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Motivation

Discretize depth averaged equations that model free surface flows, using
mass and momentum conservation, by well established FV schemes.

* Most popular (applied): Nonlinear Shallow Water Equations (SWE)

– Limitation: Not applicable for wave propagation in intermediate/deeper
waters (dispersion has an effect on free surface flow)

* Use of popular Boussinesq-type models (but in conservation law from)

– Nowgu’s equations (Nowgu, 1993)

– Madsen and Sörensen’s (MS) equations (Madsen and Sörensen, 1992)

Both have good linear accuracy to kd ≈ 3 (intermediate water).

η: free surface elevation
b: topography

d: steel water level
H = η + d: total water depth
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Some recent relevant works

* Hybrid finite-volume (FV) finite-difference (FD) schemes to:

– MS, and Beji and Nadaoka (1996) equations, Roe’s Riemann solver,
surface gradient method for topography discretization (Zhou et al., 2001), not
tested on wet/dry and breaking wave cases (Erduran et al., 2005 and 2007),
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topography, no specific wet/dry front treatment (Tonelli and Petti, 2009).

– MS and Nwogu’s equations in non-conservative form, HLL Riemann
solver, surface gradient method in second order MUSCL-Hancock
scheme with no specific wet/dry front treatment (Shiach and Mingham, 2009),

– Nwogu’s equations, Riemann solver of Wu and Cheung (2008), fifth
order reconstruction scheme, surface gradient method, first order in
wet/dry fronts (Roeber et al., 2010),

– Two-layer equation models (Lynnet et al., 2006-2010).
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P ∗

]
, F(U) =

[
Hu

Hu2 + 1
2gH

2

]
.
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• Rb parametrization of wave breaking characteristics
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Mathematical Models: Madsen and Sörensen’s equations

• P ∗ = Hu− (B + 1
3)d2(Hu)xx − 1

3dx(Hu)x [”Velocity” function]

• S(U) = Sb + Sf + Sd [Source term]

where now Sd = [0 − ψ −Rb] and

• ψ = −Bgd3ηxxx − 2d2dxBgηxx

B = 1
15 determines the dispersion properties of the system

A numerical scheme has to:

1. be conservative and shock-capturing,

2. be well-balanced for wet/wet and wet/dry cases,

3. be of high-order to ensure truncation errors less than dispersion in the models.

4. utilize a wave breaking mechanism to cure instabilities due to dispersion.

5. properly incorporate friction terms
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Numerical Model

- Advective part and topography source term: Well-balanced Finite Volume formulation.
Dispersive terms: Finite differences.
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- Advective part and topography source term: Well-balanced Finite Volume formulation.
Dispersive terms: Finite differences.

- Roe’s Riemann solver is used (Roe, 1981).

- Upwinding of the topography source term (Bermudez et al., 1994, Delis et al., 2008).

- High-order spatial accuracy: fourth order MUSCL-type scheme (Yamamoto et al., 1998).

- For dispersion terms: fourth order FD of first-order spatial derivatives and second and
third-order FD for second and third-order derivatives is used.

- Satisfy the C-property (flow at rest) to higher spatial order: Addition of an extra term to
bed upwinding (Hubbard and Garcia-Navarro, 2000 and Delis and Nikolos, 2009)

- Special treatment wet/dry fronts:
* Identify dry cells: through an adaptive (grid dependant) tolerance parameter
* Consistent depth reconstruction: satisfy ∂h

∂x = −∂b
∂x to high-order on wet/dry fronts

* Satisfy an extended C-property: Redefinition of the bed slope, numerical fluxes are
computed assuming temporarily zero velocity at wet/dry faces (Brufau et al., 2004)
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Numerical Model (continued)

- Time Integration (should at least match the order of truncation errors from dispersion
terms): Third order Adams-Basforth predictor and fourth-order Adams-Moulton
corrector stage (but also tested 3rd and 4th order Runge-Kutta methods).
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tridiagonal system.

- Implicit formulation for the friction terms.

- Two wave breaking models are implemented and tested

* Eddy viscosity approach (Roeber et al., 2010)
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- Time Integration (should at least match the order of truncation errors from dispersion
terms): Third order Adams-Basforth predictor and fourth-order Adams-Moulton
corrector stage (but also tested 3rd and 4th order Runge-Kutta methods).

- Extract depth averaged velocities, u, from the ”velocities” functions P ∗ by solving a
tridiagonal system.

- Implicit formulation for the friction terms.

- Two wave breaking models are implemented and tested

* Eddy viscosity approach (Roeber et al., 2010)

Rb = [v(Hu)x]x ,with v = −BH|Hu|x and B = 1− (Hu)x
U1

for |(Hu)x| ≥ U2

(Hu)x used as indicator consistent with the conservative formulation, better detection
of hydraulic jumps, U1 and U2 flow speeds used for breaking detection

* Idea: Boussinesq degenerate into NSWE as dispersive terms become negligible
(Tonelli and Petti, 2009)
If ε = A

d ≤ 0.8 Boussinesq are solved otherwise SWE are solved.
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Some Numerical Tests and Results

Head on collision of two solitary waves

Area length L = [0, 300m], Initial hight A/d = 0.3, ∆x/d = 0.1, CFL = 0.2.

Surface profiles at times t
√
g/d=0, 56.63 ,101.2 and 200.
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Solitary wave run-up on a plane beach (Synolakis, 1987)

L = [−10, 100m], ∆x/d = 0.1, CFL = 0.2, nm = 0.01, slope=1 : 19.85
* First case: A/d = 0.04 (non-breaking)
* Second case: A/d = 0.28 (breaking)

Case A: Surface profiles at times t
√
g/d = 20, 26, 32, 38
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Case A: Surface profiles at times t
√
g/d = 44, 50, 56, 62
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Case B: Surface profiles at times t
√
g/d = 10, 15, 20, 25
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Case B: Surface profiles at times t
√
g/d = 30, 45, 55, 70
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Solitary wave propagation over reefs

Laboratory experiments at the O.H. Hinsdale Wave Research Laboratory of Oregon
State University, 2007-2009 (Roeber et al., 2010).
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50-cm solitary over a dry reef flat

L = [0, 48.8m], d = 1.0m, ∆x/d = 0.1m, CFL = 0.4, nm = 0.012, A/d = 0.5

t = 52.3 Shoaling
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t = 58.3
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75-cm solitary over a reef (includes a fore reef slope of 1/12 and a 0.2m reef crest.)

L = [0, 104m], d = 2.5m, ∆x/d = 0.1m, CFL = 0.4, nm = 0.012, A/d = 0.3

t = 63 Shoaling
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75-cm solitary over a reef (includes a fore reef slope of 1/12 and a 0.2m reef crest.)

L = [0, 104m], d = 2.5m, ∆x/d = 0.1m, CFL = 0.4, nm = 0.012, A/d = 0.3

t = 63 Shoaling

t = 65 Vertical profile, before breaking

t = 68.5 During breaking (starts around 67)

t = 70.5 Wave jet hits still water

NUMAN 2010 15



t = 72.7 Hydraulic jump develops
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t = 72.7 Hydraulic jump develops

t = 80.8 Bore propagation

t = 98.2 Reflection of the bore

t = 112 Hydraulic jump on the fore reef

t = 120.3
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Conclusions
• A 1D alternate hybrid FV/FD conservative numerical model with shock-capturing
capabilities for solving Nwogu’s and MS equations, formulated in conservative form as to
have identical flux terms as the SWE, has been developed.
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capabilities for solving Nwogu’s and MS equations, formulated in conservative form as to
have identical flux terms as the SWE, has been developed.

• The conservative formulation and numerical scheme enhance the capability of the models
without altering their dispersion characteristics.

• The proposed topography and wet/dry front discretizations provided accurate and stable
wave propagation.

• For long waves that don’t break, differences between SWE and Boussinesq models where
small.
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