
Kouretes 2010 SPL Team Description Paper?

E. Chatzilaris, I. Kyranou, E. Orfanoudakis, A. Paraschos, E. Vazaios,
N. Spanoudakis, N. Vlassis, M. G. Lagoudakis

Technical University of Crete (TUC), Chania 73100, Crete, Greece
www.kouretes.gr

1 Team Kouretes (Koυ%ήτες)

Team Kouretes (the only RoboSoccer team in Greece) was founded in 2006
and became active in the Four-Legged league by participating in the techni-
cal challenges at RoboCup 2006 and in the soccer games at RoboCup German
Open 2007. In 2007, the team began working with the newly-released Microsoft
Robotics Studio (MSRS) on the simulated RobuDog robot and participated in
the MSRS Simulation Challenge at RoboCup 2007, where it ranked 2nd bringing
the first trophy home. In 2008 the team switched to the newly formed Standard
Platform League (SPL) and the Aldebaran Nao robots, working simultaneously
on the real robots and on the Webots and MSRS simulators. In RoboCup 2008
the team participated in all tracks of the SPL (Aibo, Nao, Webots, MSRS) and
won several distinctions: 3rd place in Nao, 1st place in MSRS, and among the
top 8 teams in Webots. In 2009, the team participated in the SPL of RoboCup
German Open 2009 and RoboCup 2009. Unfortunately, the team was defeated
in the early rounds in both competitions because of serious software problems.
The intermediate round game against Zadeat at RoboCup 2009 was lost after a
coin toss, following a 0-0 tie during the game and the penalty kicks. On the other
hand, the team reached the 6th place in the RobotStadium Nao competition.

In addition to official RoboCup competitions, the team has participated
in various local events and/or exhibitions organizing SPL games with other
RoboCup teams. These events include RomeCup 2008 and 2009, Athens Digital
Week 2008 and 2009, Festival della Creativita 2008, TechnoTown@Villa Torlonia
2008, Hi-Tech Innovators Partenariat 2007, and the upcoming events Micropo-
lis 2010 and SchoolFest 2010. Team Kouretes is also the organizer of the 1st
RoboCup Tournament in Greece hosted by the 6th Hellenic Conference on Ar-
tificial Intelligence taking place in May 2010 in Athens, Greece.

Team Kouretes is led by Michail G. Lagoudakis (assistant professor with
the Department of Electronic and Computer Engineering) and Nikos Vlassis
(assistant professor with the Department of Production Engineering and Man-
agement). The members of the team for 2010 (in alphabetical order) are:

1. Eleftherios Chatzilaris, graduate student [Localization, Skill Learning]
2. Iris Kyranou, undergraduate student [Obstacle Avoidance]
3. Emmanouil Orfanoudakis, undergraduate student [Object Recognition]
4. Alexandros Paraschos, undergraduate student [Software Architecture]
5. Nikolaos Spanoudakis, laboratory staff [Behavior Control]
6. Evangelos Vazaios, graduate student [Robot Communication]
? Team Kouretes has been supported by the Technical University of Crete, the Euro-

pean Grant MCIRG-CT-2006-044980, and Vivartia S.A.–Molto (exclusive sponsor).

Fig. 1. The Kouretes agent (left) and the Narukom communication framework (right).

2 Team Research

2.1 Software Architecture

Monad is the team’s newly developed software architecture whose main goal is to
simplify and speedup the cycle of source code development and provide a conve-
nient platform for testing and debugging. Furthermore, Monad integrates already
developed technologies and techniques for automation of the building process,
platform independence, and concurrent development to relieve the developer
from the burden of frustrating tasks (i.e. syncing, NaoQi’s version changes).

In the highest level of abstraction, Monad views the robot as a collection
of agents, with each agent being responsible for one task on the robot. Each
agent decomposes into modules with each module being responsible for a specific
functionality. Each module can be described as an operator on data: requires
data before its execution, and provides a data output after execution. By using
this require-provide model, the architecture is able to create a dynamic schedule
of execution inside the agent depending on which modules are currently loaded
on the agent and their requirements on frequency of execution. The six basic
modules of the single Kouretes agent (Figure 1, left) are:

– Sensors Extracting and distributing sensor data from the robot.
– Object Recognition Detecting the ball and the goals in the camera frames.
– Localization Estimating the position and orientation of the robot.
– Behavior Making high-level decisions based on the current perception.
– Obstacle Avoidance Planning obstacle-free paths using ultrasonic data.
– Motion Engine Executing motion commands requested by the Behavior.
– Game Controller Listening to the game controller for the game state.
– Logger Logging and storing data from all other modules.

2.2 Robot Communication

During a game, robot players need to share perceptual, strategic, and other team-
related information with their team-mates, typically over the wireless network,
to coordinate their efforts and achieve a common goal. Towards this end, we have
developed a distributed communication framework for robotic teams. Our pro-
posal suggests a distributed and transparent communication framework, called

Fig. 2. Vision: dynamic calibration. Localization: true (blue) and estimated (red) path.

Narukom [1], whereby any node (robot or remote computer) can access on de-
mand any data available on some other node of the network in a natural way. The
framework is based on the publish/subscribe paradigm and provides maximal
decoupling not only between nodes, but also between threads on the same node.
The data shared between the nodes of the team are stored on local blackboards
which are transparently accessible from all nodes. Communication is achieved
through messages tagged with appropriate topics and relayed through a message
queue which is implemented using Google protocol buffers. To address synchro-
nization needs, which are common in robotic teams, we have integrated temporal
information into the meta-data of the underlying messages exchanged over the
network. Narukom’s distributed nature and platform independence make it an
ideal base for the development of coordination strategies and for distribution of
resource-intensive computations over different nodes.

2.3 Vision

The objects of interest in the SPL are characterized by unique colors. Since ar-
tificial light sources play an important role in color recognition, white and gray
surfaces are utilized to provide a reference point for the white balance of the
surrounding environment and calibrate the camera’s white point dynamically.
This trick produces balanced camera images and simplifies the problem of color
recognition. Our approach is based on labeling by hand a representative set of
images from the robot camera and training a classifier which generalizes over
the entire color space. The illumination problem is addressed either by including
special illuminant features (average color values from a large region or from the
entire image) in the classifier, or by transforming the input to an appropriate
reference illumination level through histogram specification before classification.
These procedures have been integrated into the Kouretes Color Classifier (KC2)
graphical tool [2], which provides intuitive means for labeling images (regions,
clusters), selecting features (neighborhood, illuminant), training classifiers (De-
cision Trees, Support Vector Machines, Neural Networks), and generating code
for efficient execution on the robot. The KC2 tool minimizes the user time re-
quired to generate a good color recognizer. Combined with the dynamic camera
calibration, a single recognizer yields satisfying results in a wide range of lighting
environments. Figure 2 (left) shows an example of using a recognizer trained for a
bright environment directly in a dark environment through dynamic calibration.
For real-time operation, color classifiers are turned into color tables (precom-

puted lookup tables giving the learned color class for all possible color inputs
in constant time), one for each of the two cameras on the robot. These color
tables are applied selectively on the YUV images provided by the hardware by
a light-weight object recognition scheme which begins with a quick sampling of
pixels across the image to locate areas of interesting colors. These areas are then
processed locally and examined for validity as field objects. Multiple matches for
various objects (e.g. multiple balls) are evaluated and sorted and only one match
for each unique object is finally extracted and returned as perceived along with
an estimate of its distance and bearing.

2.4 Localization

Self-localization of the robots in the field is accomplished using KLoc [3] which
realizes Monte Carlo localization with particle filters. The belief of the robot is a
probability distribution over the 3-dimensional space of (x, y, θ), where x, y are
the robot coordinates on the field from a bird’s eye view and θ is the orientation
of the robot with respect to the line that crosses the center of the goals. The
belief is represented approximately using a population of particles. In order to
perform belief update, it is necessary to obtain a motion model for the available
high-level actions of the robot (walk, turn, etc.) and a sensor model for its
landmark perception capabilities (goal recognition) over the (x, y, θ) space. We
constructed a simple motion model P

(
(x′, y′, θ′)|(x, y, θ), a

)
for predicting the

probability distribution of the pose of the moving robot after each action a
and a simple sensor model P

(
z|(x, y, θ)

)
for correcting the belief towards the

poses where the probability of obtaining the current observation is higher. The
parameters of these models are learned through experimentation on a simulated
or real robot. Belief update is performed using an auxiliary (AUX) particle filter:

– temporarily propagate the particles through the motion model
– temporarily weigh each particle using the sensor model and normalize
– resample the original particle population using the temporary weights
– propagate the particles through the motion model
– weigh each particle using the sensor model and normalize

For the resampling process, selection with replacement and linear-time resam-
pling have been implemented. Given any population of particles, the robot’s pose
is estimated as the pose of the particle with the highest weight. Figure 2 shows
an example of global localization with six landmarks: the left/right blue/yellow
goalposts by themselves and the blue/yellow goals as a whole.

2.5 Motion

Effective motion control on the Nao is probably the greatest challenge for all SPL
teams. For locomotion, we currently rely on the recently-released proprietary
walk engine provided by Aldebaran Robotics, which offers sufficient stability
for a variety of surfaces and can even handle small disturbances. Our motion
engine allows the independent control of the head, which is typically used for
tracking objects of interest, and the lower body, which is used for locomotion.

In addition, it provides a robot safety monitor, which removes the stiffness from
the robot joints, as soon as a fall is detected, to protect the robot from damaging
itself. It also allows the execution of complex actions (stand-up, kick, etc.) and
provides the means for interrupting a motion in progress when it is important
to switch to another motion. We use the Kouretes Motion Editor (KME) [4,
5] for designing complex actions. The main idea behind KME is the ability to
generate, capture, store, manipulate, edit, replay, and export timed sequences of
complete robot poses, which resemble the desired complex action. KME provides
an abstract motion design environment, which hides away the details of low-
level joint control and strikes a balance between formal motion definition using
precise joint angles in the configuration space of the robot and intuitive motion
definition using manual joint positioning in the real-world work space of the
robot. Of particular interest to RoboCup teams is KME’s ability to export the
symmetric motion (with respect to the sagittal plane of the robot), as well as the
temporally reverse motion. In practice, that implies that it is sufficient to design
a right kick; the left kick can be automatically exported. Similarly, a stand-up
motion, if reversed, will result in a sit-down motion. We have used KME to
design a number of complex motions, such as kicks, goalkeeper dives, stand-up
routines, and recently complete choreographies. KME v1.0 is freely available
through our website, while KME v2.0 is currently being finalized.

2.6 Learning

It is important for our robots to maintain their balance while performing some
complex action, such as a kick, that requires balancing on one leg. We consider
the problem of learning the parameters of a closed-loop controller that controls
only the ankle joints of the leg (roll and pitch) based on dynamic (real-time)
information from the FSRs and the inertial unit with the goal of keep the robot
balanced. Such a skill eliminates the need for costly kinematic computations
and allows all other joints to perform arbitrary moves without worrying about
balancing. So far, we have succeeded in maintaining balance on a single leg when
the other joint chains of the robot move to any arbitrary angle, however at slow
speed. Our current efforts focus on Monte-Carlo EM-type reinforcement learning
methods [6] for optimizing our current controller, aiming at real-time operation
at any motion speed and robustness over the entire range of balancing cases.

2.7 Obstacle Avoidance

The SPL rules postulate severe penalties for player pushing, therefore we have
dedicated considerable effort in avoiding collisions while moving. Each robot
builds and maintains a local obstacle map of its surrounding. This map is stored
in a 7 × 36 polar grid (10cm and 10◦ resolution, respectively), which covers
a 360◦ area of radius 70cm around the robot. The robot is always located at
the center of the grid and the grid moves with the robot. This polar map is
updated using distance readings from the two ultrasound sensors located in the
chest of the robot. The polar topology facilitates the mapping of the sensor
data directly on the map and also captures the resolution of the sensors which

Fig. 3. Transformations of the polar obstacle map: (a) initial map, (b) 80◦ counter-
clockwise rotation, (c) 20cm translation to the right, (d) 20cm translation to the left,
(e) translation to the right and counter-clockwise rotation.

is dense close to the robot and sparse away from the robot due to the conical
shape of the ultrasonic beams. Locomotion of the robot implies appropriate
transformations on the polar grid. Rotational motions of the robot can be easily
translated into rotations of the polar map, however translational motions of
the robot require appropriate translations of the polar map through geometric
transformations. To avoid costly computations for these transformations we have
precomputed and stored these transformations for a discretized range of possible
translational motions and therefore the polar map can be updated in constant
time, nevertheless with some loss of accuracy. Examples of map transformations
for various motions are shown in Figure 3.

Each cell in the polar maps stores the probability that there is an obstacle at
the corresponding position in the field. The values of all cells are initialized to 0.5
to indicate the absence of any information. Given a reading from an ultrasound
sensor, the values of all cells within the sensor cone are updated according to
a simple sensor model that increases the value at the distance of the reading
(obstacle) and reduces the value at all intermediate cells (free space). Since
most obstacles in the SPL field are dynamic (moving players), an aging update
step gradually brings the values of all cells towards 0.5 (full uncertainty) over
time, unless they are updated due to sensor data. The polar obstacle map can be
used to plan obstacle-free paths for the robot in any desired direction of motion
or to any desired destination. An obstacle-free shortest path to the center of the
map (the current robot position) is derived from the cell on the periphery of the
map that matches the desired direction or from the map cell that corresponds to
the desired destination. This path indicates how the robot should move to reach
the desired direction or destination quickly while safely avoiding all mapped
obstacles. Paths can be computed through A* search for single destinations or
through value iteration for multiple destinations (of which one is to be chosen).
Examples of path planning and obstacle avoidance are shown in Figure 4.

2.8 Behavior

Since RoboCup players are agents, we have selected the Agent Systems Engineer-
ing Methodology (ASEME) [http://www.amcl.tuc.gr/aseme] methodology for
modeling the behavior of the Kouretes team. ASEME allows for modular devel-
opment, so that specialized teams can develop different modules and use the
Intra-Agent Control (IAC) model to glue them together. IAC is defined by the
Agent Modeling Language (AMOLA) as a statechart [7], which allows for mod-

Fig. 4. Path planning on the polar obstacle map and an example of obstacle avoidance.

eling both the functional and dynamic aspects of a system incorporating the
activities that are executed and their control information. Statecharts can be
rather complex, therefore ASEME uses the System Roles Model (SRM) in the
analysis phase to indicate the process that the agent will follow with the liveness
formulas that are easier to conceive and that can be automatically transformed
to the IAC model using Model Driven Engineering (MDE) techniques. The chal-
lenges that we faced in adopting ASEME and AMOLA were four: (a) develop
a statechart engine that allows for multithreading as the robots must do a lot
of things simultaneously, (b) define the IAC’s transformation to executable code
for the Nao platform providing for specific laces where the programmers will
invoke the needed functionalities, (c) define the message-exchange mechanism
and integrate it in the automatically generated code, and (d) define the allowed
expressions for the statechart transition expressions.

The following example demonstrates the ASEME development process. Let
us assume that in the analysis phase we edit an attack protocol using the Agent
Interaction Protocol of AMOLA (figure below, left). The process field is defined
as a liveness formula, where we use the Gaia operators [8, 9] for defining the
dynamic aspect of the agent system, what happens, and when it happens. Briefly,
A.B means that activity B is executed after activity A, Aω means that A is
executed forever (when it finishes it restarts), A|B means that either A or B
is executed and A||B means A is executed in parallel with B. These formulas
can be automatically transformed to the Inter-Agent Control (EAC) model (a
statechart) using the ASEME srm2iac transformation tool (figure below, right).

Attack Protocol
Prerequisite: Center is closest to the ball
Outcome: Center passes the ball to one of

the two Center-Fors to make the kick
Process for three participating roles:

attack protocol = center || center for || center for
center = go towards ball.[pass ball]
center for = go towards goal.[go towards ball.[kick ball]]

In the EAC the modeler can define transition expressions with events and con-
ditions that will allow for state transitions. Moreover, the EAC shows what a
team of robots can simultaneously achieve (in a multi-agent level of abstraction).
Then the analyst can focus on the agent level and define individual agent roles
implementing parts of the defined protocol. Consider a player role:

player = thinkω || executeω || accept noticesω

think = get objects.self localize.publish self position.ball localize.
publish ball position.select plan.publish plan

get objects = get image from camera.segment image.detect objects.publish objects
execute = (go towards ball.[kick ball]) | (go towards ball.[pass ball]) |

(go towards goal.[go towards ball.[kick ball]])

Again, using the srm2iac tool the developer obtains the IAC model directly from
the SRM model and for the parts that are imported from the previously defined
EAC the transition expressions are copied as they are. In the figure below, one
can see the IAC model for the player role (left) with the capability to participate
in the attack protocol either as a center-for or as a center and the functionality
table (right) which shows the relationship between capabilities, activities, and
functionalities. The last step is to automatically generate the code that controls
the behavior of the agent and insert tags where the programmers need to connect
their code to the implemented functionality.

References

1. Vazaios, E.: Narukom: A distributed, cross-platform, transparent communication
framework. Diploma thesis, Technical University of Crete, Chania, Greece (2009)

2. Panakos, A.: Efficient color recognition under varying illumination conditions for
robotic soccer. Diploma thesis, Technical University of Crete, Chania, Greece (2009)

3. Chatzilaris, E.: Visual-feature-based self-localization for robotic soccer. Diploma
thesis, Technical University of Crete, Chania, Greece (2010)

4. Pierris, G.F., Lagoudakis, M.G.: An interactive tool for designing complex robot
motion patterns. In: IEEE Intl Conf on Robotics and Automation (ICRA). (2009)

5. Pierris, G.F.: Soccer skills for humanoid robots. Diploma thesis, Technical Univer-
sity of Crete, Chania, Greece (2009)

6. Vlassis, N., Toussaint, M., Kontes, G., Piperidis, S.: Learning model-free robot
control by a monte carlo em algorithm. Autonomous Robots 27(2) (2009) 123–130

7. Harel, D., Naamad, A.: The STATEMATE semantics of statecharts. ACM Trans-
actions on Software Engineering Methodologies 5(4) (1996) 293–333

8. Spanoudakis, N., Moraitis, P.: The agent modeling language (AMOLA). In: Pro-
ceedings of the 13th Intl Conference on Artificial Intelligence (AIMSA). (2008) 32–44

9. Wooldridge, M., Jennings, N.R., Kinny, D.: The gaia methodology for agent-oriented
analysis and design. Autonomous agents & multi-agent systems 3(3) (2000) 285–312

