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By the words of Morton and Sonar (Acta Numerica, 2007):

"The jury was out there for a long time in the judgment between cell-center

and vertex-center methods"
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MATHEMATICAL MODEL: 2D Non-linear Shallow Water Equations

∂U

∂t
+∇ · F(U) = L(U, x, y) on Ω× [0, t] ⊂ R2 ×R+,

U =




h

hu

hv


 , F(U) = [F G] =




hu hv

hu2 + 1
2gh2 huv

huv hv2 + 1
2gh2


 ,

L(U) = [R1 + R
2 + S]

R
1 =

[
0 −gh∂B(x,y)

∂x 0
]T

and R
2 =

[
0 0 −gh∂B(x,y)

∂y

]T

and

S =
[

0 −ghSx
f −ghSy

f

]T

,

Sx
f = n2

m

u
√

u2 + v2

h4/3
, Sy

f = n2
m

v
√

u2 + v2

h4/3
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Constructing Numerical Methods: Objectives

We need numerical schemes that are:

1. Conservative (conservation of physical quantities).
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Constructing Numerical Methods: Objectives

We need numerical schemes that are:

1. Conservative (conservation of physical quantities).

2. Shock-Capturing with sharp non-oscillatory high-resolution of discontinuities.

3. Converge to the correct physical solutions (entropy solutions).

4. At least second-order accurate on smooth regions of the flow.

5. Can handle complex topography and accurate predict wet/dry fronts.

6. Well-balanced between (numerical) fluxes and sources.

7. Enable various practical inflow/outflow boundary conditions

8. Preserve the positivity of the water depth.
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Grid Terminilogy

(a) Equilateral (Type-I) (b) Orthogonal (Type-II) (c) Orthogonal (Type-III) (d) Distorted (Type-IV)

CMWR 2010, Barcelona 5



Grid Terminilogy

(a) Equilateral (Type-I) (b) Orthogonal (Type-II) (c) Orthogonal (Type-III) (d) Distorted (Type-IV)

Ü Major requirement: to enable meaningful asymptotic order of

convergence use consistently refined grids, i.e. for N = degrees of

freedom, the characteristic length hN =
√

(Lx × Ly)/N ,

CMWR 2010, Barcelona 5



Grid Terminilogy

(a) Equilateral (Type-I) (b) Orthogonal (Type-II) (c) Orthogonal (Type-III) (d) Distorted (Type-IV)

Ü Major requirement: to enable meaningful asymptotic order of

convergence use consistently refined grids, i.e. for N = degrees of

freedom, the characteristic length hN =
√

(Lx × Ly)/N ,

Ü For fair comparison between NCFV and CCFV need to derive equivalent

meshes, based on the degrees of freedom N ,

CMWR 2010, Barcelona 5



Grid Terminilogy

(a) Equilateral (Type-I) (b) Orthogonal (Type-II) (c) Orthogonal (Type-III) (d) Distorted (Type-IV)

Ü Major requirement: to enable meaningful asymptotic order of

convergence use consistently refined grids, i.e. for N = degrees of

freedom, the characteristic length hN =
√

(Lx × Ly)/N ,

Ü For fair comparison between NCFV and CCFV need to derive equivalent

meshes, based on the degrees of freedom N ,

Ü Measure the grid irregularity, e.g. use proper grid metrics.
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FV discretization schemes on triangles: NCFV approach

∫∫

CP

∂U

∂t
dxdy +

∮

∂CP

(
Fñx + Gñy

)
dl =
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CP

L dxdy
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FV discretization schemes on triangles: NCFV approach

∫∫

CP

∂U

∂t
dxdy +

∮

∂CP

(
Fñx + Gñy

)
dl =

∫∫

CP

L dxdy

∂UP

∂t
|CP |+

∑

Q∈KP

ΦPQ + ΦP,out =
∑

Q∈KP

{∫∫

TPQ.

L dxdy

}
where

ΦPQ = Z
(
U

L
PQ,nPQ

)
+ J̃

−
PQ

(
U

R
PQ −U

L
PQ

)
, with J̃

−
PQ =

(
P̃Λ̃

−
P̃
−1

)

PQ
,

ΦPQ is the Roe numerical flux, evaluated at UL
PQ and U

R
PQ reconstructed

values.
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For MUSCL (∇W)P has to be computed in each dual cell P

Green-Gauss (G-G) linear reconstruction

(∇wi)P =
1

|CP |
∑

Q∈KP

1

2

(
wi,P + wi,Q

)
nPQ.

wL
i,PQ = wi,P +

1

2
LIM

(
(∇wi)

upw
P · rPQ, (∇wi)

cent · rPQ

)
;

wR
i,PQ = wi,Q −

1

2
LIM

(
(∇wi)

upw
Q · rPQ, (∇wi)

cent · rPQ

)
,
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• Monotonicity in the reconstruction is enforced by using van Albada-van

Leer edge-based slope limiter.
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i,PQ = wi,Q −

1

2
LIM

(
(∇wi)

upw
Q · rPQ, (∇wi)

cent · rPQ

)
,

(∇wi)
cent · rPQ = wi,Q − wi,P , (∇wi)

upw
P = 2 (∇wi)P − (∇wi)

cent

• Monotonicity in the reconstruction is enforced by using van Albada-van

Leer edge-based slope limiter.

• The same reconstruction is used to compute the gradient for B(x, y).
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FV discretization schemes on triangles: CCFV approach

∂Up

∂t
|Tp| =

∑

q∈K(p)

Φq +

∫∫

Tp

LdΩ.

With the usual one

point quadrature at M , Roe’s solver is again utilized

Φq = Z
(
U

L
p ,nq

)
+ J̃

−
LR

(
U

R
q −U

L
p

)
.
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∫∫
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point quadrature at M , Roe’s solver is again utilized

Φq = Z
(
U

L
p ,nq

)
+ J̃

−
LR

(
U

R
q −U

L
p

)
.

Linear reconstruction for the CCFV scheme

• Naive calculation (at point D)

(wi,p)
L
D = wi,p+

||rpD||
||rpq||

LIM

(
(∇wi)

upw
p · rpq, (∇wi)

cent · rpq

)
;

(wi,q)
R
D = wi,q−

||rDq||
||rpq||

LIM

(
(∇wi)

upw
q · rpq, (∇wi)

cent · rpq

)
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∂Up
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|Tp| =
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With the usual one

point quadrature at M , Roe’s solver is again utilized
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(
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.

Linear reconstruction for the CCFV scheme

• Naive calculation (at point D)

(wi,p)
L
D = wi,p+

||rpD||
||rpq||

LIM

(
(∇wi)

upw
p · rpq, (∇wi)

cent · rpq

)
;

(wi,q)
R
D = wi,q−

||rDq||
||rpq||

LIM

(
(∇wi)

upw
q · rpq, (∇wi)

cent · rpq

)

• Corrected calculation (at point M )

wL
i,p = (wi,p)

L
D + rDM · (∇wi)p,

wR
i,q = (wi,q)

R
D + rDM · (∇wi)q.
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CCFV approach: Gradient operators

Three element (compact stencil) gradient

∇wi,p =
1

|Cc
p|

∑

q,r∈K(p)
r 6=q

1

2

(
wi,q + wi,r

)
nqr.

CMWR 2010, Barcelona 9



CCFV approach: Gradient operators

Three element (compact stencil) gradient

∇wi,p =
1

|Cc
p|

∑

q,r∈K(p)
r 6=q

1

2

(
wi,q + wi,r

)
nqr.

CMWR 2010, Barcelona 9



CCFV approach: Gradient operators

Three element (compact stencil) gradient

∇wi,p =
1

|Cc
p|

∑

q,r∈K(p)
r 6=q

1

2

(
wi,q + wi,r

)
nqr.

Extended element (wide stencil) gradient

∇wi,p =
1

|Cw
p |

∑

l,r∈K′(p)
r 6=l

1

2

(
wi,l + wi,r

)
nlr
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Typical behavior of the CCFV scheme at internal and boundary faces

• Keeping in mind that, we want to apply the same edge-based limiter as for

the NCFV scheme

• In an ideal unstructured grid, variables are extrapolated at M which will

coincide with D (intersection point of face ∂Tq ∩ ∂Tp and pq).

• There can be a "large" distance between M and D (also on boundary

faces, where ghost cells are used).

CMWR 2010, Barcelona 10



Topography source discretization (wet/wet case)

Ü C-property: (Bermudez and Vazquez, 1994)

A numerical should resolve exactly steady-state cases where:

u = v ≡ 0, BR −BL = −(hR − hL).
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Ü Satisfies the discrete steady state if BR = Bj and BL = Bi (1st order

scheme):

Z
(
U

L,n
)

+ J̃
−
(
U

R −U
L
)

=

(
1

2
P̃

(
I−

∣∣∣Λ̃
∣∣∣ Λ̃−1

)
P̃
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R̃
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)

Ü Satisfies the discrete steady state if BR = Bj and BL = Bi (1st order

scheme):

Z
(
U

L,n
)

+ J̃
−
(
U

R −U
L
)

=

(
1

2
P̃

(
I−

∣∣∣Λ̃
∣∣∣ Λ̃−1

)
P̃
−1

R̃

)

when

R̃ =




0

−g
hL + hR

2

(
BR −BL

)
nx

−g
hL + hR

2

(
BR −BL

)
ny
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but in the 2nd order MUSCL discretization a correction term should be added

to the source term Ψ̃
− (Hubbard and Garcia-Navarro, 2000), i.e.




0

−g
hL + hi

2

(
BL −Bi

)
nx

−g
hL + hi

2

(
BL −Bi

)
ny




.
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but in the 2nd order MUSCL discretization a correction term should be added

to the source term Ψ̃
− (Hubbard and Garcia-Navarro, 2000), i.e.




0

−g
hL + hi

2

(
BL −Bi

)
nx

−g
hL + hi

2

(
BL −Bi

)
ny




.

• the above term vanishes if BL = Bi, i.e. 1st order schemes

• for hydrostatic (steady) conditions inside each cell-i

BL −Bi = −
(
hL − hi

)

But what about wet/dry fronts and flow over adverse slopes?
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Topography source discretization (wet/dry case)

Ü Extended C-property, (Castro et al., 2005)

A scheme is considered to be well-balanced if it can solve exactly steady-state solutions

corresponding to flow at rest, regardless of including wet/dry transitions or not.

Ü In the MUSCL scheme for hydrostatic conditions we must have, at i−cell
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Topography source discretization (wet/dry case)

Ü Extended C-property, (Castro et al., 2005)

A scheme is considered to be well-balanced if it can solve exactly steady-state solutions

corresponding to flow at rest, regardless of including wet/dry transitions or not.

Ü In the MUSCL scheme for hydrostatic conditions we must have, at i−cell

BL −Bi = −
(
hL − hi

)
=⇒ (∇B)i = − (∇h)i

and similar for the j−cell =⇒ (∇B)j = − (∇h)j

If in the gradient calculation, of a wet cell, a dry node is involved we

correct the hL and/or hR by imposing

hL = hi − (BL −Bi) and/or hR = hj − (BR −Bj)

Ü For emerging bed situations, in the dry i−node (cell), the bed value has to be redefined

(Brufau et al., 2002) in R̃ and in order to maintain hydrostatic conditions i.e.

∆B =

{
−(hR − hL), if hL > εwd, hR ≤ εwd and hR < (BR −BL),

(BL −BR), otherwise.
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Solving at wet/dry front interface (continued)

For water in motion over emerging slopes, (Castro et al., 2005)

Ü A further assumption is made for a flow in motion over a slope
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Solving at wet/dry front interface (continued)

For water in motion over emerging slopes, (Castro et al., 2005)

Ü A further assumption is made for a flow in motion over a slope

If hL > εwd and hR ≤ εwd and hL < (BR −BL), then set temporarily

for the wet cell-i
uL = vL = 0

Ü Then calculate the well-balanced MUSCL numerical fluxes and sources.
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Solving at wet/dry front interface (continued)

For water in motion over emerging slopes, (Castro et al., 2005)

Ü A further assumption is made for a flow in motion over a slope

If hL > εwd and hR ≤ εwd and hL < (BR −BL), then set temporarily

for the wet cell-i
uL = vL = 0

Ü Then calculate the well-balanced MUSCL numerical fluxes and sources.

Ü Finally in case of steep downhill slopes, h in wet cells may become

negative. We apply the conservative approach of Brufau et. al. (2004) to

control negative depths and conserve mass.
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Other implementation details:
• Dry cell identification: use a wet/dry tolerance parameter εwd depending on grid

characteristics (Ricchiuto and Bollerman, 2009).

εwd =

(
hN

Lref

)2
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• Boundary conditions: use the theory of characteristics for: weak formulation for the NVFV

scheme and ghost cells for CCFV scheme.

• Apply a four stage 2nd order Runge-Kutta scheme, due to its enhanced stability region,

under the CFL condition

∆tn = CFL ·min
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Ri(√
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)
i

)
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Other implementation details:
• Dry cell identification: use a wet/dry tolerance parameter εwd depending on grid

characteristics (Ricchiuto and Bollerman, 2009).

εwd =

(
hN

Lref

)2

• Boundary conditions: use the theory of characteristics for: weak formulation for the NVFV

scheme and ghost cells for CCFV scheme.

• Apply a four stage 2nd order Runge-Kutta scheme, due to its enhanced stability region,

under the CFL condition

∆tn = CFL ·min
i

(
Ri(√

u2 + v2 + c
)
i

)
.

• Semi-implicit or implicit treatment for the friction source term within each cell following

Brufau et al., 2004 and Serrano-Pacheco et al., 2009.
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NUMERICAL RESULTS and COMPARISONS

Scheme Description

NCFV Node-Centered FV Scheme

CCFVc1 Cell-Centered FV compact (naive) reconstruction stencil

CCFVc2 Cell-Centered FV compact reconstruction stencil (corrected)

CCFVw1 Cell-Centered FV wide (naive) reconstruction stencil

CCFVw2 Cell-Centered FV wide reconstruction stencil (corrected)
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A 2D potential (steady) solution with topography
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Grid convergence including dry boundaries: Thacker’s 2D solutions

• Known analytical periodic solutions.

• The motion is oscillatory.

• Friction is not included.

• Difficult test (wetting and drying)

• Used it to check convergence rates.
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The Maplasset dam-break test case (EDF grid, CFL=0.9, nm = 0.033)
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Water depth evolution at t=800s, 1600s, 2400s
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CONCLUSIONS

• The NCFV scheme exhibited identical convergence behavior on all grids.
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• Convergence to steady-state solutions is greatly improved.

• The effect of the grid’s geometry at the boundary can lead to order

reduction for the CCFV schemes (if the the center of the face does not

coincide with the reconstruction location), even for good quality grids

• Results with the wide stencil CCFV scheme exhibited, in general, better accuracy.
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CONCLUSIONS

• The NCFV scheme exhibited identical convergence behavior on all grids.

• For the CCFV approach different convergence behavior is exhibited (with

an order reduction) for grids where the center of the face does not coincide

with the reconstruction location.

• The proposed correction for the reconstruction values remedies the problem (for both the

compact and wide stencil G-G gradient computations)

• For the wide stencil similar consistent convergence behavior to the NCFV is exhibited

• Convergence to steady-state solutions is greatly improved.

• The effect of the grid’s geometry at the boundary can lead to order

reduction for the CCFV schemes (if the the center of the face does not

coincide with the reconstruction location), even for good quality grids

• Results with the wide stencil CCFV scheme exhibited, in general, better accuracy.

• Both FV approaches to wetting and drying situations lead to order reduction

but this drop is moderate and within acceptable limits

• Important differences observed between the wetting and drying phase, with the results in

CMWR 2010, Barcelona 24



the drying phase being of reduced accuracy for the velocity computations
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• For the friction treatment an order reduction for the velocity components

was observed proportional to the implicitness introduced to the numerical

treatment
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• For the Malpasset case, all formulations produced results close to field

measurements, but with the NCFV scheme using half the degrees of freedom

of the CCFV ones.
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2D steady-state with topography and friction

Known analytical solution, Murillo et al., 2007.

Start from water at rest, nm = 0.3 and impose sub and super-critical

boundary conditions

Compare explicit, semi-implicit and implicit friction term treatment (in terms of

convergence rates)
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