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a b s t r a c t 

Smart mobile devices have displaced personal computers in many daily applications such as internet 

browsing and email. However, for content creation, users still need to use a large display, keyboard and 

mouse. Many initiatives are currently working on enabling I/O functionality for content creation and pe- 

ripheral access, and on preserving the grab-and-go experience where the mobile device is not tethered 

to the docking station but merely placed in proximity of it and the traffic is carried over Wi-Fi. Main- 

taining the Quality of Service (QoS) and Experience (QoE) of low-latency, high fidelity video (for example 

the desktop view of a smart device) when transmitted over a Wi-Fi link in heavily loaded environments 

has been proven problematic. In this work, we propose for the first time in the relevant literature to the 

best of our knowledge, a highly accurate video traffic model that is capable of predicting the volume of 

video traffic generated by an average user’s computer during a day. Our modeling techniques are tested 

on real user-generated screen mirroring traffic from a large shared cube space similar to an enterprise 

environment, and can be easily used as source traffic generators in order to facilitate the study of H.264 

transmission performance over wireless networks. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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1. Introduction 

Smart mobile devices such as smartphones and tablets are

becoming more powerful every day with the advancement of

mobile computing chips from the likes of Qualcomm, NVidia and

Intel, while at the same time major software and operating system

companies develop their products in a single code base suitable

for many platforms [1] . In addition, a 2013 survey [2] placed

smartphones’ popularity at around 85%, surpassing all other kinds

of computing devices. The above facts seem to point towards

a future where smart mobile devices might replace computers

completely, in personal and corporate environments. 

On the other hand, users still want to use a large display,

keyboard and mouse for content creation and when they are

not on the move. This use case has been addressed using tether

technology such as the Mobile High-Definition Link (MHL) [38] ,
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owever to maintain the grab-and-go experience there is a trend

f replacing the need for cables with a wireless link that connects

he mobile device to a wireless docking station. In such a setup,

he video on the mobile device display is mirrored unto a larger

isplay with low-latency to ensure the interactivity of the end-user

s maintained. The actual latency limits are application dependent.

ue to its attachment rate in the mobile industry, Wi-Fi is a key

andidate for carrying this docking traffic and Miracast [3] , which

as recently ratified as a standard to allow mobile device display

irroring over Wi-Fi, is also a candidate for enabling the video

omponent of any docking station. At the heart of a Miracast

ource, an H.264 encoder streams over a Wi-Fi peer-to-peer (P2P)

ode without needing access to an overlaid Wi-Fi network. How-

ver, in enterprise environments where an overlaid Wi-Fi network

s not only present but heavily used, contention due to medium

ccess between the Wi-Fi P2P docking link and the overlaid Wi-Fi

etwork will have a direct impact on the QoE for the docking

ideo. The impact and potential QoE degradation will depend,

mong many other factors, on the characteristics of the video

raffic, which in turn is dependent on the video content being

ompressed, the encoder implementation and the target latency
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rofile. For example, video chatting on mobile devices demands

igh bandwidth and if the offered bandwidth is decreased video

uality may be compromised [41] . 

Streaming over best-effort networks that were not designed to

rovide stable QoS, especially wireless networks, makes it ineffi-

ient to use the same representation of a video for the duration

f a streaming session. Instead, it must be adapted to dynamically

arying networks conditions such as throughput, packet loss rate,

nd delay jitter [42] . These problems can be significantly mitigated

f the volume of video traffic that will be generated in the network

an be predicted. 

Traffic characterization and modeling of multimedia services

re required for an efficient network operation. The generated

odels can be used as traffic rate predictors, during the network

peration phase (online traffic modeling), or as video generators

or estimating the network resources, during the network design

hase (offline traffic modeling). In the offline case, traffic models

an be used as video generators, to select appropriate network

arameters during the network design phase, such as utilization,

nd/or number of multiplexed sources that achieve an acceptable

ideo quality. In this framework, the reliability of the network can

e evaluated. For example, the probability of refusing a new video

all or the probability of network overload can be estimated. On

he other hand, online traffic models are very useful for traffic

anagement algorithms and congestion control schemes, which

revent the network from possible overload [51] . In such schemes,

he emphasis is to increase the network resources utilization while

aintaining the desired level of QoS. Dynamic resource allocation

DRA) schemes are especially important for live streams, where the

ideo stream characteristics are not known in advance. In order to

rovide an accurate estimation of the needed network resources

or a certain flow, which indicate the cost of transmitting such a

ow, the chosen DRA scheme has to be able to predict the required

andwidth for future video frames. To adjust the bandwidth as-

ignment for a certain video stream, DRA renegotiates the assigned

andwidth for that flow. The main goals for a DRA scheme are:

o predict the longest possible period with the least prediction

rror, and to provide the best possible resource utilization with

he lowest achievable frame delay [50] . This will ensure that no

egradation takes place in the QoE of accepted video sessions [43] .

Hence, in this work we develop H.264 video traffic models

or low-latency, candidate Miracast source implementation for

ontent that resembles a typical desktop user in an enterprise-

ike environment. We discuss well-known models, which fail to

ccurately capture this type of video traffic and we propose a

ighly accurate model based on the combination of clustering

ith Markov chains and the use of the Jaccard index similarity

oefficient. To the best of our knowledge, this is the first time that

 model tested on real user-generated screen mirroring traffic is

eveloped and presented. It is also the first time that the concept

f the Jaccard index is used for video traffic modeling purposes.

e make our dataset available to the community so that possible

ther modeling approaches can be tried by other researchers. 

The paper is structured as follows. Section 2 discusses related

ork. Section 3 presents the video traffic encoding of the data

hat we worked with. Section 4 includes the data collection

ethodology, data statistics and the statistical tests that we

ave used during the development and testing of our models. In

ection 5 we analyze our models and discuss the respective results.

ection 6 includes our conclusions and ideas for future work. 

. Related work 

Multiple effort s on video traffic modeling have been conducted

n the literature. Video models which have been proposed include

rst order autoregressive (AR) models [5] , discrete autoregressive
DAR) models [4,6,7,40] , Markov renewal processes (MRP) [8] , MRP

ransform expand sample (TES) [9,10] , finite state Markov chain

11,12] , a combination of wavelet and linear modeling [20] and

amma beta auto regression (GBAR) models [13,14] . In [15] the

uthors analyzed a number of mobile video streams and created a

odel that provides both video frame and RTP packet generators.

he model was created and verified against “The Matrix” and “Lord

f the Rings” movies. In [16] , the authors create a video traffic

odel that takes interdependence between different frame types

nto consideration (I, P and B frames). The authors in [17] list

 number of Variable Bit Rate (VBR) video traffic models and

ompare these models against three video traces “Star Wars IV”,

Tokyo Olympics” and “NBC 12 News”. They showed that some of

he models work for some videos but not for others. They could

ot find a universal model that works with all types of videos.

ther recent effort s include [45] in which the authors propose

heir models on top of the model in [20] and they exploit the

ierarchical prediction structure inherent in H.264 for intra-GoP

Group of Pictures); [46] , in which the authors propose a non-

inear autoregressive model for long-range video traffic prediction

without separating traffic of different frame types) and they

ntroduce adaptive algorithms to obtain the parameters of their

odel; [32] , where the authors use linear regression to predict

-Frames’ sizes, with the goal of possibly dropping B-Frames

based on the prediction) in the case of network congestion. The

orks in [47,48] focus on modeling new types of video traffic,

uch as 4K and 3D video. The authors in [47] use a seasonal

utoregressive model for modeling and prediction of 4K video

raffic. They analyze over 17,0 0 0 video frames and show that their

roposed methodology provides good accuracy in high definition

ideo traffic modeling. The work in [48] proposes and evaluates

 new model for multiview video (which is used to support 3D

ideo applications) that is based on a Markov process. 

The above-referenced papers model video traces from movies,

hich are significantly different, in terms of content, than those

reated by desktop applications used in an enterprise environ-

ent. Our goal in this study is to fill this gap by studying these

pplications and the video traffic they generate, in order to build a

ighly accurate model. There is very little work done on what ap-

lications are mostly used in enterprise environments. In [18] the

uthor shows that employees use Microsoft Outlook the most from

he Microsoft Office suite. The author does not mention which

ther applications are used. Also there is no characterization of

he video generated by the Microsoft Office suite or similar tools. 

. Video encoding 

We worked with two different datasets, encoded with the

.264 video coding standard. H.264 or MPEG-4 Part 10, AVC is a

ideo coding standard developed by ITU-T Video Coding Experts

roup (VCEG) and the ISO/IEC Moving Picture Experts Group

MPEG). It is the most widely accepted video coding standard

since MPEG-2) and it covers a wide area of video applications

anging from mobile services and videoconferencing to IPTV, DTV

nd HD video storage [19] . According to the H.264 standard, an

ncoded video trace features two distinct characteristics: (1) every

ideo frame comes from one of three different types of frames, and

2) video frames are organized in groups with a specific structure. 

There are three different types of frames, I-Frames (Intra-coded

rames), P-Frames (Predicted Frames) and B-Frames (Bi-directional

redicted Frames). P-Frames are smaller than I-Frames and B-

rames are the smallest [22] . Video frames are grouped together in

roup of Pictures (GOP) structures that specify the order in which

ntra- and inter-frames are arranged. A GOP pattern specifies the

mount and order of P and B-Frames between two successive

-Frames. Every GOP contains a single I-Frame with which it starts.
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Fig. 1. Graphical example of a GOP structure. 
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The GOP pattern is defined by the distance X between I-Frames

and the distance Y between P-Frames or between the I-Frame

and the succeeding P-Frame. For example, in Fig. 1 we present a

GOP structure of 9 frames, where X distance equals to 8 and Y

distance equals to 2. In general, in the H.264 standard the amount

of B-Frames is greater than the amount of I or P-Frames inside a

GOP structure. 

4. Data collection methodology and statistical tests 

Our work is based on real user-generated data from a large

shared cube space resembling an enterprise environment. Each

participant in the data collection ran trace collection scripts for

about a month. One script polled the operating system every

33.3 ms to record the name of the main application that the

participant was working on. Another script recorded the partici-

pant’s screen at 30 fps using encoding parameters that resembled

a Miracast hardware encoder as much as possible (more details

on this in Section 4.2.1 ). The actual video was not recorded, but

only the statistics of the encoded video were collected (i.e., I and

P frame sizes). The scripts started automatically each work day

at 8 am and stopped at 7 pm. When a participant locked his/her

screen the scripts would report that the user is idle for that du-

ration and video traces collection would stop till the user unlocks

his/her machine. All of the users were using Windows 7 machines.

Some details on the network architecture follow: 

A smartphone will either host applications natively (e.g. Win-

dows Mobile Phone) or will act as a thin client to a backend

computing platform (e.g. Citrix Thin Client running on Android

Phone). In both instances the actual applications will be rendered

by the smartphone GPU before being re-encoded and sent over

Wi-Fi to a Miracast dongle connected to a large display. Applica-

tions will appear on the phone and on the large display exactly as

if they were being rendered onto a desktop PC with one applica-

tion in the foreground and multiple applications in the background

(i.e. either docked or in the background of the display, so users

were allowed to use multiple applications at a time). The Windows

7 setup was merely used to capture the application that an end-

user has in the foreground and to capture and feed the raw video

data (i.e. the output of the GPU showing foreground and back-

ground applications side by side) into a carefully configured video

encoder (i.e. FFmpeg, as explained below). This encoder is con-

figured to “mimic” the configuration of an H.264 Miracast source

configuration running a mobile phone. The encoder configuration

parameters have been set using datasheets of Miracast sources. 

4.1. Recording methods 

A recording framework was deployed on every host machine. It

was running and logging in the background during the recording

period. The FFmpeg [23] program was used for video traffic record-

ing. It logged the compressed H.264 video information (i.e., frames

sizes, GOP structure, frames’ time of arrival, etc.) of the host’s

machine desktop. The frame resolution was the same as the PC’s

screen resolution, i.e., it is not a constant; we used different resolu-

tions depending on the different PC screens that were being used.
he default windows resolution is 1920 × 1080, so this was often

he case for our videos. The frame rate was 30 fps. It is worth men-

ioning that even though FFmpeg was running constantly, it was

apable to log video traffic information only if the host’s machine

PU was active (i.e., the host machine was not in hibernation,

leep or monitor energy saving mode). As for active applications

sage recording, a Windows PowerShell [24] script was used for

ogging the name of the application in the foreground, followed

y the current timestamp. Windows PowerShell was programmed

o log the application’s name every 33.3 ms (in order to keep up

ith FFmpeg logs, where we had one frame every 33.3 ms). We

hould also note that Windows PowerShell is capable to report the

pplication’s name only if the host machine is unlocked and the

ser is not logged off. The average PSNR of our videos was 65 dB. 

.2. Datasets overview 

.2.1. Encoding 

In this study, we worked with two different types of datasets.

he main difference between the two datasets lies in the different

ncoding of video traces. The first dataset (Dataset 1) has been

ncoded with the High 4:2:2 Profile of the H.264 standard, which

s typical for professional applications. This profile can generate I,

 and B frames. However, in our datasets the – tune zero latency

ommand was used in FFmpeg to prohibit the encoder from

roducing B-Frames, in order to minimize latency. For this dataset,

e have a GOP structure of 60 frames in length, where every

OP starts with an I-Frame and the rest 59 frames are of type P.

he second dataset (Dataset 2) has been encoded with different

ncoding parameters. Those parameters try to resemble a Miracast

ardware encoder as closely as possible. Since I-Frames sizes are

uch larger than P-Frames, Miracast encoders do not use I-Frames

ut use Periodic Intra Refresh [25] instead. This enables each frame

in our case each I-Frame) to be capped to the same size by using

 column of intra blocks that move across the video trace from

ne side to the other, thereby “refreshing” the image. In effect,

nstead of a big keyframe (in our case an I-Frame), the keyframe is

pread over many frames (in our case P-Frames). For this dataset,

e do not have a GOP structure. We only have P-Frames with an

xception of one I-Frame whenever the host computer starts or its

ser logs on. 

.2.2. Recording periods and datasets statistics 

Our recording framework ran on different periods of time,

etween March and May 2015 for the first dataset and between

une and July 2015 for the second dataset. We replaced every

ser’s name with a different letter from the alphabet for reasons

f anonymity. In Table 1 we present some general statistics of our

wo datasets, such as general information about our records, as

ell as total, minimum, average and maximum sizes of our video

raffic frames over all applications. It is worth mentioning, that the

verage P-Frame size in Dataset 2 is larger by a factor of ≈14 in

omparison with the P-Frames in Dataset 1, as shown in Table 1 .

ur collected data, for both datasets, can be downloaded from [44] .

.3. Statistical tests and evaluation metrics 

We developed and tested various modeling techniques on our

ata, as we analyze further in Section 5 . For our modeling, it was

ecessary to try to fit our data with a number of well-known

istributions. These fitting attempts, together with the statistical

ools used for assessing the accuracy of the fits, are presented in

his section. We also present the metrics we utilized for assessing

he quality of our proposed models, which will be presented

n Section 5 . In the following two subsections, we explain the

rocedure that we have followed in order to try to fit our data
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Table 1 

Dataset 1 and Dataset 2 statistics over all applications. 

Statistics Dataset 1 Dataset 2 

# of recording days 24 22 

# of users 3 4 

# of applications 29 26 

# of video traffic records 14,932,183 20,892,611 

Total size of video traffic (GB) 120 424 

MIN video traffic size (B) 159 190 

AVG video traffic size (B) 8032 20,298 

MAX video traffic size (B) 598,613 422,435 

# of I-Frames 249,061 290 

Total size of I-Frames (GB) 99 0092 

MIN I-Frame size (B) 3290 129,932 

AVG I-Frame size (B) 397,525 316,900 

MAX I-Frame size (B) 1,536,577 395,780 

# of P-Frames 14,683,122 20,892,321 

Total size of P-Frames (GB) 21 423,908 

MIN P-Frame size (B) 159 190 

AVG P-Frame size (B) 1425 20,293 

MAX P-Frame size (B) 598,613 422,435 
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ith a number of well-known distributions. The data fitting

rocedure consists of two basic steps. The first is the parameters

stimation method for each chosen distribution. The second is the

ata generation method in order to reproduce data according to

he specific distribution. 

.3.1. Maximum likelihood estimation 

In order to find the parameters of a distribution based on our

ata, we used the Maximum Likelihood Estimation (MLE) method.

n general, given a statistical model, MLE returns estimates for

he model’s parameters at a confidence level alpha (usually al-

ha = 95%). In our case, the model is a distribution which we

ant to investigate on whether it underlies our data and we

ant to confirm or reject this assumption. Before that, due to

he fact that every distribution has a vector � that contains its

arameters, we need to find an estimation 

ˆ � of this vector, based

n our data. Hence, we used the MLE method in order to seek a

ector ˆ �, which can be as close as possible to the true �, in order

o estimate the parameters of the distribution assumed to underlie

ur data. 

We used a number of distributions that are well-known in the

iterature for various types of video traffic characterization and

odeling. More specifically, we studied the Uniform, Exponential,

amma, Lognormal, Geometric, Negative Binomial, Generalized

xtreme Value (GEV), Weibull, Pearson Type V and Log-logistic

istribution. In order to generate random data according to these

istributions, we used the MLE method for the parameters estima-

ion and the built-in Matlab functions for the data generation. 

.3.2. Statistical tests 

We have used three statistical tests during this work, in order

o evaluate the accuracy of the distributions fits with our data. We

riefly present the three tests below. 

.3.2.1. Q–Q plots. The Quantiles–Quantiles Plot or Q–Q Plot is

 powerful Goodness of Fit (GoF) test [27] which compares two

atasets graphically, in order to determine whether the datasets

ome from populations with a common distribution and statistical

haracteristics. If they do, the point of the plot should lie along

 45-degree reference line approximately, which passes from the

xis start point. A Q–Q plot is a plot of the quantiles of the data

ersus the quantiles of the fitted distribution. A z -quantile of X is

ny value x such that P ( X ≤ x ) = z. In our case, we have plotted

he quantiles of the real data versus the quantiles of the data

enerated via the distribution. 
.3.2.2. Kolmogorov–Smirnov test. In order to further verify the

alidity of our results, we used the Kolmogorov–Smirnov test

29] . The Kolmogorov-Smirnov (KS) test tries to determine if two

atasets differ significantly. It has the advantage of making no as-

umption about the distribution of data, i.e., it is non-parametric

nd distribution free. The KS test uses the maximum vertical de-

iation between the two curves as its statistic D. Although it is a

ood statistical tool, the KS test has the drawback that it gives the

ame weight to the difference between the actual data and the fit-

ed distribution for all values of data, whereas many compared dis-

ributions differ primarily in their tails. It tests if the null hypoth-

sis is accepted or rejected at an alpha significance level (usually

lpha = 5%). The null hypothesis is that the population we are test-

ng is drawn from a specific distribution with alpha chance of error.

The KS test can also be used, the way we use it in this study,

s a goodness of fit test. This means that we do not actually

xpect to see if the test accepts or rejects a null hypothesis (even

hough it would be an excellent result if the null hypothesis was

ccepted) but to see how “far” the actual data are from the fitted

istribution. This is the Two-Sample Kolmogorov–Smirnov Test.

he test measure is given by Eq. (1) for two given Cumulative

istribution Functions (CDFs) F 1 and F 2, 

 n,n ′ = sup ( | F 1 ,n ( x ) − F 2 ,n ( x ) | ) (1) 

The null hypothesis is rejected at the level “a ” significance if: 

 n,n ′ > c(a ) ·
√ 

n + n 

′ 
n · n 

′ (2) 

The values of c ( a ) are defined for various significance levels and

 and n ́ are the number of samples. We should bear in mind that

he Two-Sample Kolmogorov–Smirnov Test only tells us half the

ale, meaning that it only tells us the maximum distance between

wo distributions and not which distribution our data come from. 

Finally, it should be mentioned that the KS test has two lim-

tations. First, it works only with continuous distributions (hence

t cannot provide results for the Geometric and the Negative Bino-

ial distribution) and second, it is more sensitive at the “center”

f the CDFs of the distributions rather than the “tails”. We try to

ddress this limitation by using the Anderson-Darling test. 

.3.2.3. Anderson–Darling test. The Anderson–Darling (AD) test is

 modification of the KS test [30] that it is more sensitive at the

tails” of the CDFs of the distributions rather than the “center”. It

elongs, like as KS test, to the family of Quadratic Empirical Dis-

ribution Function statistics, which measures the distance between

he empirical CDF, F n ( x ) and the hypothesized CDF, F ( x ) as 

 ( F n , F ) = n 

∫ ∞ 

−∞ 

( F n ( x ) − F ( x ) ) 2 w ( x ) d F (x ) (3)

ver the ordered sample values x 1 < x 2 < …< x n , where w ( x ) is

 weight function that favors the “tails” of the CDF and n is the

umber of samples in the dataset. The weight function for the AD

est is 

 ( x ) = [ F ( x ) · ( 1 − F ( x ) ) ] 
−1 (4) 

The AD test statistic is 

 

2 
n = −n −

n ∑ 

i =1 

2 i − 1 

n 

[ ln ( F ( X i ) ) + ln ( 1 − F ( X n +1 −i ) ) ] (5) 

here X 1 < X 2 < …< X n are the ordered sample values and n

s the number of samples in the dataset. Even though the KS

est is distribution free, there is a form of the AD test that is

ot. It makes use of the specific distribution parameters to be

valuated. The appropriate critical values need to be selected for

he distribution we wish to check. This allows the test to be more

ensitive but it also makes it impossible to use with a large variety
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of distributions. Currently, tables of critical values exist for the

Normal, Uniform, Lognormal, Exponential, Weibull, Extreme Value

I, Generalized Pareto and Logistic distribution. In this study, we

use the non-parametric version of the AD test because we are

testing distributions for which no known critical values exist. 

4.4. Accuracy evaluation metrics 

We present, below, the two metrics that we used, in order to

evaluate the accuracy of our models. 

The Mean Absolute Percentage Error (MAPE) is a widely used

metric [31] that shows the average difference (i.e., the average

error) between the real values and the corresponding measured

(in our case predicted by our models) values. For a set of pairs of

real-generated values in a dataset, the MAPE is calculated as: 

MAPE = 

∑ n 
i =1 

| X P,i −X R,i | 
X R,i 

n 

· 100% (6)

where { X R , i ,X P , i } is the i th pair of real and generated values in a

dataset of n pairs. 

The Relative Percentage Error (RPE) [32] is a metric that shows

the overall difference (i.e., the overall error) between the real

values and the corresponding measured (in our case predicted

by our models) values, as a percentage of the overall size of the

real values. It depicts how large the prediction error is relative

to the real values, in a percentage form. For a set of pairs of

real-generated values in a dataset, the RPE is calculated as: 

RPE = 

∑ n 
i =1 | X P,i − X R,i | ∑ n 

i =1 | X R,i | · 100% (7)

where { X R , i ,X P , i } is the i th pair of real and generated values in a

dataset of n pairs. 

5. Modeling and results 

In this section, we present, analyze and evaluate the four

different modeling approaches that we have used in this work.

One model, which combines clustering with Markov chains and

the use of the Jaccard index similarity coefficient, is proposed

here for the first time in the relevant literature, to the best of our

knowledge. We discuss why the model provides high accuracy in

modeling video traffic generated by an average user’s computer,

during a day, while other models fail. All of our results have been

derived via Matlab. 

5.1. Application and Distribution Aware Model 

The Application and Distribution Aware (ADA) Model, is the

first and simplest approach that we have developed and tested,

in order to model our data. It is based on the assumption that

the video traffic of every unique application in our datasets is

characterized by a distinct distribution. 

The ADA model consists of two basic steps. The first is the

parameters’ estimation of each distribution that possibly charac-

terizes the application using the MLE method and the dataset. The

second is the predicted data generation according to this specific

distribution using the estimated parameters of the previous step.

Given that the distribution that best characterizes the application’s

data is unknown, the steps have to be repeated for a wide range

of well-known distributions and the ones that give the lowest RPE

and MAPE will be selected. 

We applied the ADA model for the set of ten well-known

distributions presented in Section 4.3.1 . In order to evaluate the

accuracy of the model, we applied the Q–Q plot, KS and AD tests
or each case and we examined if those tests’ results agree with

hose of RPE and MAPE. 

In the beginning, we tried to model the size of the video

raffic as-is, i.e., without separately modeling I and P-Frames. The

roblem with this approach was that the sizes of I-Frames differ

ignificantly from the sizes of P-Frames in terms of minimum, av-

rage, standard deviation and maximum size (according to Table 1 )

nd hence no distribution could serve as a competent model that

ould reproduce those wide range differences with low errors.

herefore, we proceeded to model I and P frames separately. 

We should mention that we also tried to model our data per

ser and per day of capture separately but we concluded that the

mprovement to our results was not significant, given its much

arger complexity. 

Finally, it should be emphasized that the ADA model has two

nherent disadvantages. The first is that the percentage of outliers

mong P frames varies and the rule for the split will need to be

ailored to each specific dataset. The second is that it does not

ncorporate the autocorrelation between successive or neighbor

ideo frames, which is well-known to exist either for short or

ong-term, i.e., Short Range Dependence (SRD) or Long Range De-

endence (LRD) [33–35] . Our own results, which will be presented

n the following sections, confirm that for all traces SRD exists but

RD is weak. Therefore, ADA is used as a first, simple approach for

he modeling of P frames and as a benchmark against which our

ther models will be compared. 

.1.1. ADA model evaluation results 

We ran the ADA model for every distinct application of Dataset

 and Dataset 2. There are applications in Dataset 2 without re-

ults for the I-Frames due to the fact that according to Dataset’s 2

ncoding, we have only one I-Frame every time the host computer

tarts or its user logs on. 

We first present the results for the I-Frames and P-Frames

DA modeling of Dataset 1 and Dataset 2, according to the RPE,

APE metrics and the Q–Q plot, KS and AD tests and over all

pplications. 

From Tables 2 and 3 that refer to Dataset 1, we observe that

he ADA model achieves good accuracy on modeling I-Frames

ut fails in modeling P-Frames. For the I-Frames, the errors are

elow 10% for most applications. Additionally, in most cases the

est distribution per application (the one leading to the smallest

rror) is the same when both RPE and MAPE are used. No clear

onclusion on the best distribution can be derived from the KS

nd AD test, however, a fact that indicates that our data differs

etween the “center” and the “tails”. As for the P-Frames, we

bserve very high errors in terms of RPE and significant errors in

erms of MAPE. Also, we observe that MAPE, as well as the KS and

D tests indicate for most of the applications that GEV gives the

est distribution fit, a fact related with the high concentration of

ery small sized P-Frames in Dataset 1. 

From Tables 4 and 5 that refer to Dataset 2, we confirm again

hat the ADA model gives highly accurate results on the modeling

f I-Frames (4–5% RPE and MAPE). For this dataset the model

chieves better, but still not satisfactory results for the P-Frames

RPE 13.8%, MAPE 9.4%). Regarding P-Frames, we observe that

here are several applications for which RPE, MAPE, KS and AD

gree for the best distribution, which indicates that the video

raffic is more “smoothed” due to the usage of Periodic Intra

efresh in comparison with Dataset 1. The reason that the number

f applications in Table 4 is smaller than that in Table 5 is that, as

xplained in Section 4.2.1 , I-Frames are generated in Dataset 2 only

henever the host computer starts or its user logs on. Therefore,

e have very few I-Frames and only for the applications that were

pen during the capturing initialization. 
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Table 2 

ADA model results for I-Frames over all applications of Dataset 1. 

Application I-Frames 

RPE MAPE KS AD 

Best distribution Error (%) Best distribution Error (%) Best distribution Best distribution 

Acrobat Reader GEV 14.0934 Gamma 23.0565 LogLogistic GEV 

Microsoft Excel Weibull 11.8120 GEV 12.5411 LogLogistic GEV 

Foxit Reader GEV 7.2657 LogLogistic 5.5538 LogLogistic LogLogistic 

InSite GEV 9.4328 GEV 13.0520 GEV GEV 

Matlab LogLogistic 2.7068 LogLogistic 3.7226 LogLogistic LogLogistic 

Microsoft Outlook Weibull 2.9172 NegBinomial 3.0791 Gamma GEV 

Microsoft PowerPoint Weibull 2.8837 Weibull 3.7738 LogLogistic LogLogistic 

Ent. Device Manager Weibull 11.1717 Uniform 24.0 0 01 Uniform GEV 

Snipping Tool Uniform 11.9218 NegBinomial 13.3137 Gamma LogLogistic 

Microsoft Word LogLogistic 3.9727 LogLogistic 3.3878 LogLogistic LogLogistic 

WinMerge Weibull 2.5459 Weibull 2.6596 LogNormal Weibull 

WinSCP LogLogistic 5.5527 LogLogistic 4.9612 LogLogistic LogLogistic 

Xwin Cygwin GEV 14.1766 GEV 12.8750 Gamma GEV 

Windows Calculator GEV 5.5712 GEV 9.0079 GEV GEV 

Google Chrome Weibull 7.3737 Weibull 7.9375 LogLogistic Weibull 

Command Line Weibull 4.7144 Weibull 6.7775 GEV Weibull 

Communicatior PearsonV 5.4010 PearsonV 5.5730 PearsonV GEV 

Mozilla Firefox LogLogistic 2.3355 LogLogistic 2.3476 LogLogistic LogLogistic 

Google Earth GEV 3.2203 GEV 4.2721 GEV GEV 

G-Simple GEV 20.0270 GEV 11.5566 LogLogistic GEV 

Internet Explorer Weibull 3.5108 Weibull 4.0624 Weibull Weibull 

KDiff3 NegBinomial 2.2392 LogLogistic 2.4725 GEV LogLogistic 

Kile LaTeX GEV 3.4498 GEV 4.8836 Weibull GEV 

Windows Paint NegBinomial 9.1849 NegBinomial 9.7558 PearsonV PearsonV 

Windows Notepad PearsonV 29.7553 LogLogistic 23.0799 GEV GEV 

Notepad ++ Weibull 4.9762 GEV 5.2875 GEV Weibull 

Windows PowerShell LogLogistic 3.6729 LogLogistic 4.7701 GEV LogLogistic 

Windows Task Manger GEV 7.3913 GEV 10.9649 GEV GEV 

VLC GEV 9.8352 GEV 16.5711 Weibull GEV 

Average error (%) 7.6935 Average error (%) 8.8033 

Table 3 

ADA model results for P-Frames over all applications of Dataset 1. 

Application P-Frames 

RPE MAPE KS AD 

Best distribution Error (%) Best distribution Error (%) Best distribution Best distribution 

Acrobat Reader GEV 65.5001 GEV 6.0566 GEV GEV 

Microsoft Excel GEV 41.8876 GEV 9.9055 GEV GEV 

Foxit Reader PearsonV 83.9585 GEV 15.8851 GEV GEV 

InSite GEV 71.3259 GEV 11.6295 GEV GEV 

Matlab GEV 79.7061 GEV 11.9074 GEV GEV 

Microsoft Outlook PearsonV 80.5754 GEV 12.3231 GEV GEV 

Microsoft PowerPoint PearsonV 75.6485 GEV 16.7599 GEV GEV 

Ent. Device Manager Weibull 49.7211 PearsonV 45.7621 GEV GEV 

Snipping Tool GEV 35.4452 GEV 12.0030 GEV GEV 

Microsoft Word GEV 72.1663 GEV 9.3328 GEV GEV 

WinMerge PearsonV 79.4037 GEV 17.9503 GEV GEV 

WinSCP GEV 76.8190 GEV 10.0013 LogLogistic GEV 

Xwin Cygwin PearsonV 52.1366 GEV 24.0481 GEV GEV 

Windows Calculator GEV 68.5243 GEV 8.7824 GEV GEV 

Google Chrome GEV 73.9916 GEV 11.0672 GEV GEV 

Command Line GEV 71.2440 GEV 11.1097 GEV GEV 

Communicatior PearsonV 67.8365 GEV 13.9133 GEV GEV 

Mozilla Firefox Weibull 80.8619 GEV 22.7592 GEV GEV 

Google Earth Weibull 78.7539 LogLogistic 37.7865 GEV GEV 

G-Simple GEV 51.8762 GEV 10.8519 GEV GEV 

Internet Explorer GEV 85.9765 GEV 12.7529 GEV GEV 

KDiff3 Weibull 81.8432 GEV 32.4424 GEV GEV 

Kile LaTeX PearsonV 69.3276 GEV 26.4580 GEV GEV 

Windows Paint PearsonV 60.1628 GEV 14.9701 GEV GEV 

Windows Notepad GEV 23.1330 GEV 7.2919 LogNormal GEV 

Notepad ++ PearsonV 81.3766 GEV 14.0268 GEV GEV 

Windows PowerShell GEV 53.3213 GEV 14.4497 LogLogistic GEV 

Windows Task Manger GEV 66.3710 GEV 14.2695 GEV GEV 

VLC Weibull 60.2636 PearsonV 36.2930 GEV GEV 

Average error (%): 66.8675 Average error (%): 16.9927 
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Table 4 

ADA model results for I-Frames over all applications of Dataset 2. 

Application I Frames 

RPE MAPE KS AD 

Best distribution Error (%) Best distribution Error (%) Best distribution Best distribution 

Microsoft Excel NegBinomial 3.9328 NegBinomial 3.8858 Uniform LogNormal 

Microsoft Outlook GEV 4.0023 GEV 5.3359 Weibull GEV 

Microsoft PowerPoint Weibull 5.1782 Weibull 6.1074 Gamma Weibull 

Microsoft Word NegBinomial 5.1894 NegBinomial 6.0813 GEV Weibull 

Google Chrome GEV 3.5474 LogLogistic 3.4277 LogLogistic Weibull 

Mozilla Firefox GEV 5.6683 GEV 8.5764 LogLogistic Weibull 

Notepad ++ Gamma 4.3898 Gamma 4.2871 Uniform LogNormal 

Windows PowerShell LogLogistic 5.4552 LogLogistic 5.2876 Gamma GEV 

Average error (%) 4.6704 Average error (%) 5.3736 

Table 5 

ADA model results for P-Frames over all applications of Dataset 2. 

Application P Frames 

RPE MAPE KS AD 

Best distribution Error (%) Best distribution Error (%) Best distribution Best distribution 

Acrobat Reader GEV 15.5873 GEV 13.1683 LogLogistic GEV 

Microsoft Excel GEV 5.1208 GEV 3.6504 LogLogistic GEV 

Foxit Reader LogLogistic 20.4611 LogNormal 9.6586 LogLogistic LogLogistic 

Matlab NegBinomial 7.8308 LogNormal 6.0371 LogNormal LogNormal 

Microsoft Outlook NegBinomial 6.6657 NegBinomial 5.2914 Gamma Gamma 

Microsoft PowerPoint NegBinomial 6.5026 LogNormal 5.0167 Gamma Gamma 

Ent. Device Manager GEV 12.8802 LogNormal 7.8266 Gamma LogNormal 

Snipping Tool NegBinomial 5.6112 NegBinomial 5.4936 Gamma Gamma 

Microsoft Word LogNormal 11.6892 LogNormal 4.5745 LogNormal LogNormal 

WinMerge LogLogistic 30.5505 PearsonV 8.5241 PearsonV GEV 

WinRAR LogLogistic 14.2884 LogNormal 8.8457 GEV LogNormal 

Xwin Cygwin LogLogistic 8.1104 GEV 5.5709 LogLogistic GEV 

Windows Calculator Weibull 12.8847 PearsonV 10.1943 PearsonV PearsonV 

Google Chrome LogLogistic 21.8600 LogLogistic 7.2852 LogLogistic LogLogistic 

Command Line Exponential 13.0109 LogNormal 10.5705 LogLogistic LogNormal 

Mozilla Firefox LogLogistic 16.6754 LogNormal 7.9470 LogNormal LogNormal 

IrfanView GEV 11.5825 LogNormal 5.2874 LogNormal LogNormal 

Internet Explorer LogNormal 10.2767 LogNormal 4.6048 LogNormal LogNormal 

KDiff3 LogLogistic 18.7731 LogNormal 11.4546 LogLogistic LogNormal 

Windows Paint Gamma 6.1956 GEV 4.5473 GEV GEV 

Windows Notepad GEV 11.8933 GEV 7.6194 GEV GEV 

Notepad ++ NegBinomial 8.6298 Gamma 6.4529 LogNormal Gamma 

Windows PowerShell GEV 11.9188 NegBinomial 39.6663 GEV GEV 

Windows Task Manger LogLogistic 11.1016 LogNormal 8.2597 LogNormal LogNormal 

VLC LogLogistic 23.8497 LogLogistic 8.9453 LogLogistic GEV 

VMware Player Weibull 35.2235 LogLogistic 28.3031 GEV PearsonV 

Average error (%) 13.8144 Average error (%) 9.4152 
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5.2. Gamma Beta Autoregressive Model (GBAR) 

The results presented in Section 5.1 revealed that no single

distribution can provide the best fit for each application. The dis-

tribution fit that provided the overall lowest RPE and MAPE when

used for all applications was that of the Gamma distribution. 

The rather poor ADA modeling results for P-Frames’ sizes and

the relatively better performance of the Gamma fit in most cases

led us to implement and evaluate a very well-known model from

the literature, the Gamma Beta Autoregressive (GBAR) Model [13] .

GBAR has been proposed as a source model for VBR encoding of

videoconference traffic (which is generally characterized by lower

bit rates and motion is naturally more limited, hence it is closer

in nature to screen mirroring traffic than standard movies). The

main characteristic of the GBAR model is that the GBAR process

is calculated based on a gamma distribution with parameters

estimated from the dataset. 

We have ran our model for every distinct application of Dataset

1 and Dataset 2, and separately for I and P frames. The results in

Tables 6 and 7 show that the GBAR model offers worse accuracy

in the modeling of I-Frames than the ADA model and fails clearly
n the modeling of P-Frames. It should be noted that we only

resent results for two applications for the I-Frames of dataset 2.

he reason is again that I-Frames are generated in Dataset 2 only

henever the host computer starts or its user logs on. Hence, in

ost applications the number of I-Frames was very small (less

han 10) and the GBAR model could not be implemented. 

The reason for the failure of the model in the case of P-Frames

an be understood by studying the lag-1 autocorrelation values

or both datasets. The average lag-1 autocorrelation of P-Frames

s 0.3189 over all the applications of the 1st Dataset, for which

he RPE and MAPE are very high. In Dataset 2, where the lag-1

utocorrelation is much higher (0.6239 on average, over all the

pplications) the GBAR model achieves lower errors for P-Frames

han in Dataset 1, but still the errors are very high. 

It should also be mentioned that the Hurst Parameter values

f P-Frames range between 0.66 and 0.76 for all the applications

nder study for the first dataset, and between 0.68 and 0.82 for

he second dataset. This indicates a time series with persistent

ehavior, and is further confirmed by the fact that P-Frame auto-

orrelations decayed hyperbolically, not exponentially, as shown in

igs. 2 and 4 below, which is another indication [37] of our traffic
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Table 6 

GBAR model results over all applications of Dataset 1. 

Dataset 1 I-Frames P-Frames 

Application RPE (%) MAPE (%) RPE (%) MAPE (%) 

Lag-1 

Acrobat Reader 9.4642 10.70 0 0 63.5521 114.3876 

Microsoft Excel 10.8625 12.0686 78.9786 129.6888 

Foxit Reader 13.1874 14.9773 79.2341 200.5665 

InSite 16.1095 18.4930 67.5287 119.0524 

Matlab 9.3213 10.3228 90.2057 190.2595 

Microsoft Outlook 10.9923 11.6934 73.9894 156.7260 

Microsoft PowerPoint 10.2097 11.2995 88.1576 186.2553 

Ent. Device Manager 18.0470 18.0709 45.6511 126.8678 

Snipping Tool 2.5803 2.6052 42.4876 48.1055 

Microsoft Word 8.6189 9.0612 70.6048 120.3422 

WinMerge 0.3549 0.3558 59.0836 87.9919 

WinSCP 10.9479 10.4257 86.8678 241.2759 

Xwin Cygwin 31.0633 28.3023 42.4526 53.6665 

Windows Calculator 8.2530 8.6519 84.7720 183.0306 

Google Chrome 9.1101 10.1492 67.4956 124.0817 

Command Line 7.9546 8.6795 56.5733 115.6246 

Communicatior 9.3565 9.3141 87.7423 158.3650 

Mozilla Firefox 11.1808 11.8360 80.9414 209.7440 

Google Earth 13.1201 12.9532 77.4905 202.6313 

G-Simple 17.3985 21.2785 53.0577 66.6445 

Internet Explorer 12.1647 13.5991 74.8897 149.9265 

KDiff3 9.4 4 42 9.9702 93.7578 250.7903 

Kile LaTeX 10.3123 13.3016 90.6473 233.6368 

Windows Paint 18.6522 22.2498 80.4213 117.7523 

Windows Notepad 14.1418 15.2191 62.0133 68.8571 

Notepad ++ 11.5905 13.2449 76.1578 160.3242 

Windows PowerShell 0.0 0 09 0.0 0 09 42.9225 64.9375 

Windows Task Manger 16.9339 21.6649 62.1791 119.9986 

VLC 19.6761 15.9164 57.2844 124.1358 

Average error (%) 11.7603 12.6347 70.2462 142.2644 
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Table 7 

GBAR model results over all applications of Dataset 2. 

Dataset 2 I-Frames P-Frames 

Application RPE (%) MAPE (%) RPE (%) MAPE (%) 

Lag-1 

Acrobat Reader 22.6685 21.4522 

Microsoft Excel 17.4 4 42 18.1185 

Foxit Reader 30.1714 27.9252 

Matlab 17.3298 18.0293 

Microsoft Outlook 18.1343 17.8578 

Microsoft PowerPoint 18.7265 20.3936 

Ent. Device Manager 23.2407 28.7581 

Snipping Tool 8.5492 10.1748 

Microsoft Word 20.7295 18.8142 

WinMerge 36.8734 53.8155 

WinRAR 23.0900 21.4420 

Xwin Cygwin 15.7283 14.0607 

Windows Calculator 11.2782 12.3995 

Google Chrome 3.4903 3.4018 18.5517 19.8051 

Command Line 22.4217 23.3680 

Mozilla Firefox 22.0732 20.2732 

IrfanView 21.1866 22.1343 

Internet Explorer 23.2647 23.8388 

KDiff3 29.9645 26.3157 

Windows Paint 18.6802 19.6575 

Windows Notepad 22.7928 22.9972 

Notepad ++ 19.4063 19.3469 

Windows PowerShell 9.3244 8.8772 21.9069 26.8374 

Windows Task Manger 18.9469 19.3739 

VLC 20.6457 21.8365 

VMware Player 33.3690 40.7958 

Average error (%) 6.4074 6.1395 21.4298 22.6854 
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eing a self-similar process with long-range dependence. Still, the

utocorrelation values are not large enough for the GBAR model

o benefit from them in terms of its accuracy. 

.3. Linear regression model 

A Linear Regression (LR)-based model has been proposed in

32] , for predicting the size of future B-Frames of MPEG-4 encoded

ideo traffic. The model is based on the fact that B-Frames are

onstructed based on the reference frames, namely I and P-Frames

r even based on previous B-Frames. As a consequence, the size of

-Frames may be strongly correlated with the size of their refer-

nce frames. The authors in [32] calculate the B-Frames correlation

ith their reference frames and the B-Frames autocorrelation, in

rder to locate the two most relevant frames per B-Frame in a GOP

nd by that to construct linear regression equations, which will be

ble to predict the B-Frames based on previous I, P or B-Frames. 

Given the lack of accuracy of both the ADA and the GBAR model

n predicting P-Frames sizes, we have followed a similar approach,

n order to develop our own LR model, for predicting the sizes of

uture P-Frames of our video traffic in Dataset 1 and Dataset 2. 

.3.1. LR model analysis 

The GOP size is 60 frames in Dataset 1 and we do not have

 GOP structure in Dataset 2. Hence, in our LR model, we are

ased on previous I and P-Frames for Dataset 1 and on previous

-Frames for Dataset 2, in order to predict the P-Frames’ sizes. 

We initially calculated the correlation among the 59 P-Frames

nd the 1 I-Frame in a GOP for Dataset 1, the autocorrelation

mong the 59 P-Frames in a GOP for Dataset 1 and the autocorre-

ation among 60 P-Frames in Dataset 2. We define this number of

-Frames in Dataset 2 as a Window . The number of frames in the

indow is chosen in order to be equal to the number of frames

f a GOP in Dataset 1, in order to make comparison between the
esults in the two Datasets, given the absence of a GOP structure

n Dataset 2. 

In general, let X denote the size of each P-Frame, Y denote the

ize of each I-Frame, σ X denote the standard deviation of X and

Y the standard deviation of Y . Then the coefficient of correlation

s calculated as 

X,Y = 

E ( X Y ) − X Y 

σX σY 

(8) 

nd the autocorrelation is calculated as 

 ( k ) = 

E 
[(

X m 

− X̄ 

)(
X m + k − X̄ 

)]
σ 2 

X 

(9) 

here m denotes the present frame and k the lag. 

We selected the two frames with the highest correlation for

very P-Frame position in a GOP or a Window to construct the

inear regression equations for predicting the P-Frames’ sizes.

q. (10) presents the equations’ format: 

 P = a · F P−1 + b · F P−2 + c P (10)

here F P denotes the size of the current P-Frame that we want to

redict and F P − 1 and F P − 2 denote the size of the two previous

rames with the highest correlation with P , which are used for

he prediction. The a, b and c P model parameters are estimated

y employing the least squares error method. Parameter c P is the

isturbance term. 

.3.2. LR model evaluation results 

We have applied the LR model to eight major applications

f Dataset 1 and Dataset 2 (Microsoft Excel, Microsoft Word,

icrosoft PowerPoint, Microsoft Outlook, Google Chrome, Mozilla

irefox, Internet Explorer and Matlab). 

Figs. 2–4 present graphically the correlation values among the

 and P frames for Dataset 1 and the autocorrelation values for

ataset 2. As shown in the figures, the two most relevant frames

or frame N in Dataset 1 are the (N-1) and (N-2) P-Frames for
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Fig. 4. Autocorrelation of P-Frames in a GOP for Dataset 2. 
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a  
PowerPoint, Firefox and Matlab and the (N-1) and (N-59) for Excel,

Word, Outlook, Chrome and Internet Explorer. As for Dataset 2,

the most relevant frames, in terms of autocorrelation, are the

(N-1) and (N-2) P-Frames for every major application with an

exception for Excel, where the (N-1) and (N-60) P-Frames are the

most relevant. 

Having found the two “closest” frames for every P-Frame

position in a GOP (for Dataset 1) or a Window (for Dataset 2), we

can define the linear regression equations. They are presented in

Eqs. (11 ) and ( 12 ) indicatively, for Dataset 2 ( t denotes the current

GOP). 

Word, PowerPoint, Outlook, Chrome, Firefox, Internet Explorer and

Matlab 

̂ P 1 ,t = a 1 · P 60 ,t−1 + b 1 · P 59 ,t−1 + c 1 ̂ P 2 ,t = a 2 · P 1 ,t + b 2 · P 60 ,t−1 + c 2 ̂ P 3 ,t = a 3 · P 2 ,t + b 3 · P 1 ,t + c 3 

. . . ̂ P 60 ,t = a 60 · P 59 ,t + b 60 · P 58 ,t + c 60 (11)
xcel 

̂ P 1 ,t = a 1 · P 60 ,t−1 + b 1 · P 1 ,t−1 + c 1 ̂ P 2 ,t = a 2 · P 1 ,t + b 2 · P 2 ,t−1 + c 2 ̂ P 3 ,t = a 3 · P 2 ,t + b 3 · P 3 ,t−1 + c 3 

. . . ̂ 

 60 ,t = a 60 · P 59 ,t + b 60 · P 60 ,t−1 + c 60 (12)

Our results showed that the LR model fails to predict the P-

rames’ sizes for both datasets. The average RPE and MAPE values

or Dataset 1 were 91.05% and 45.84%, respectively. The RPE and

APE values for Dataset 2 were 90.05% and 81.13%, respectively.

he reason, once again, is the low correlation and autocorrelation

alues. 

.4. Markovian-Clustering models 

In [36] , a traffic model for layered video traffic is proposed. It is

ased on a Markovian arrival process and on a clusters’ detection

lgorithm. Although our study is quite different since our traces’
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Table 8 

Optimal number of clusters for every tested appli- 

cation and for both datasets. 

# of clusters 

Application Dataset 1 Dataset 2 

Microsoft Excel 11 4 

Microsoft Word 11 7 

Microsoft PowerPoint 7 4 

Microsoft Outlook 7 4 

Google Chrome 11 4 

Mozilla Firefox 11 7 

Internet Explorer 7 7 

Matlab 11 4 
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raffic is not layered, we decided to use a conceptually similar

pproach with [36] . We developed a Markovian-Clustering (MC)

odel, in order to predict the sizes of I-Frames and P-Frames from

ataset 1 and Dataset 2. We have applied the MC model to the

ame eight major applications of Dataset 1 and Dataset 2 that we

pplied the LR model. 

In our proposed approach, we view the video trace sequence as

 vector containing all the I-Frames or P-Frames’ sizes (depending

n which type we wish to model). We place all the vector’s

lements as points on the 1-D plane and we then use the K-Means

lustering algorithm [28] in order to cluster similar-sized frames.

e selected the K-Means algorithm due to the fact that the vol-

me of the data we wanted to cluster was very large (for example,

ataset 2 contains over 5 • 10 6 P-Frames) and K-Means deals better

ith large datasets than other clustering algorithms (e.g., the Hi-

rarchical clustering algorithm). The distance metric that we used

or clustering is the cityblock Distance, which calculates the sum

f absolute differences (i.e., the L 1 distance). Even though K-Means

s a powerful clustering algorithm, it has a significant drawback.

he K amount of clusters has to be selected heuristically. The

lbow method [39] is a well-known approach that can be used

o determine the proper value of k. In our case, we concluded

fter several experiments that the optimal numbers of clusters per

ested application (i.e., the number of clusters that leads to the

ighest modeling accuracy) are the ones depicted in Table 8 . 

Next, we constructed a Markov chain based on the above

lustering results. Each cluster corresponds to one state of the

arkov chain. We computed the Transition Probability Matrix

 = [ P i , j ] 
2 for the Markov chain, which contains K × K elements,

ollowing Eq. (13) . 

 i, j = 

# of jumps from state i to state j 

# of jumps from state i 
(13) 

Finally, we found the best distribution fit for the data in each

luster. 

.4.1. Jaccard index-infused MC model 

The MC model performs separate clustering on 1-D data for

-frames and P-Frames based on the actual size of every frame

ype. Although its results, which will be presented in Section 5.4.2 ,

ere quite satisfactory, we tried another approach to further

mprove the results of P-Frame modeling by moving from the 1-D

o the 3-D plane. To do so, we employed, for the first time in

he relevant video traffic modeling literature to the best of our

nowledge, the concept of the Jaccard Index. 

The Jaccard Index [21] , also known as the Jaccard similarity

oefficient, is a statistic used for comparing the similarity and

iversity of two sample sets. The Jaccard coefficient measures

imilarity between finite sample sets and is defined in general as

he size of the intersection divided by the size of the union of two
ample sets, as depicted in Eq. (14) below 

 ( A, B ) = 

| A ∩ B | 
| A ∪ B | (14) 

here A and B denote the two sample sets. Jaccard Index is widely

sed in regionalization and species association analyses [26] . 

In our case, we wanted to find for every P-Frame in a GOP

for Dataset 1) or in a Window (for Dataset 2), the two “closest”

-Frames, with an approach different from a simple autocorrela-

ion calculation (as it was shown to perform poorly when used in

he GBAR and LR models). This approach is the use of the Jaccard

ndex in the following way. 

For every P-Frame, denoted as X , in a GOP or a Window, we

alculate its Jaccard Index with every other P-Frame, denoted

s Y , in the same GOP or Window. The sample sets A and B in

his Jaccard Index calculation are the “neighboring frames” of X

nd the “neighboring frames” of Y respectively. As a “neighboring

rame” P ∗ of a P-Frame P , we define every P-Frame that satisfies

he following two rules: 

1. The absolute difference between the sizes of P and P ∗ does not

exceed the standard deviation of P-Frames’ sizes. 

2. The arrival of P ∗ does not change the autocorrelation (lag-1) of

P-Frames in the trace, more than 10% compared to the change

that occurred from the arrival of P . 

Via this definition, we found that the two “closest neighbors”

f each P-Frame are the previous and the following one, for all

ight major applications of both datasets. Fig. 5 presents this result

raphically for Dataset 2. Note that these two “closest neighbors”

re different than those depicted by the autocorrelation values

nd used in the LR model. 

The x -axis and the y -axis in Fig. 5 represent the P-Frame

osition in a Window for Dataset 2, and the z -axis represents the

accard Index value between two P-Frames defined by x and y . As

hown in the figure, the Jaccard Index has a value equal to 1 on

he x = y line (because every frame has the same Jaccard Index

ith itself) and gets smaller, as the distance from x = y line grows.

We then view the video trace sequence as a vector

 R p ( t ), R c ( t ), R n ( t ) 〉 , t = 2, 3, 4, … Here R c ( t ) denotes the frame

ize of the t th P-Frame, R p (t) denotes the frame size of the

-Frame before R c ( t ) (i.e., R p ( t ) = R c ( t − 1)) and R n ( t) denotes

he frame size of the P-Frame after R c ( t ) (i.e., R n ( t ) = R c ( t + 1)).

e place all the 〈 R p ( t ), R c ( t ), R n ( t ) 〉 pairs as points on the 3-D

lane, where R p ( t), R c ( t ) and R n ( t ) is viewed as the x -coordinate,

 -coordinate and z -coordinate of the corresponding point respec-

ively. Hence, each P-Frame is clustered by taking into account not

nly its own size but also the size of its adjacent frames. 

As in the MC model, we find the best distribution fit for the

ata in each cluster. We name this new model Jaccard Index-

nfused MC Model (JIMC) and we evaluate it in the next section. 

Finally, a direct outcome of the MC and JIMC models is an algo-

ithmic procedure for source video traffic generation (generating I

nd P video frame sizes for a desired application). This algorithmic

rocedure can be summarized, for the MC model, as follows: 

• Step 1: Based on a training video trace of the desired ap-

plication, acquire an a priori knowledge for the number of

K-Means clusters, the Transition Probability Matrix T of the

corresponding Markovian chain and the best distribution fit

for the data in each cluster, using the MC modelling procedure

presented in 5.4. 

• Step 2: Generate the first frame size, according to the distri-

bution fit that characterizes the cluster where the first frame

from the training video trace belongs. 

• Step 3: Generate a random number, in order to transit to the

next cluster, based on the Transition Probability Matrix T . 
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Fig. 5. Jaccard Index calculations for all major applications of Dataset 2. 

Table 9 

MC model results for I-Frames for the major applications of 

Dataset 1. 

Application Dataset 1 (I-Frames) 

RPE (%) MAPE (%) 

Microsoft Excel 5.7373 ± 1.9091 7.0698 ± 2.1869 

Microsoft Word 3.2203 ± 0.8452 2.7560 ± 0.4853 

Microsoft PowerPoint 3.2565 ± 0.5409 3.9140 ± 0.5829 

Microsoft Outlook 1.9270 ± 0.2369 2.0751 ± 0.2764 

Mozilla Firefox 2.5907 ± 0.5557 2.6731 ± 0.5507 

Google Chrome 1.6458 ± 0.2805 1.9540 ± 0.3414 

Internet Explorer 2.0524 ± 0.3525 2.4550 ± 0.4463 

Matlab 0.9867 ± 0.1635 1.0735 ± 0.1742 

Average Error (%) 2.6771 2.9963 
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• Step 4: Generate a frame size according to the distribution fit

that characterizes the new cluster. 

• Step 5: Repeat Step 3 and 4, as many times as the number of

frames that need to be generated. 

The generative algorithmic procedure that related to the JIMC

Model is the same with the aforementioned, with the only differ-

ence being in Step 1, where the modelling procedure is conducted

according to the JIMC model instead of the MC one. 

5.4.2. MC and JIMC Models’ evaluation results 

Before presenting our results, we should mention that the

usage of the K-Means algorithm (with random selection of the

initial centroids) and the usage of a random number generator (in

order to change clusters according to the Markov chain’s transition

probabilities) naturally lead to some fluctuations in the results.

For this reason, all of our results were derived for 95% confidence

intervals, constructed the usual way [27] . 

Tables 9 and 10 present the results of the MC model for Dataset

1 and Dataset 2, in terms of the model’s accuracy in predicting

I-Frames and P-Frames’ sizes. No results were obtained for the

I-Frames of Dataset 2, due to the encoding, which as explained

earlier generates too few I-Frames. 

As shown from the results, the MC model succeeds in pre-

dicting the I-Frames and P-Frames’ sizes for both datasets with
igh accuracy. The RPE and MAPE errors are below 5% for all

pplications, with an exception for the I-Frames of Microsoft Excel

nd the P-Frames of Internet Explorer of Dataset 1, where the

rrors are slightly higher. 

Table 11 presents the results of the JIMC model for Dataset

 and Dataset 2, in terms of the model’s accuracy in predicting

-Frames’ sizes. 

Our JIMC model is shown to succeed in predicting the P-

rames’ sizes for both datasets with high accuracy. We should

ention that we have experimented with different values in the

nd rule of the definition of a “neighboring frame”; we have used

alues of up to 20% difference in autocorrelation, with negligible

ifferences in the results. The two “closest neighbors” to a P-Frame

emained its previous and next one. 

In comparison with the MC model, JIMC is clearly better for

he Miracast-like dataset (much lower MAPE, lower RPE) but

nderperforms for the 1st dataset. The reason is that in Dataset

 the “ties” among P-Frames (size similarities, similar changes

n autocorrelation, higher Hurst parameter) are stronger than in

ataset1. We also need to add that, to avoid overfitting in our

odels’ evaluation, we have also conducted two more rounds of

tatistical tests. In the first we used 80% of the data as a training

et and the other 20% as a test set, and in the second we used

0% of the data as a training set and the other 50% as a test set

for each application, as every application is modeled separately).

he training and validation subsets are equally stratified for each

ype of dataset, as the two types of datasets have a different video

rame structure. In both cases there were no qualitative changes in

he models’ evaluation results, and the quantitative changes were

egligible (the differences in the results did not exceed 0.5%). 

Fig. 6 presents the Q–Q Plots of the real and predicted I- and

-Frames, for two major applications (Matlab and Google Chrome)

f Dataset 1 and Dataset 2, over all models. The Q–Q Plots confirm

he high accuracy of both our proposed models (MC and JIMC) for

he I-Frames and P-Frames of the two datasets. 

Fig. 7 contains the summarized results, in terms of average

rrors, over eight major applications of both datasets, for ease of

omparison of all models used in our work. It is clear again that

he MC and JIMC models vastly outperform the other models in
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Fig. 6. Q–Q plots for I- and P-Frames of two major applications, using all models. 
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Fig. 7. Performance comparison in terms of average errors, for I-Frames and P-Frames for the major applications of both datasets, over all models. 



36 M. Kastrinakis et al. / Computer Communications 109 (2017) 24–37 

Table 10 

MC model results for P-Frames for the major applications ofboth datasets. 

Application Dataset 1 (P-Frames) Dataset 2 (P-Frames) 

RPE (%) MAPE (%) RPE (%) MAPE (%) 

Microsoft Excel 6.3818 ± 1.9190 6.2201 ± 0.1014 3.9994 ± 0.0641 5.2104 ± 0.0172 

Microsoft Word 2.5862 ± 1.5973 2.7232 ± 0.1565 2.8518 ± 0.1129 2.3135 ± 0.0239 

Microsoft PowerPoint 3.3388 ± 1.1632 3.4381 ± 0.2899 6.2012 ± 0.9905 2.6965 ± 0.0775 

Microsoft Outlook 3.5491 ± 0.3730 2.1716 ± 0.0388 4.4974 ± 0.0349 3.4060 ± 0.0345 

Mozilla Firefox 3.5119 ± 0.5430 2.5992 ± 0.1273 2.1300 ± 0.04 4 4 2.1410 ± 0.0696 

Google Chrome 3.9998 ± 0.4944 3.1880 ± 0.0287 3.0148 ± 0.0405 5.0947 ± 0.0237 

Internet Explorer 5.0114 ± 0.7888 2.3996 ± 0.1427 3.7670 ± 0.2925 3.4289 ± 0.1084 

Matlab 4.4341 ± 0.3912 2.4139 ± 0.0143 4.4852 ± 0.0150 3.1207 ± 0.0079 

Average error (%) 4.1016 3.1442 3.8684 3.4265 

Table 11 

JIMC model results for major applications of both datasets. 

Application Dataset 1 (P-Frames) Dataset 2 (P-Frames) 

RPE (%) MAPE (%) RPE (%) MAPE (%) 

Microsoft Excel 6.9557 ± 0.8705 6.2363 ± 0.2823 3.7547 ± 0.1226 4.3616 ± 0.0928 

Microsoft Word 8.3352 ± 1.0773 5.2356 ± 0.1155 2.4896 ± 0.1164 1.9312 ± 0.0749 

Microsoft PowerPoint 10.7993 ± 1.6523 5.5227 ± 0.1607 3.7142 ± 0.0972 1.9619 ± 0.0945 

Microsoft Outlook 8.5187 ± 0.9039 7.4242 ± 0.0952 4.2455 ± 0.0124 2.2490 ± 0.0140 

Mozilla Firefox 8.2838 ± 0.5629 4.0421 ± 0.1568 2.5819 ± 0.2911 1.6661 ± 0.0627 

Google Chrome 9.7563 ± 0.7707 8.2017 ± 0.0936 2.8272 ± 0.3704 1.3243 ± 0.0887 

Internet Explorer 9.8408 ± 2.1705 7.1371 ± 0.2832 2.6597 ± 0.2645 2.3599 ± 0.1936 

Matlab 8.3031 ± 0.2889 4.0608 ± 0.0902 3.2720 ± 0.0103 1.9951 ± 0.0126 

Average error (%) 8.8491 5.9826 3.1931 2.2311 
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terms of accuracy in predicting the I-Frames and P-Frames’ sizes

of both datasets. 

5.4.3. Applicability of the model to real-time video traffic prediction 

Finally, we should note the following regarding our model’s

applicability to real-time video traffic prediction in an online envi-

ronment. The problem of real-time prediction has been addressed

several times in the relevant literature. One solution is that the

modeling is done off-line, on a training dataset, and the model-

ing results are then applied online. This minimizes complexity,

however it fails to capture the dynamic nature of newly generated

traffic and blindly assumes that the offline model will be accurate

on the test dataset as well, and will remain accurate. Models

that have been proposed for real-time modeling of video traffic

include [49–51] . In [49] the authors acknowledge the problem

of the computational overhead of their scheme (which focuses

on multiplexed videos) and they use a combination of exact and

approximation schemes to contain computational overhead. In

[50,51] the authors propose a simplified seasonal ARIMA model

and a neural network model, respectively, for real-time video traf-

fic prediction; in both cases, the authors argue that their schemes

have relatively low complexity, hence they can be implemented

in real-time. Similarly, we could argue for our work that after the

offline estimations are made (based on the training dataset) for

the split into clusters and the best distribution fit is found for each

cluster, it is relatively simple to use the proposed model for real-

time prediction because with newly arriving traffic it only needs

to run the k-means algorithm and to recompute the transition

probability matrix. Still, in the case when the newly generated

frames of the test dataset are very different in sizes and correla-

tion compared to those of the training dataset, the results for the

training dataset for any of the aforementioned models (including

ours) may not be able to be extrapolated to the test dataset; for

example, in our model the best fit distribution within clusters

might change. Hence, in our view the proposed JIMC model can

be used offline to produce initially accurate estimates based on

existing data, and when new screen mirroring applications are

initialized online, the model can run in real-time with the under-
tanding that only through video frames’ buffering the model will

ractically keep up with the dynamically changing video traffic.

his, however, is not a major issue if we take into account the

act that the reason for the modeling is its use in network traffic

ontrol; the very high accuracy of the proposed model ensures

hat even if call admission control/traffic policing decisions are

ade with a lag as high as a few seconds, the addition of one or

ew new users into a well-predicted network load will not cause

ignificant discrepancies in the traffic control decision. 

. Conclusions and future work 

This work addressed, for the first time in the relevant literature

o the best of our knowledge, the problem of modeling real user-

enerated screen mirroring traffic. We have tested four modeling

echniques for predicting the size of video traffic that is generated

y an average user’s computer during a day. We have worked

ith two different datasets of H.264 encoded video traffic traces,

ne encoded with the High 4:2:2 Profile of H.264 standard and

he other encoded with parameters, which resemble a Miracast

ardware encoder, since Miracast is a widely accepted screen

irroring standard. 

We have shown that approaches such as the Gamma Beta

utoregression model and Linear Regression model, which have

rovided accurate models in the past for other video encoding

chemes, fail to accurately predict video traffic, due to the autocor-

elation characteristics of the type of traffic that we worked with. 

We proposed the Markovian-Clustering Model for I-Frames and

-Frames’ size prediction, which we modified by incorporating the

accard Index into the model. We have shown that the Markovian-

lustering model has excellent accuracy for I-Frames’ size predic-

ion, as well as for P-Frames’ sizes prediction for the 1st Dataset.

e have also shown that the Jaccard Index -Infused MC model

as even higher accuracy in P-Frames sizes’ prediction for the 2nd

ataset (i.e., for prediction of Miracast-like encoded video traffic). 

Given that smart mobile devices are strong candidates to

eplace computers in corporate environments, we believe that our

ork provides a solid basis for future studies on modeling video
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raffic generated by real computer usage behavior. In the future,

e intend to evaluate our models on a wider variety of corporate

nd daily computer applications and use our models in wireless

esource allocation problems. Most importantly, we intend to use

n our future work the very recently introduced Screen Content

oding (SCC) extension of the HEVC encoding scheme, and model

he respective data that will be collected in order to compare the

esults against the present work. 
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