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‘ Motivation I

Discretize depth averaged equations that model free surface flows, using
mass and momentum conservation, by well established FV schemes.

* Most popular (applied): Nonlinear Shallow Water Equations (SWE)
— Limitation: Not applicable for wave propagation in intermediate/deeper
waters (dispersion has an effect on free surface flow)
* Use of popular Boussinesq-type models (but in conservation law from)

— Nowgu’s equations (Nowgu, 1993)
— Madsen and Sorensen’s (MS) equations (Madsen and Sérensen, 1992)

Both have good linear accuracy to kd ~ 3 (intermediate water).

T 1. free surface elevation
b: topography

« |7 d: steel water level
H = n + d: total water depth

\\—/T

% NUMAN 2010 1



‘ Some recent relevant works I

* Hybrid finite-volume (FV) finite-difference (FD) schemes to:

— MS, and Beji and Nadaoka (1996) equations, Roe’s Riemann solver,
surface gradient method for topography discretization (Zhou et al., 2001), nOt
tested on wet/dry and breaking wave cases (Erduran et al., 2005 and 2007),
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* Hybrid finite-volume (FV) finite-difference (FD) schemes to:

— MS, and Beji and Nadaoka (1996) equations, Roe’s Riemann solver,
surface gradient method for topography discretization (Zhou et al., 2001), nOt
tested on wet/dry and breaking wave cases (Erduran et al., 2005 and 2007),

— MS equations, HLL Riemann solver, surface gradient method for
topography, no specific wet/dry front treatment (Tonelli and Petti, 2009).

— MS and Nwogu’s equations in non-conservative form, HLL Riemann
solver, surface gradient method in second order MUSCL-Hancock
scheme with no specific wet/dry front treatment (Shiach and Mingham, 2009),

— Nwogu’s equations, Riemann solver of Wu and Cheung (2008), fifth
order reconstruction scheme, surface gradient method, first order in
wet/dry fronts (Roeber et al., 2010),

— Two-layer equation models (Lynnet et al., 2006-2010).
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U, +F(U), = S(U), (D)

H Hu

Using z, = 0.53753d as optimal reference depth (Roeber et al., 2010).
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Vector conservative form (for both models)

U, +F(U), = S(U), (D)

H Hu
Using z, = 0.53753d as optimal reference depth (Roeber et al., 2010).
o P* = Hu+ Hzq (Zugy + (du)gy) [”’Velocity” function]
e S(U) =Sy +S¢+ Sq [Source term]
Sb=1[0 —gHb ', Sg=[0 —ghS¢] Sa=[-vc —uc+Yu — Ry

SZ = n? u_'“' Friction force, n,, = Manning coeff.
f mp—4/3

e Y = Hyz, (%U:U:U + (du)xx> , Yo = [(222 - %2) AUz + (Za + g) d(du)mm] -

e [7;, parametrization of wave breaking characteristics
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‘ Mathematical Models: Madsen and Sirensen’s equations |

o P* = Hu — (B + 35)d*(Hu) o — 5do(Hu), [’Velocity” function]
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‘ Mathematical Models: Madsen and Sirensen’s equations |

o P* = Hu — (B + 35)d*(Hu) o — 5do(Hu), [’Velocity” function]

e S(U) =Sy, +S¢+ Sq [Source term]

where now Sq = [0 — 1) — R}) and

[ ] w — —Bgdgnmm; — 2d2deg77xa:

B = 1—15 determines the dispersion properties of the system

A numerical scheme has to:

.

2.

3.

-+

5.

be conservative and shock-capturing,

be well-balanced for wet/wet and wet/dry cases,

be of high-order to ensure truncation errors less than dispersion in the models.
utilize a wave breaking mechanism to cure instabilities due to dispersion.

properly incorporate friction terms
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‘ Numerical Model I
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Dispersive terms: Finite differences.
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‘ Numerical Model I

Advective part and topography source term: Well-balanced Finite Volume formulation.
Dispersive terms: Finite differences.

Roe’s Riemann solver is used (Roe, 1981).

Upwinding of the topography source term (Bermudez et al., 1994, Delis et al., 2008).

High-order spatial accuracy: fourth order MUSCL-type scheme (Yamamoto et al., 1998).
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- Advective part and topography source term: Well-balanced Finite Volume formulation.
Dispersive terms: Finite differences.

- Roe’s Riemann solver 1s used (Roe, 1981).

- Upwinding of the topography source term (Bermudez et al., 1994, Delis et al., 2008).

- High-order spatial accuracy: fourth order MUSCL-type scheme (Yamamoto et al., 1998).

- For dispersion terms: fourth order FD of first-order spatial derivatives and second and
third-order FD for second and third-order derivatives is used.

- Satisfy the C'-property (flow at rest) to higher spatial order: Addition of an extra term to
bed upwinding (Hubbard and Garcia-Navarro, 2000 and Delis and Nikolos, 2009)

- Special treatment wet/dry fronts:

* Identify dry cells: through an adaptive (grid dependant) tolerance parameter

* Consistent depth reconstruction: satisfy % = —% to high-order on wet/dry fronts

* Satisfy an extended C'-property: Redefinition of the bed slope, numerical fluxes are
computed assuming temporarily zero velocity at wet/dry faces (Brufau et al., 2004)
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‘ Numerical Model (continued) |

- Time Integration (should at least match the order of truncation errors from dispersion
terms): Third order Adams-Basforth predictor and fourth-order Adams-Moulton
corrector stage (but also tested 3rd and 4th order Runge-Kutta methods).
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‘ Numerical Model (continued) |

- Time Integration (should at least match the order of truncation errors from dispersion
terms): Third order Adams-Basforth predictor and fourth-order Adams-Moulton
corrector stage (but also tested 3rd and 4th order Runge-Kutta methods).

- Extract depth averaged velocities, u, from the “velocities” functions P* by solving a
tridiagonal system.

- Implicit formulation for the friction terms.

- Two wave breaking models are implemented and tested

* Eddy viscosity approach (Roeber et al., 2010)

Ry, = [v(Hu),], ,with v = —BH|Hu|, and B=1-Y12 for |(Hu),| > U,

(Hu), used as indicator consistent with the conservative formulation, better detection
of hydraulic jumps, U; and Us flow speeds used for breaking detection

* Idea: Boussinesq degenerate into NSWE as dispersive terms become negligible
(Tonelli and Petti, 2009)
If e = % < 0.8 Boussinesq are solved otherwise SWE are solved.

@ NUMAN 2010 6



‘ Some Numerical Tests and Results |

Head on collision of two solitary waves

Area length L = [0,300m], Initial hight A/d = 0.3, Az/d=0.1, CFL =0.2.
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Solitary wave run-up on a plane beach (Synolakis, 1987)

L =[-10,100m|, Az/d=0.1, CFL=0.2, n, =0.01, slope=1:19.85
* First case: A/d = 0.04 (non-breaking)
* Second case: A/d = 0.28 (breaking)

015 T T 015

wwwwwwwwwww

e

Case A: Surface profiles at times t+/¢g/d = 20, 26, 32, 38

@ NUMAN 2010



o1s T T
" Bed
O experimental
shallow water
a1l [wogu
= T 7 Maddzen
0.0s
ol
-0.05 L g
-5 10 15 20
o1s T T
" Bed
O experimental
shallow water
a1l T ogu
= T 7 Maddzen
0.0s
ol
-0.05 : 4
-5 10 15 20

Case A: Surface profiles at times t1/¢g/d = 44, 50, 56, 62

@ NUMAN 2010

[ T T T
" Bed
O experimental
shallow water
a1l Mooy
= T 7 Wadzen
0.o0s [ =
] =] o
il \ MQOOOOQOOOOOOOOG@OOQ
]
\
'DD-S 1 1 1 1
-5 u} 5 10 15 20
[ T
" Bed
O experimental
shallow water
a1l Mywogu
= T 7 Wadzen
0.o0s [ =
00 5 &
| =) =) T
ot @ e’ A ey
'DD-S 1 1 1 1

20



Case B: Surface profiles at times t/¢g/d = 10,15, 20, 25

0.6 T T T T T
e data
hed H
05 \&. S:
o4k = = ~madsen Y
== MNwogu
ol ey |
' 5%
= 5 _'Oo‘.‘l
£ oap /ﬁ: ‘@i .
5 o
k1
_ %
01
\ l{’o \O
ol o e i
-0 1
0z L I B== | 1
-10 -0 0 ] 10 15 20
= ()
0.6 T T T T T
e data
hed H
05 \\ S:
o4k — — ~ madsen H
== MNwogu
AN
03r x ¢ B
B
o
E g} * fr % .
T i)
7 b
L -]l o g =
0.1 a 17 \%‘
J -
ok \%-. VoG P55
SikH 1
0z L I B== | 1
-10 -0 0 ] 10 15 20
= ()

% NUMAN 2010

0.6 T T T T T
e data
0.5 \ bed H
S
04k = = = mMadsen Y
== MNwaogu
naf ﬁ?\ .
\ i
oz h ‘o \‘\: 9
5' o
RN ¥ A -
’ * ¥ \; .
ot \—_ﬁﬁk.,-"";{:) Qo"‘%*
-01F \:.‘.. 7
nz L I N 1 | I
-10 -9 0 5 10 15 20
= (m)
0.6 T T T T T
e data
0.5 \ bed H
\ S
04k - — =~ hMadsen H
== MNwaogu
\
03r \ B
0z2r - =
Jr’_) L= \%
oxr <8 .
LY ‘h\
Do - e
op N D o oag o
-01F =
nz 1 1 ) 1 1
-10 -9 0 5 10 15 20
= (m)

10



Case B: Surface profiles at times t+/g/d = 30, 45, 55,70
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Solitary wave propagation over reefs

d
£ E EEEEEE EE E:E E E E E
= SRR E-N-R- S = = &
= = P— 00 & O — & 00 = uy o =} ol =] =]
=] — — — — & & O o O 0 =0} oy (a1} =
_ e | o | = wl B = =l & 2] = ™ {5 ¥=45.10m
? HEHEEER ?‘g H 0§ : rgld wall
| X=00T W aker neutnsl
1] i i1 il
L L ) TR ___,__—i,
_-l""-r.-'-_'-.-r
17.0m —— 5.0m 23.0m
48.8m I
O Resistance Wave Gauge
b E
E E E E E £ EGE E E E £ E E £ o
o o ol o b R T e = T W1 ™ o 0% =+
= - b =+ = = = m L u o o —
" wl ol = gl x| = 3 x e e
7 ' ¥l OB HF q oy ¥ 7 ? inde
=0 0 WHWSTEKEr Nl
L [ 1) [
S - <1 ko1 P ISP PN — I — o e e
e R e e e L
25.9m 28.25m 29.55m
-104.0m -
O Resistance Wave Gauge

Laboratory experiments at the O.H. Hinsdale Wave Research Laboratory of Oregon
State University, 2007-2009 (Roeber et al., 2010).
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50-cm solitary over a dry reef flat
L =10, 48.8m], d=1.0m, Azx/d=0.1m, CFL=0.4, n, =0.012, A/d=0.5
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50-cm solitary over a dry reef flat

L =10, 48.8m], d=1.0m, Azx/d=0.1m, CFL=0.4, n, =0.012, A/d=0.5

as t =52.3 Shoaling
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50-cm solitary over a dry reef flat

L =10, 48.8m], d=1.0m, Az/d

=0.1m, CFL =04, n,=0.012, A/d=05

as t =52.3 Shoaling

as t = 55.1 The wave begins to skew
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75-cm solitary over a reef (includes a fore reef slope of 1/12 and a 0.2m reef crest.)
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