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Motivation

Discretize depth-integrated equations that model free surface flows, using
mass and momentum conservation, by well-established FV approximations.
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* Most popular (applied): Nonlinear Shallow Water Equations (NSWE)

– Limitation: Not applicable for wave propagation in intermediate/deeper
waters (dispersion has an effect on free surface flow)

* Popular Boussinesq-type (BT) models for intermediate water depths:

– Peregrine’s standard equations (1967) but for hL ≈
1
5

– Madsen and Sörensen’s (MS) (1992), Nowgu’s (1993) and Beji and
Nadaoka (BN) equations (1996) for h

L ≈
1
2

– Gobbi, Kirby and Wei BT model (2000)
– Variety of BT models that include higher-order nonlinear and

dispersive terms: P.A. Madsen et al. (2002-2009), Lynett et al.
(2004-2010) and Tissier, Bonneton et al. (2010-2012).

Frontiers in Computational Physics 2012 1



(Some) Numerical Works

* Until recently, Finite-Differences (FD) was the predominant method
based on the work of Wei & Kirby (1995), for 1D & 2D computations

Frontiers in Computational Physics 2012 2



(Some) Numerical Works

* Until recently, Finite-Differences (FD) was the predominant method
based on the work of Wei & Kirby (1995), for 1D & 2D computations

* More recently hybrid FV/FD schemes in 1D & 2D:
– Nwogu’s, MS, BN, Serre Green-Green Naghdi S-GN equations using:

Riemann solvers (Roe’s and HLL-type), MUSCL-type reconstructions.
Erduran et al. (2005 & 2007), Cienfuegos et al (2006 & 2007), Tonelli & Petti (2009),

Shiach & Mingham (2009), Roeber et al. (2010), Bonneton et al. (2010), Kazolea &

Delis (2011), Dutykh et al. (2011).

Frontiers in Computational Physics 2012 2



(Some) Numerical Works

* Until recently, Finite-Differences (FD) was the predominant method
based on the work of Wei & Kirby (1995), for 1D & 2D computations

* More recently hybrid FV/FD schemes in 1D & 2D:
– Nwogu’s, MS, BN, Serre Green-Green Naghdi S-GN equations using:

Riemann solvers (Roe’s and HLL-type), MUSCL-type reconstructions.
Erduran et al. (2005 & 2007), Cienfuegos et al (2006 & 2007), Tonelli & Petti (2009),

Shiach & Mingham (2009), Roeber et al. (2010), Bonneton et al. (2010), Kazolea &

Delis (2011), Dutykh et al. (2011).

– MS equations in 2D Tonelli & Petti (2009 & 2010), two-layer BT equations
Lynnet et al., (2006-2010), TVD Boussinesq solver Shi, Kirby et. al. (2012).

Frontiers in Computational Physics 2012 2



(Some) Numerical Works

* Until recently, Finite-Differences (FD) was the predominant method
based on the work of Wei & Kirby (1995), for 1D & 2D computations

* More recently hybrid FV/FD schemes in 1D & 2D:
– Nwogu’s, MS, BN, Serre Green-Green Naghdi S-GN equations using:

Riemann solvers (Roe’s and HLL-type), MUSCL-type reconstructions.
Erduran et al. (2005 & 2007), Cienfuegos et al (2006 & 2007), Tonelli & Petti (2009),

Shiach & Mingham (2009), Roeber et al. (2010), Bonneton et al. (2010), Kazolea &

Delis (2011), Dutykh et al. (2011).

– MS equations in 2D Tonelli & Petti (2009 & 2010), two-layer BT equations
Lynnet et al., (2006-2010), TVD Boussinesq solver Shi, Kirby et. al. (2012).

* 2D Finite Element (FE) on unstructured meshes: Walkey & Berzins (2002),

Sorensen et al. (2004), Escilsson & Sherwin (2006) and Engsig-Karup et al. (2008).

Frontiers in Computational Physics 2012 2



(Some) Numerical Works

* Until recently, Finite-Differences (FD) was the predominant method
based on the work of Wei & Kirby (1995), for 1D & 2D computations

* More recently hybrid FV/FD schemes in 1D & 2D:
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Riemann solvers (Roe’s and HLL-type), MUSCL-type reconstructions.
Erduran et al. (2005 & 2007), Cienfuegos et al (2006 & 2007), Tonelli & Petti (2009),

Shiach & Mingham (2009), Roeber et al. (2010), Bonneton et al. (2010), Kazolea &

Delis (2011), Dutykh et al. (2011).

– MS equations in 2D Tonelli & Petti (2009 & 2010), two-layer BT equations
Lynnet et al., (2006-2010), TVD Boussinesq solver Shi, Kirby et. al. (2012).

* 2D Finite Element (FE) on unstructured meshes: Walkey & Berzins (2002),

Sorensen et al. (2004), Escilsson & Sherwin (2006) and Engsig-Karup et al. (2008).

* FV for unstructured meshes: Only one work by Asmar and Nwogu
(2006) using a low-order staggered scheme
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Physical problem setup

η: free surface elevation;
h: steel water level;
H = η + h: total water depth;
b: bottom topography;
L: wave length;
A: wave amplitude
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Physical problem setup

η: free surface elevation;
h: steel water level;
H = η + h: total water depth;
b: bottom topography;
L: wave length;
A: wave amplitude

Deep water: hL >
1
2

Intermediate water: 1
20 <

h
L ≤

1
2

Shallow water: hL ≤
1
20
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Mathematical Model: Nowgu’s extended Boussinesq equations

Using za = −0.531h as optimal reference depth and u ≡ ua at z = za

ηt + (Hu)x + (Hv)y +
[(

z2
a

2
− h

2

6

)
h(ux + vy)x +

(
za +

h

2

)
h ((hu)x + (hv)y)x

]
x

+
[(

z2
a

2
− h

2

6

)
h(ux + vy)y +

(
za +

h

2

)
h ((hu)x + (hv)y)y

]
y

= 0, (1)

ut + gηx + uux + vuy +
[
z2
a

2
(uxx + vyx) + za ((hu)xx + (hv)yx)

]
t

= Rfx +Rbx, (2)

vt + gηy + uvx + vvy +
[
z2
a

2
(uxy + vyy) + za ((hu)xy + (hv)yy)

]
t

= Rfy +Rby, (3)
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Equations derived under the assumption that

ε := A/h� 1, µ2 := h2/L2� 1, S := ε/µ2 = O(1),

and provide good linear accuracy to kh = 2πh
L ≈ 3 (intermediate water).
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Vector conservative form

Ut +∇ · H(U?) = S(U) on Ω× [0, t] ⊂ R2 × R+,

U vector of the new variables, U? = [H,Hu,Hv]T andH = [F,G]

U =

 H
P1

P2

 , F(U?) =

 Hu
Hu2 + 1

2gH
2

Huv

 , G(U?) =

 Hv
Huv

Hv2 + 1
2gH

2

 ,
with P =

[
P1

P2

]
= H

[
z2
a
2∇(∇ · u) + za∇(∇ · hu) + u

]
and S = Sb + Sd + Sf
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[
P1

P2

]
= H

[
z2
a
2∇(∇ · u) + za∇(∇ · hu) + u

]
and S = Sb + Sd + Sf

Sb =

 0
−gHbx
−gHby

 , Sd =

 −ψc
−uψc + ψMx

−vψc + ψMy

 , Sf =

 0
Rfx +Rbx
Rfy +Rby


where

ψc = ∇ ·
[(

z2
a

2
− h

2

6

)
h∇(∇ · u) +

(
za +

h

2

)
h∇(∇ · hu)

]
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Vector conservative form (cont.)

ψM =
[
ψMx

ψMy

]
= Ht

z2
a

2
∇(∇ · u) +Htza∇(∇ · hu)
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Vector conservative form (cont.)

ψM =
[
ψMx

ψMy

]
= Ht

z2
a

2
∇(∇ · u) +Htza∇(∇ · hu)

Rf = [Rfx Rfy] = [−gHSxf − gHS
y
f ]T

where

Sxf = n2
m

u||u||
H−4/3

and Syf = n2
m

v||u||
H−4/3

Friction force, nm = Manning coef.
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Vector conservative form (cont.)

ψM =
[
ψMx

ψMy

]
= Ht

z2
a

2
∇(∇ · u) +Htza∇(∇ · hu)

Rf = [Rfx Rfy] = [−gHSxf − gHS
y
f ]T

where

Sxf = n2
m

u||u||
H−4/3

and Syf = n2
m

v||u||
H−4/3

Friction force, nm = Manning coef.

Rb = [Rbx, Rby]
T = parametrization of wave breaking characteristics where

Rbx = ∇ · R̃bx, where R̃bx =
[
ν(Hu)x

ν

2
((Hu)y + (Hv)x)

]T
and

Rby = ∇ · R̃by, where R̃by =
[ν

2
((Hu)y + (Hv)x) ν(Hv)y

]T
.
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Numerical Model: Spatial discretization (overview)

- Advective (nonlinear) part and topography source term: Well-balanced FV formulation.

- Roe’s approximate Riemann solver is used (Roe, 1981).
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- Upwinding of the topography source term (Bermudez et al., 1994 & Nikolos and Delis, 2009).

- High-order spatial accuracy: third-order MUSCL-type scheme (Barth, 1993).

- Dispersion terms: consistent FV approximations based on gradient and divergence
computations (Kazolea et al., 2012)

- Satisfy the C-property (flow at rest) to higher spatial order: Addition of an extra term to
bed upwinding (Hubbard and Garcia-Navarro, 2000 & Nikolos and Delis, 2009)

- Special treatment of wet/dry fronts:
* Identify dry cells: through an adaptive (grid dependant) tolerance parameter
* Consistent depth reconstruction: satisfy ∇H = −∇b to high-order on wet/dry fronts

(Delis et al., 2011)
* Satisfy an extended C-property: Redefinition of the bed slope, numerical fluxes are

computed assuming temporarily zero velocity at wet/dry faces (Brufau et al., 2004)
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Numerical Model: Spatial discretization

Use of node-centered median dual approach to create control volume CP :

∫∫
CP

∂U
∂t
dΩ +

∫∫
CP

∇ · HdΩ =
∫∫

CP

SdΩ ⇒ ∂

∂t

∫∫
CP

UdΩ +
∮
∂CP

H · ñdl=
∫∫

CP

SdΩ
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∫∫
CP

∂U
∂t
dΩ +

∫∫
CP

∇ · HdΩ =
∫∫

CP

SdΩ ⇒ ∂

∂t

∫∫
CP

UdΩ +
∮
∂CP

H · ñdl=
∫∫

CP

SdΩ

Introducing the flux vectors

ΦPQ =
∫
∂CPQ

(
Fñx + Gñy

)
dl and ΦP,Γ =

∫
∂CP∩Γ

(
Fñx + Gñy

)
dl

Hence, FV scheme reads

∂UP

∂t
= − 1
|CP |

∑
Q∈KP

ΦPQ −
1
|CP |

ΦP,Γ +
1
|CP |

∫∫
CP .

(Sb + Sd + Sf) dΩ
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Gradient and divergence edge formulas: Green-Gauss linear reconstruction on ΩP

|CP | = 1
3|ΩP |∫∫

ΩP

∇wdA =
∮
∂ΩP

wñdl ⇒ (∇w)P =
1
|CP |

∑
Q∈KP

1
2

(
wP + wQ

)
nPQ
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wñdl ⇒ (∇w)P =
1
|CP |

∑
Q∈KP

1
2

(
wP + wQ

)
nPQ

∫∫
ΩP

∇·udΩ =
∮
∂ΩP

u · ñdl =
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3
2

(uP +uQ) ·nPQ ⇒ (∇·u)P =
1

2|CP |
∑
Q∈KP

(uP +uQ) ·nPQ

For boundary cells:

(∇w)P =
1
|CP |

[ ∑
Q∈KP

1
2

(
wP + wQ

)
nPQ + wP

(
nP,1 + nP,2

)]

(∇ · u)P =
1
|CP |

[ ∑
Q∈KP

1
2

(uP + uQ) · nPQ + uP · (nP,1 + nP,2)
]
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Discretization of the dispersion terms (mass equation): Integral averaging

(ψc)P =
1
|CP |

∫∫
CP

∇ ·
[(

z2
a

2
− h

2

6

)
h∇(∇ · u) +

(
za +

h

2

)
h∇(∇ · hu)

]
dΩ

=
1
|CP |

∑
Q∈KP

{∫
∂CPQ

[(
z2
a

2
− h

2

6

)
h∇(∇ · u)

]
·ñdl +

∫
∂CPQ

[(
za +

h

2

)
h∇(∇ · hu)

]
·ñdl

}
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(ψc)P =
1
|CP |

∫∫
CP

∇ ·
[(

z2
a

2
− h

2

6

)
h∇(∇ · u) +

(
za +

h

2

)
h∇(∇ · hu)

]
dΩ

=
1
|CP |

∑
Q∈KP

{∫
∂CPQ

[(
z2
a

2
− h

2

6

)
h∇(∇ · u)

]
·ñdl +

∫
∂CPQ

[(
za +

h

2

)
h∇(∇ · hu)

]
·ñdl

}

∫
∂CPQ

(
z2
a
2 −

h2

6

)
h∇(∇ · u) · ñdl ≈

[(
z2
a
2 −

h2

6

)
h
]
M

[∇(∇ · u) · nPQ]M ,

∫
∂CPQ

(
za + h

2

)
h∇(∇ · hu) · ñdl ≈

[(
za + h

2

)
h
]
M

[∇(∇ · hu) · nPQ]M

KPQ := {R ∈ N | R is a vertex of MPQ and RQ ∈ ∂MPQ}

(∇w)M =
1

|MPQ|
∑

R,Q∈KPQ
R 6=Q

1
2

(wR + wQ) nRQ
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Discretization of the dispersion terms (momentum equations):

1
|CP |

∫∫
CP

(−uψc + ψM) dΩ = − uP
|CP |

∫∫
CP

ψcdΩ +
1
|CP |

∫∫
CP

ψMdΩ.

The ψc is discretized as before and the second term takes the discrete form:

(ψM)P =
1
|CP |

∫∫
CP

ψMdΩ =
1
|CP |

∫∫
CP

Ht
z2
a

2
∇(∇ · u) +Htza∇(∇ · hu)dΩ

=
1
|CP |

∫∫
CP

Ht
z2
a

2
∇(∇ · u)dΩ +

1
|CP |

∫∫
CP

Htza∇(∇ · hu)dΩ

≈
[
Ht
z2
a

2

]
P

[∇(∇ · u)]P + [Htza]P [∇(∇ · hu)]P ,
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Numerical Model (continued)

Consider the semi-discrete scheme:
∂UP

∂t
= L (U)

Time Integration (match the order of truncation errors from dispersion terms):
Use 3rd order explicit Strong Stability-Preserving Runge-Kutta (SSP-RK):

U(1)
P = U(n)

P + ∆tnL
(
U(n)

)
;

U(2)
P =

3
4
U(n)
P +

1
4
U(1)
P + ∆tn

1
4
L
(
U(1)

)
;

U(n+1)
P =

1
3
U(n)
P +

2
3
U(2)
P + ∆tn

2
3
L
(
U(2)

)
Time step ∆tn estimated by a CFL stability condition as

∆tn = CFL ·min
P

(
RP(√

u2 + v2 + c
)n
P

)
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Velocity field recovery: from new solution variables P = [P1, P2]T

At each step in the RK scheme a linear system MV = C with M ∈ R2N×2N and
C = [P1 P2 · · · PN ]T, has to be solved to obtain the velocities V = [u1 u2 · · · uN ]T.
Each two rows of the system read as

H
(i)
P

[
z2
a

2
∇(∇ · u) + za∇(∇ · hu) + u

](i)

P

= P(i)
P , i = 1, 2, n+ 1.
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a

2
∇(∇ · u) + za∇(∇ · hu) + u

](i)

P

= P(i)
P , i = 1, 2, n+ 1.

Important to (a) keep the unknown information needed at the minimum possible level
and (b) exploit already computed geometrical information.

HP

(z2
a)P
2

1
|CP |

∑
Q∈KP

(∇ · u)MnPQ +
(za)P
|CP |

∑
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(∇ · hu)MnPQ + uP
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∑
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(∇ · u)MnPQ +
(za)P
|CP |

∑
Q∈KP

(∇ · hu)MnPQ + uP

 = PP

(z2
a)P

2|CP |
∑
Q∈KP

AQuQ+APuP+
(za)P
|CP |

∑
Q∈KP

BQuQ+BPuP+IuP =
1
HP

PP , P = 1 . . . N
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Solution of the linear system:

* The matrix M is sparse and structurally symmetric but is also mesh
dependent.
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dependent.

* Matrix M is stored in the compressed sparse row (CSR) format

* The ILUT preconditioner from SPARSKIT package is used

* The reverse Cuthill–McKee (RCM) algorithm is also employed to
reorder the matrix elements as to minimize the matrix bandwidth.

* System is solved using Bi-Conjugate Gradient Stabilized method
(BiCGStab), with tolerance 5 · 10−6

* Convergence to the solution was obtained in one or two steps with the
numerical solution for the velocities at the previous time step given as
initial guess.
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Wave breaking models

- Two wave breaking models are implemented and tested

1. Eddy viscosity approach (Keneddy et al., 2000)

(Rb)P =
1
|CP |

∫∫
CP

RbdΩ =
1
|CP |

∫∫
CP

[
∇ · R̃by

∇ · R̃bx

]
dΩ

=
1
|CP |

∫
∂CPQ

[
R̃bx · ñ
R̃by · ñ

]
dl ≈ 1

|CP |

[
R̃bx · nPQ
R̃by · nPQ

]
M

Rbx = ∇ · R̃bx, where R̃bx =
[
ν(Hu)x

ν

2
((Hu)y + (Hv)x)

]T
Rby = ∇ · R̃by, where R̃by =

[ν
2

((Hu)y + (Hv)x) ν(Hv)y
]T

where ν = Bδ2
bHηt is the eddy viscosity coefficient with 0 < B < 1 and δb is a mixing

length coefficient.
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Wave breaking models (cont.)
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Wave breaking models (cont.)

2. Hybrid model
Idea: switching off the dispersive terms.
Boussinesq degenerate into NSWE as dispersive terms become negligible
(Tonelli and Petti, 2009 & 2010 for the MS equations).

* Criterion: If ε = A
h ≤ 0.8, Boussinesq equations are solved otherwise

NSWE are solved.
Value of ε is computed and checked in each computational cell at every
time step.
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* Criterion: If ε = A
h ≤ 0.8, Boussinesq equations are solved otherwise
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* Make the scheme more stable: In post breaking region ε < 0.4 in order
to switch from NSWE to Boussinesq (Tonelli and Petti, 2012).
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Wave breaking models (cont.)

2. Hybrid model
Idea: switching off the dispersive terms.
Boussinesq degenerate into NSWE as dispersive terms become negligible
(Tonelli and Petti, 2009 & 2010 for the MS equations).

* Criterion: If ε = A
h ≤ 0.8, Boussinesq equations are solved otherwise

NSWE are solved.
Value of ε is computed and checked in each computational cell at every
time step.

* Make the scheme more stable: In post breaking region ε < 0.4 in order
to switch from NSWE to Boussinesq (Tonelli and Petti, 2012).

* Need of a ”clever” implementation.
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Boundary conditions and internal source function:

• Wall (reflective) boundary condition: u · ñ = 0 for x ∈ ∂Ω
By conservation of mass (no loss or gain through the wall)

∂

∂t

∫∫
Ω

HdΩ+
∫
∂Ω

[
Hu +

(
z2
a

2
− h

2

6

)
h∇(∇ · u) +

(
za +

h

2

)
h∇(∇ · hu)

]
·ñdl = 0

Define the normal boundary advective flux in weak form, ΦP,Γ =

 0
1
2g(H?)2nP,1x
1
2g(H?)2nP,1y


by the method of characteristics
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·ñdl = 0

Define the normal boundary advective flux in weak form, ΦP,Γ =

 0
1
2g(H?)2nP,1x
1
2g(H?)2nP,1y


by the method of characteristics

• Absorbing boundaries: should dissipate the energy of incoming waves

Sponge layer is defined: m(x) =

√
1−

(
x− d(x)

Ls

)2

, L ≤ Ls ≤ 1.5L,
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− h
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)
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(
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h

2

)
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]
·ñdl = 0

Define the normal boundary advective flux in weak form, ΦP,Γ =

 0
1
2g(H?)2nP,1x
1
2g(H?)2nP,1y


by the method of characteristics

• Absorbing boundaries: should dissipate the energy of incoming waves

Sponge layer is defined: m(x) =

√
1−

(
x− d(x)

Ls

)2

, L ≤ Ls ≤ 1.5L,

• Internal source function for regular waves (Wei et al., 1993) added to the
mass equation

S(x, t) = D∗ exp
(
γ(x− xs)2

)
sin(λy − ωt)
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I. 2D run-up of a solitary wave on a conical island (Briggs et al. 1995)

Area: (x, y) = [−5, 28m]× [0, 30m], A/h = 0.18, N = 52, 191 , CFL = 0.8
Using mesh h− enrichment
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2D run-up of a solitary wave on a conical island (cont)

Time series of surface elevation at wave gauges around the island:
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2D run-up of a solitary wave on a conical island (cont)

Time series of surface elevation at wave gauges around the island:

Experimental measurements and numerical runup around the conical island:

Simulation ∼ 28min on a single 2.4GHz Intel Core 2 Quad Q6600 processor
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II. Wave propagation over a semicircular shoal (Whalin, 1971)

Case B: T = 2.0s, h/L = 0.117, A/h = 0.0165, kh = 0.735 and S = 1.198
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II. Wave propagation over a semicircular shoal (Whalin, 1971)

Case B: T = 2.0s, h/L = 0.117, A/h = 0.0165, kh = 0.735 and S = 1.198

Free surface and spatial evolution of the 1st, 2nd and 3rd harmonic
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III. Breaking on a sloping beach (Hansen and Svendsen, 1979)

Area: (x, y) = [−26, 26m]× [0, 1m], N = 24, 996 , CFL = 0.4

Case B (Spilling-plunging):
T = 2.5s, H = 0.39m, S = 8.6032
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Breaking on a sloping beach

Case C (Spilling): T = 2.0s, H = 0.36m, S = 4.8077
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IV. Wave over a bar (Beji and Battjes, 1993)

(x, y) = [−10, 30m]× [0, 0.8m], H = 0.02m, T = 2.02s, N = 40, 364 , CFL = 0.4
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IV. Wave over a bar (breaking case)

(x, y) = [−10, 30m]× [0, 0.8m], H = 0.029m, T = 2.525s, N = 40, 364 , CFL = 0.4
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V. Two-dimensional reef (Roeber et al, 2010)

Area: (x, y) = [0, 83m]× [0, 1m], A/h = 0.3, N = 10, 900 , CFL = 0.4, nm = 0.014
—Hybrid and — Eddy viscosity

0 10 20 30 40 50 60 70 80
−0.2

0

0.2

0.4

η
/
h

t = 32.5s
 

 

Bed

Tonelli

Kennedy

Exp

Shoaling, before breaking

Frontiers in Computational Physics 2012 25

user
Text Box



V. Two-dimensional reef (Roeber et al, 2010)

Area: (x, y) = [0, 83m]× [0, 1m], A/h = 0.3, N = 10, 900 , CFL = 0.4, nm = 0.014
—Hybrid and — Eddy viscosity

0 10 20 30 40 50 60 70 80
−0.2

0

0.2

0.4

η
/
h

t = 32.5s
 

 

Bed

Tonelli

Kennedy

Exp

Shoaling, before breaking

0 10 20 30 40 50 60 70 80
−0.2

0

0.2

0.4

η
/
h

t = 34.5s
 

 

Bed

Tonelli

Kennedy

Exp

During breaking

Frontiers in Computational Physics 2012 25

user
Text Box

user
Text Box



V. Two-dimensional reef (Roeber et al, 2010)

Area: (x, y) = [0, 83m]× [0, 1m], A/h = 0.3, N = 10, 900 , CFL = 0.4, nm = 0.014
—Hybrid and — Eddy viscosity

0 10 20 30 40 50 60 70 80
−0.2

0

0.2

0.4

η
/
h

t = 32.5s
 

 

Bed

Tonelli

Kennedy

Exp

Shoaling, before breaking

0 10 20 30 40 50 60 70 80
−0.2

0

0.2

0.4

η
/
h

t = 34.5s
 

 

Bed

Tonelli

Kennedy

Exp

During breaking

0 10 20 30 40 50 60 70 80
−0.2

0

0.2

0.4

η
/
h

t = 35.5s
 

 

Bed

Tonelli

Kennedy

Exp

Wave jet hits still water

Frontiers in Computational Physics 2012 25

user
Text Box

user
Text Box

user
Text Box



V. Two-dimensional reef (Roeber et al, 2010)

Area: (x, y) = [0, 83m]× [0, 1m], A/h = 0.3, N = 10, 900 , CFL = 0.4, nm = 0.014
—Hybrid and — Eddy viscosity

0 10 20 30 40 50 60 70 80
−0.2

0

0.2

0.4

η
/
h

t = 32.5s
 

 

Bed

Tonelli

Kennedy

Exp

Shoaling, before breaking

0 10 20 30 40 50 60 70 80
−0.2

0

0.2

0.4

η
/
h

t = 34.5s
 

 

Bed

Tonelli

Kennedy

Exp

During breaking

0 10 20 30 40 50 60 70 80
−0.2

0

0.2

0.4

η
/
h

t = 35.5s
 

 

Bed

Tonelli

Kennedy

Exp

Wave jet hits still water

0 10 20 30 40 50 60 70 80
−0.2

0

0.2

0.4

η
/
h

t = 38.5s
 

 

Bed

Tonelli

Kennedy

Exp

Bore propagation

Frontiers in Computational Physics 2012 25

user
Text Box

user
Text Box

user
Text Box

user
Text Box



Two-dimensional reef (cont.)
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Two-dimensional reef (cont.)
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VI. Three-dimensional reef (Lynett et al., 2011)

Area: (x, y) = [0, 45m]× [−13m, 13m], A/h = 0.5, N = 87, 961 , CFL = 0.4
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Three-dimensional reef (cont)

Time series of surface elevation at wave gauges:
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Time series of surface elevation at wave gauges:
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Three-dimensional reef (cont)

Time series of surface elevation at wave gauges:
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Three-dimensional reef (cont)

Time series of velocities at wave gauges:
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Three-dimensional reef (cont)

Time series of velocities at wave gauges:
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Three-dimensional reef (cont)

Time series of velocities at wave gauges:
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Three-dimensional reef (cont)

Time series of velocities at wave gauges:
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Conclusions

• A 2D unstructured FV numerical model has been developed for solving Nwogu’s extended BT
equations, formulated as to have identical flux terms as to the NSWE.
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Conclusions

• A 2D unstructured FV numerical model has been developed for solving Nwogu’s extended BT
equations, formulated as to have identical flux terms as to the NSWE.

• The conservative formulation and the higher-order FV scheme enhance the applicability of
the model without altering its dispersion characteristics.

• The well-balanced topography and wet/dry front discretizations provided accurate,
conservative and stable wave propagation, shoaling and run-up.

• Impose boundary conditions through weak formulation and no ghost cells have to be used.

• The flexibility of the FV approach and the use of h− refinement are advantageous

• The edge-based structure adopted can provide computational efficiency, since most of the
geometric quantities needed can be calculated in a pre-processing stage.

• Two different types of wave breaking mechanisms are implement with comparable
performance.

• Relatively straight forward to extend existing NSWE codes that use (unstructured) FV
schemes as to include dispersion characteristics for deeper water simulations.

Frontiers in Computational Physics 2012 30



Thank you for your attention!!
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2D solitary wave propagation in a channel
Area: (x, y) = [−100, 2400m]× [−5, 5m], A/h = 0.2, N = 53, 304 , CFL = 0.8.
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Wave Interaction with a Vertical Circular Cylinder (Antunes do Cormo et al. 1993)

Area: (x, y) = [−4, 10m]× [−0, 0.55m], A/h = 0.25, N = 10, 609 , CFL = 0.8
Use of an h− enrichment technique (Nikolos and Delis, 2009)
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Solitary wave-cylinder interaction: numerical and experimental results for η at WG1-WG6
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