiple applications at a time). The Windows 7 setup 
was merely used to capture the application that an end-user has in the foreground and 
to capture and feed the raw video data (i.e. the output of the GPU showing foreground 
and background applications side by side) into a carefully configured video encoder (i.e. 
FFmpeg, as explained below). This encoder is configured to “mimic” the configuration of 
an H.264 Miracast source configuration running a mobile phone. The encoder configu-
ration parameters have been set using datasheets of Miracast sources.

A recording framework was deployed on every host machine. It was running and log-
ging in the background during the recording period. The FFmpeg [29] program was 
used for video traffic recording. It logged the compressed H.264 video information (i.e., 
frames sizes, GOP structure, frames’ time of arrival etc.) of the host’s machine desktop. 
The frame resolution was the same as the PC’s screen resolution, i.e., it is not a con-
stant; we used different resolutions depending on the different PC screens that were 
being used. The default windows resolution is 1920 × 1080, so this was often the case for 
our videos. The frame rate was 30 fps. Although FFmpeg was running constantly, it was 
capable of logging video traffic information only if the host’s machine GPU was active 
(i.e., the host machine was not in hibernation, sleep or monitor energy saving mode). 
A Windows PowerShell [30] script was used for logging and timestamping the active 
foreground applications. Windows PowerShell was programmed to log the application’s 
name every 33.3 ms (in order to keep up with FFmpeg logs, where we had one frame 
every 33.3 ms). We should also note that Windows PowerShell is capable of reporting 
the application’s name only if the host machine is unlocked and the user is not logged 
off. The average PSNR of our videos was 65 dB.

The main difference between the two datasets we collected lies in the different encod-
ing of video traces. The first dataset (Dataset 1) has been encoded with the High 4:2:2 
Profile of the H.264 standard, which is typical for professional applications. This profile 
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can generate I, P and B frames. However, in our datasets the—tune zero latency com-
mand was used in FFmpeg to prohibit the encoder from producing B-Frames, in order 
to minimize latency. For this dataset, we have a GOP structure of 60 frames in length, 
where every GOP starts with an I-Frame and the following 59 frames are of type P. The 
second dataset (Dataset 2) has been encoded with different encoding parameters. Those 
parameters try to resemble a Miracast hardware encoder as closely as possible. Since 
I-Frames’ sizes are much larger than P-Frames, Miracast encoders do not use I-Frames 
but use periodic intra refresh [31] instead. This enables each frame (in our case each 
I-Frame) to be capped to the same size by using a column of intra blocks that move 
across the video trace from one side to the other, thereby “refreshing” the image. In 
effect, instead of a big keyframe (in our case an I-Frame), the keyframe is spread over 
many frames (in our case P-Frames). For this dataset, we do not have a GOP structure. 
We only have P-Frames with an exception of one I-Frame whenever the host computer 
starts or its user logs on.

Our recording framework ran on different periods of time, between March and May 
2015 for the first dataset and between June and July 2015 for the second dataset. We 
replaced every user’s name with a different letter from the alphabet for reasons of ano-
nymity. In Table 1 we present some general statistics of our two datasets, such as general 
information about our records, as well as total, minimum, average and maximum sizes 
of our video traffic frames over all applications. It is worth mentioning, that the average 
P-Frame size in Dataset 2 is larger by a factor of ≈ 14 in comparison with the P-Frames 
in Dataset 1, as shown in Table 1. Our collected data, for both datasets, can be down-
loaded from [32].

Traffic policing mechanisms
In [26] we first evaluated five static traffic policing mechanisms from the literature. We 
then proposed a new paradigm in video traffic policing, which focuses on the activity 
of the source to dynamically tailor the traffic policing accordingly. We compared the 
five static mechanisms against five new activity-based traffic policing mechanisms we 
proposed. Of those ten mechanisms, six (two static and four activity-based ones) were 
shown in [26] to provide the best traffic policing results. These were: (a) the token bucket 
(TB) mechanism, (b) the jumping window (JW) mechanism, (c) the variable exponen-
tially weighted moving average (V-EWMA) mechanism, (d) the hybrid V-EWMA token 

Table 1 Dataset 1 and dataset 2 encoding and statistics over all applications

Encoding and statistics Dataset 1 Dataset 2

Encoding High 4:2:2: Profile of the H.264 standard Miracast hardware encoder

GOP structure 60 frames (1 I, 59 P) No

# of recordings days 24 22

# of applications 29 26

# of video traffic records 14,932,183 20,892,611

Total size of video traffic (Gbytes) 120 424

Min video traffic size (bytes) 159 190

Average video traffic size (bytes) 8032 20,298

Max video traffic size (bytes) 598,613 422,435
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bucket (VEWMA-TB), (e) the frame size aware token bucket (FSA-TB), (f ) the GOP 
modeling based jumping window (GMB-JW).

A seventh efficient mechanism, the recurrent leaky bucket (RLB) was recently pro-
posed in the literature, in [33]. This mechanism, extends the leaky bucket algorithm 
which imposes a hard limit on the source transmission rate [34] by including a new input 
parameter, the cycle duration. This is set approximately equal to the burst cycle of the 
traffic, which for variable bit rate videos is the same as the period of the GoP. The goal of 
the RLB mechanism is to allow users to choose a lower sustainable rate for the light traf-
fic periods and obtain extra credit at the end of a cycle called renewal.

We will compare our proposed mechanism against nine other traffic policing mecha-
nisms, i.e., the seven mechanisms mentioned above plus two more versions of the Token 
Bucket mechanism. In these two additional versions we combine the Token Bucket, 
which is the most widely used traffic policer, with two video traffic models that have 
been shown to achieve high accuracy for various types of video traffic. The idea is that 
allowing the policer to generate tokens simply based on the mean rate of the source may 
be insufficient for bursty multimedia sources. Therefore, we combine the functionality 
of the token bucket with video traffic models which are better tailored to capture the 
burstiness of a video user’s traffic. The two additional traffic policing mechanisms are 
the TB-GBAR, where tokens are generated based on the gamma-beta auto-regression 
(GBAR) model [35] and the TB-SARIMA, where tokens are generated based on the sea-
sonal ARIMA model [13].

In “The Jaccard index-infused Markovian clustering policer (JIMC-P)” we will explain 
why a new mechanism is needed for screen mirroring traffic.

The Jaccard Index‑Infused Markovian Clustering Policer (JIMC‑P)
As it will be shown in our results in “Results and discussion”, our previously proposed 
mechanism, FSA-TB [26] confirms, for the first dataset of screen mirroring traffic, its 
excellence in comparison with all other mechanisms from the literature. However, for the 
second dataset it is impossible to be implemented as FSA-TB is based on the assumption 
of a standard GoP structure for the video. FSA-TB used the size of the I-frame of a GoP 
in order to tailor accordingly the token generation rate for the P-frames of the same GoP, 
whereas in the second screen mirroring traffic dataset only P-frames exist. For the same 
reason, the VEWMA-TB mechanism cannot be implemented on the second dataset.

Hence, we propose in this work a new traffic policing mechanism, which is completely 
different from FSA-TB. This new mechanism, JIMC-P, is based on the Jaccard Index-
Infused Markovian Clustering model presented in our recent work on screen mirroring 
traffic modeling in [15], i.e., it is a token bucket mechanism in which tokens are gen-
erated based on the JIMC model instead of being generated based on a mean rate. It 
should be emphasized that the high accuracy of the model (3–4% prediction error on 
average for I-frames and P-frames) does not guarantee an equally good performance 
when the model is incorporated into the policer. For example, if the error is steadily 
caused by higher predictions, the policer will be too lenient against misbehaving users, 
whereas if the error is steadily caused by lower predictions, the policer will be too strict, 
leading to the unnecessary possible packet dropping. Hence, a thorough examination of 
the potential use of the model within the policer is important.
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We briefly present the model below.
We view the video trace sequence as a vector containing all the I-frames’ sizes (we 

explain below the different procedure for P-frames). We place all the vector’s elements 
as points on the 1-D plane and we then use the K-Means clustering algorithm in order 
to cluster similar-sized frames. The distance metric that we used for clustering is the 
cityblock distance, which calculates the sum of absolute differences (i.e., the  L1 distance). 
Even though K-Means is a powerful clustering algorithm, it has a significant drawback. 
The K amount of clusters has to be selected heuristically. In our case, we concluded after 
several experiments that the optimal number of clusters per tested application (i.e., the 
number of clusters that leads to the highest modeling accuracy) ranged between 4 and 
11, depending on the application.

Next, we constructed a Markov chain in which each cluster corresponds to one state 
of the chain. We computed the Transition Probability Matrix T = [Pi,j]2 for the Markov 
chain, which contains K × K elements, via Eq. (2).

Finally, we found the best distribution fit for the data in each cluster.
To model P-frames’ sizes we used another approach, i.e., moving from the 1-D to the 

3-D plane. To do so, we employed, for the first time in the relevant video traffic modeling 
literature, the concept of the Jaccard Index. The Jaccard Index [36], also known as the 
Jaccard similarity coefficient, is a statistic used for comparing the similarity and diver-
sity of two sample sets. The Jaccard coefficient measures similarity between finite sample 
sets and is defined in general as the size of the intersection divided by the size of the 
union of two sample sets, as depicted in Eq. (3):

where A and B denote the two sample sets.
In our case, we wanted to find for every P-Frame in a GOP (for Dataset 1) or in a 

Window (for Dataset 2, where the size of a Window is equal to the size of a GOP), the 
two “closest” P-Frames. We wanted to use an approach different from a simple autocor-
relation calculation (as it was shown to perform poorly when used in other video traffic 
models). This approach is the use of the Jaccard Index in the following way.

For every P-Frame, denoted as X, in a GOP or a Window, we calculate its Jaccard 
Index with every other P-Frame, denoted as Y, in the same GOP or Window. The sample 
sets A and B in this Jaccard Index calculation are the “neighboring frames” of X and the 
“neighboring frames” of Y, respectively. As a “neighboring frame” P* of a P-Frame P, we 
define every P-Frame that satisfies the following two rules:

1. The absolute difference between the sizes of P and P* does not exceed the standard 
deviation of P-Frames’ sizes.

2. The arrival of P* does not change the autocorrelation (lag-1) of P-Frames in the trace, 
more than 10% compared to the change that occurred from the arrival of P.

(2)Pi,j =
# of jumps from state i to state j

# of jumps from state i

(3)J (A, B) =
|A ∩ B|

|A ∪ B|
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Via this definition, we found that the two “closest neighbors” of each P-Frame are the 
previous and the following one, for all major applications of both datasets.

We then view the video trace sequence as a vector, 
〈

Rp(t), Rc(t), Rn(t)
〉

, t =  2, 3, 4, 
… Here  Rc(t) denotes the frame size of the tth P-Frame,  Rp(t) denotes the frame size of 
the P-Frame before  Rc(t) (i.e.,  Rp(t) = Rc(t − 1)) and  Rn(t) denotes the frame size of the 
P-Frame after  Rc(t) (i.e.,  Rn(t) =  Rc(t +  1)). We place all the 

〈

Rp(t), Rc(t), Rn(t)
〉

 pairs 
as points on the 3-D plane, where  Rp(t),  Rc(t) and  Rn(t) is viewed as the x-coordinate, 
y-coordinate and z-coordinate of the corresponding point, respectively. Hence, each 
P-Frame is clustered by taking into account not only its own size but also the size of its 
adjacent frames.

Finally, as with the I-frames, we find the best distribution fit for the data in each clus-
ter. This concludes the brief presentation of the model. The interested reader is referred 
to [15] for more information.

Our proposed traffic policing mechanism, JIMC-P, follows the logic of the token 
bucket, however it does not generate tokens based on the declared token generation 
rate of the source, but based on the estimate of the model for the size of the upcoming 
video frame. In this way we hope to capture the fluctuations in the sources’ traffic needs 
in a much more accurate way than the classic token bucket policer does. Hence, JIMC-
P is similar in nature with the two other policing mechanisms that are evaluated here 
for the first time, TB-GBAR and TB-SARIMA. The difference is in the underlying traf-
fic model which is incorporated into the token bucket mechanism for each of the three 
mechanisms.

The basic algorithm for JIMC-P, for a video of K frames, is shown below.

JIMC-P Algorithm

begin 

for i=1 to K do

Generate tokens based on JIMC-P model

Add generated tokens to bucket

Calculate total tokens Y in bucket

Get size X of new video frame arrival

if X≤Y then

remove (Y-X) tokens from the bucket

transmit all packets  /* all packets are conforming */

else

mark (X -Y) packets as non-conforming

remove Y tokens from the bucket

transmit Y packets
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Results and discussion
In this work, we consider the case of an edge router (router at the network edge) with a 
high level of intelligence so that all traffic flows can be efficiently classified and treated 
according to network policies. Screen mirroring traffic can be classified and treated in 
a manner similar to the one described in [37], i.e., packets are classified according to an 
identifier which is left on the data packets by an application (e.g. on the packet header) 
and is used for identifying the generating application, then marking the class of the data 
packets and correspondingly policing the data packets according to the classification 
marker, thus reducing the traffic rate to force the traffic to follow the allocation limit.

Our simulations were conducted in Matlab. We focus only on the actual traffic being 
transmitted by the users and whether it is conforming or not, i.e., we do not consider the 
case of “lagging” users (users who have experienced a noisy channel and therefore have 
involuntarily been transmitting at a decreased rate).

We assume that each user is transmitting only one type of traffic (i.e., the video chosen 
for the simulation) which arrives at the edge router and we derive our results by imple-
menting the policing mechanisms for the whole duration of the trace.

Figure 1 presents the average marked traffic results over all videos of both datasets, in 
the case that the users are conforming, i.e., that they adhere to their declared mean and 
peak traffic parameters. In this case an ideal traffic policer would mark zero percent of 
the user’s traffic. This is of course an unattainable standard, as the burstiness of the video 
traffic combined with the short windows within which a policer needs to make a deci-
sion does not allow for a perfect policer. FSA-TB was shown to outperform all mecha-
nisms for every video of Dataset 1 used in our study, followed by JIMC-P. However, as 
explained in “The Jaccard index-infused Markovian clustering policer (JIMC-P)”, FSA-
TB cannot be applied to Dataset 2. For Dataset 2 our new mechanism, JIMC-P clearly 
outperforms all other mechanisms from the literature, as it marks by far the lowest per-
centage of traffic for conforming users.

An even more important result is presented in Table 2. As much as we want to prevent 
conforming users from suffering unnecessary QoE degradation, due to possible packet 
dropping, the top priority for every policing mechanism remains the handling of non-
conforming users. An efficient traffic policer is expected to mark for possible dropping 
all excess traffic from non-conforming users. Table 2 presents the results for all ten polic-
ers used in our study, when a different video is transmitted from the one that is actually 
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Fig. 1 Average marked traffic over all videos for both datasets, for conforming users
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declared. The three declared ones, videos 1–3, were videos from our dataset with smaller 
mean, standard deviation and peak bandwidth requirements than the transmitted one. 
In this case, where a user either intentionally or unintentionally attempts to overload the 
network, the JIMC-P policer clearly outperforms, on average, all policers as it marks the 
highest percentage of non-conforming traffic. Simultaneously, if implemented for the 
actual transmitted video (therefore, for a conforming user) JIMC-P succeeds in marking 
the lowest percentage of traffic among all policers.

The results presented in Table 3 and Fig. 2 are derived by running a similar experi-
ment for Dataset 2, with the difference that the declared movies, instead of being screen 
mirroring traffic videos, were videos from movies. More specifically, we chose three 
H.265 movies from [28], all of which again had smaller mean, standard deviation and 
peak bandwidth requirements than a specific screen mirroring video from our dataset. 
The mean rate of the movies was 4–17 times smaller than our video, the standard devia-
tion was 2–9 times smaller and the peak was 1.5–6 times smaller. We again declared 
each of these three movies as the one that was going to be transmitted, whereas we actu-
ally attempted to transmit the screen mirroring video. Once again, the JIMC-P policer 
marks the highest percentage of traffic as non-conforming among all policers (as shown 
from the individual results for the different declared movies, in Table 3, and from the 
average results over all movies in Fig. 2). JIMC-P also achieves the lowest marked traffic 

Table 2 Marked traffic for non‑conforming users, for dataset 1

Mechanism Marked traffic (%)  
for actual transmitted  
video

Marked traffic (%) for declared 
video

Average marked 
traffic (%)

Video 1 Video 2 Video 3

FSA‑TB 5.01 26.91 28.91 64.00 39.94

JW 20.95 31.1 30.46 63.06 41.54

GMB‑JW 14.96 24.96 20.3 25.16 23.48

TB 15.93 28.17 27.73 62.95 39.62

TB‑GBAR 15.01 26.45 25.77 59.40 37.21

TB‑SARIMA 14.22 27.08 28.42 61.13 38.88

V‑EWMA 14.61 27.22 26.38 62.87 38.82

VEWMA‑TB 14.96 20.54 17.39 21.76 19.9

RLB 17.99 29.38 28.96 62.98 40.44

JIMC‑P 3.22 79.91 43.31 46.13 56.45

Table 3 Marked traffic for non‑conforming users, for dataset 2

Mechanism Marked traffic (%)  
for actual transmitted  
video

Marked traffic (%) for declared video

Lake house Big buck bunny Harry Potter

JW 23.23 77.16 88.60 94.05

GMB‑JW 20.98 31.98 64.94 94.23

TB 19.57 77.02 88.59 94.05

TB‑GBAR 17.81 75.24 87.03 93.74

TB‑SARIMA 18.38 73.67 84.28 93.46

V‑EWMA 17.99 77.12 88.58 94.07

RLB 20.61 77.03 88.59 94.05

JIMC‑P 8.53 83.01 95.71 97.47
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percentage among all policers when the true screen mirroring video is declared and 
transmitted.

A secondary interesting result is that the TB-GBAR and TB-SARIMA mechanisms 
outperform the classic token bucket in terms of the averaged marked traffic for con-
forming users (i.e., they mark a smaller percentage of traffic). However, the classic token 
bucket outperforms them both when implemented for non-conforming users. This result 
indicates that the use of the models improves the user-tailored experience for conform-
ing users, but the effort of the models to capture user behavior allows more unwanted 
traffic into the network when the user is non-conforming.

Conclusions
In this work we have proposed, for the first time in the relevant literature to the best 
of our knowledge, a new traffic policing mechanism for bursty screen mirroring video 
traffic.

Our proposed mechanism, the Jaccard Index-Infused Markovian Clustering Policer, is 
shown to outperform nine other mechanisms (seven from the literature and two addi-
tional ones studied in this work for the first time) for the two screen mirroring datasets 
used in our study. The most important result is that JIMC-P not only provides the high-
est percentage of marked traffic for non-conforming users, but also provides the smallest 
percentage of marked traffic for conforming users, hence achieving an excellent balance 
between strictness and fairness.

In future work we intend to collect an even larger amount of data and to evaluate 
JIMC-P for other types of video traffic (H.264 and H.265) and to evaluate the scheme 
theoretically as well. Still, we believe that its practical usefulness is already clear by its 
comparison with the token bucket, which is the most widely used traffic policer. We also 
intend to extend our work to cover mixed traffic environments where users may trans-
mit multiple types of traffic. Our goal will be to propose new versions of JIMC-P and 
FSA-TB which will take into account the specific QoS and QoE of each user in a frame-
work comprising call admission control, multiple access control and traffic policing.
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