
The Agent Modeling Language (AMOLA)

Nikolaos Spanoudakis
1,2

, Pavlos Moraitis
2

1 Technical University of Crete, Department of Sciences,

University Campus, 73100, Kounoupidiana, Greece

nikos@science.tuc.gr
2 Paris Descartes University, Department of Mathematics and Computer Science,

45, rue des Saints-Pères, 75270 Paris Cedex 06, France

{nikos, pavlos}@math-info.univ-paris5.fr

Abstract. This paper presents the Agent MOdeling LAnguage (AMOLA). This

language provides the syntax and semantics for creating models of multi-agent

systems covering the analysis and design phases of the software development

process. It supports a modular agent design approach and introduces the

concepts of intra-and inter-agent control. The first defines the agent’s lifecycle

by coordinating the different modules that implement his capabilities, while the

latter defines the protocols that govern the coordination of the society of the

agents. The modeling of the intra and inter-agent control is based on statecharts.

The analysis phase builds on the concepts of capability and functionality.

AMOLA deals with both the individual and societal aspect of the agents.

However, in this paper we focus in presenting only the individual agent

development process. AMOLA is used by ASEME, a general agent systems

development methodology.

Keywords: Multi-agent systems, Tools and methodologies for multi-agent

software systems

1 Introduction

Agent oriented development emerges as the modern way to create software. Its main

advantage – as referred to by the literature – is to enable intelligent, social and

autonomous software development. In our understanding it aims to provide the

system developers with adequate engineering concepts that abstract away the

complexity that is inherent to such systems. Moreover, it should allow for modular

development so that successful practices can easily be incorporated in new systems.

Finally, it should cater for model transformation between the different software

development phases so that the process can be automated.

In the past, we introduced the Gaia2JADE process for Multi-agent Systems (MAS)

development ([12]) and since then it has been used for the successful development of

a number of MAS, see e.g. [8]. However, our more recent work (i.e. [11]) was about a

more complex MAS that called for modularity, abstraction and support for iterative

development. At the same time, we observed that the “services model” of Gaia [19]

didn’t apply to modern agents who provide services through agent interaction

2 Nikolaos Spanoudakis and Pavlos Moraitis

protocols. Moreover, we had no specific requirements analysis models that would be

transformed to analysis models. Furthermore, the protocol model of Gaia did not

provide the semantics to define complex protocols and the Gaia2JADE process

additions remedied this situation only for simple protocols.

In order to address these issues, we used method fragments [4] from other

methodologies and introduced a new language for the analysis and design phases of

the software development process, namely the Agent MOdeling LAnguage (AMOLA).

All these changes led to the proposal of a new methodology, ASEME, an acronym of

the full title Agent SystEms Methodology. Through this methodology, we were given

an opportunity to express our point of view on modular agent architectures (see e.g.

[9]) that we have been supporting several years now.

AMOLA not only modernizes the Gaia2JADE process but offers to the system

developer new possibilities compared to other works proposed in the literature (a

large set of which can be found in [7]). It allows models transformation from the

requirements analysis phase to implementation. It defines three levels of abstraction,

namely the society level, the agent level and the capability level, in each software

development phase, thus defining a top-down analysis and design approach. Finally,

using in an original way the statecharts and their orthogonality feature, it defines the

inter- and intra-agent control models, the first for coordinating a group of agents and

the second for coordinating an agent’s modules.

In this paper, we present AMOLA focusing in the individual agent development

issues, leaving aside, for the moment, the society issue. However, the reader will get

an idea of how this is accomplished. Firstly, we discuss AMOLA’s basic

characteristics in section two, followed by the analysis and design phase models, in

sections three and four respectively. For demonstrating the different elements of

AMOLA we use a real-world system development case-study. Then, we discuss

related work in section five and, finally, section six concludes.

2 The Basic Characteristics of AMOLA

The Agent Modeling Language (AMOLA) describes both an agent and a multi-agent

system. Before presenting the language itself we identify some key concepts. Thus,

we define the concept of functionality to represent the thinking, thought and senses

characteristics of an agent. Then, we define the concept of capability as the ability to

achieve specific tasks that require the use of one or more functionalities. The agent is

an entity with certain capabilities, also capable for inter and intra-agent

communication. Each of the capabilities requires certain functionalities and can be

defined separately from the other capabilities. The capabilities are the modules that

are integrated using the intra-agent control concept to define an agent. Each agent is

considered a part of a community of agents. Thus, the community’s modules are the

agents and they are integrated into it using the inter-agent control concept.

The originality in this work is the intra-agent control concept that allows for the

assembly of an agent by coordinating a set of modules, which are themselves

implementations of capabilities that are based on functionalities. Here, the concepts of

capability and functionality are distinct and complementary, in contrast to other works

The Agent Modeling Language (AMOLA) 3

where they refer to the same thing but at different stages of development (e.g.

Prometheus [14]). The agent developer can use the same modules but different

assembling strategies, proposing a different ordering of the modules execution

producing in that way different profiles of an agent (like in the case of the KGP agent

[1]). Using this approach, we can design an agent with the reasoning capability that is

based on the argumentation based decision making functionality. Another

implementation of the same capability could be based on a different functionality, e.g.

abductive reasoning.

Then, in order to represent our designs, AMOLA is based on statecharts, a well-

known and general language and does not make any assumptions on the ontology,

communication model, reasoning process or the mental attitudes (e.g. belief-desire-

intentions) of the agents giving this freedom to the designer. Other methodologies

impose (like Prometheus [14] or Ingenias [16]) or strongly imply (like Tropos [3]) the

agent meta-models (see [7] for more details). Of course, there are some developers

who want to have all these things ready for them, but there are others that want to use

different agent paradigms according to their expertise. For example, one can use

AMOLA for defining Belief-Desire-Intentions based agents, while another for

defining procedural agents.

The AMOLA models related to the analysis and design phases of the software

development process are shown in Figure 1. These models are part of a more general

methodology for developing multi-agent systems, ASEME (Agent Systems

Methodology, a preliminary report of which can be found in [17]). ASEME is a

model-driven engineering (MDE) methodology. MDE is the systematic use of models

as primary engineering artifacts throughout the engineering lifecycle. It is compatible

with the recently emerging Model Driven Architecture (MDA1, [10]) paradigm.

MDA’s strong point is that it strives for portability, interoperability and reusability,

three non-functional requirements that are deemed as very important for modern

systems design. MDA defines three models:

• A computation independent model (CIM) is a view of a system that does not show

details of the structure of systems. It uses a vocabulary that is familiar to the

practitioners of the domain in question as it is used for system specification

• A platform independent model (PIM) is a view of a system that on one hand

provides a specific technical specification of the system, but on the other hand

exhibits a specified degree of platform independence so as to be suitable for use

with a number of different platforms

• A platform specific model (PSM) is a view of a system combining the

specifications in the PIM with the details that specify how that system uses a

particular type of platform

The system is described in platform independent format at the end of the design

phase. We will provide guidelines for implementing the AMOLA models using JADE

or STATEMATE (two different platform specific models).

We define three levels of abstraction in each phase. The first is the societal level.

There, the whole agent community system functionality is modeled. Then, in the

agent level, we model (zoom in) each part of the society, the agent. Finally, we focus

1 The Model Driven Architecture (MDA) is an Object Management Group (OMG)

specification for model driven engineering, http://www.omg.org/mda/

4 Nikolaos Spanoudakis and Pavlos Moraitis

in the details that compose each of the agent’s parts in the capability level. In the first

three phases the process is top-down, while in the last three phases it is bottom-up.

AMOLA is concerned with the first two levels assuming that the analysis and design

in the capability level can be achieved using classical software engineering

techniques.

Fig. 1. The Agent Systems Methodology (ASEME) phases in three levels of abstraction and the

AMOLA models related to each level.

For the AMOLA models demonstration we present the analysis and design models

of an agent participating in a real-world system that we developed. Our requirements

were to develop a system that allows a user to access a variety of location-based

services (LBS) that are supported by an existing brokering system, using a simple

service request protocol based on the FIPA Agent Communication Language (ACL).

The system should learn the habits of the user and support him while on the move. It

should connect to an OSGi2 service for getting the user’s coordinates using a GPS

device. It should also handle dangerous situations for the user by reading a heart rate

sensor (again an OSGi service) and call for help. A non-functional requirement for the

system is to execute on any mobile device with the OSGi service architecture. For

more details about the real-world system the reader can refer to [11].

3 The Analysis Phase Models

The main models associated with this phase are the use case model and the roles

model. The former is an extended UML use case diagram and the latter is mainly

inspired by the Gaia methodology [19] (a Gaia roles model method fragment can be

used with minimal transformation effort).

The use case diagram helps to visualize the system including its interaction with

external entities, be they humans or other systems. No new elements are needed other

than those proposed by UML. However, the semantics change. Firstly, the actor

“enters” the system and assumes a role. Agents are modeled as roles, either within the

system box (for the agents that are to be developed) or outside the system box (for

existing agents in the environment). Human actors are also represented as roles

outside the system box (like in traditional UML use case diagrams). We distinguish

the human roles by their name that is written in italics. This approach aims to show

2 The Open Services Gateway initiative (OSGi) alliance is a worldwide consortium of

technology innovators defining a component integration platform, http://www.osgi.org

The Agent Modeling Language (AMOLA) 5

the concept that we are modeling artificial agents interacting with other artificial

agents or human agents. Secondly, the different use cases must be directly related to

at least one artificial agent role. These general use cases can be decomposed to

simpler ones using the include use case relationship. Based on the use case diagram

the system modeler can define the roles model. A use case that connects two or more

(agent) roles implies the definition of a special capability type: the participation of the

agent in an interaction protocol (e.g. negotiation). A use case that connects a human

and an artificial agent implies the need for defining a human-machine interface

(HMI). The latter is modeled as another agent functionality. A use case can include a

second one showing that its successful completion requires that the second also takes

place.

Referring now to our case study, in the agent level, we define the agent’s

capabilities as the use cases that correspond to the goals of the requirements analysis

phase. The relevant actor diagram that was the result of the previous phase is

presented in Figure 2.

Fig. 2. Actor diagram. The circles represent the identified actors and the rounded rectangles

their goals. It is the output of the requirements analysis phase.

In the Analysis phase, the actor diagram is transformed to the use case diagram

presented in Figure 3. The activities that will be contained in each capability are the

use cases that the capability includes. Then we define the role model for each agent

role (see Figure 4). Firstly we add the interaction protocols that this agent will be able

to participate in. In this case it is a simple service protocol with a requester (our agent)

and a responder. We continue with the definition of the liveness model inside the

roles model. The liveness model has a formula at the first line (root formula) where

we can add activities or capabilities. A capability must be decomposed to activities in

the following line.

In the capability abstraction level the activities are associated to generic

functionalities. The latter must clearly imply the technology needed for realizing them

(see Figure 5). In this case, returning to our running example, the requirement for

functioning on any mobile device running OSGi services reveals that such a device

must at least support the Java Mobile Information Device Profile (MIDP), which

offers a specific record for storing data. Therefore, the activities that want to store or

read data from a file must use the MIDP record technology. Finally, the reader should

note that a special capability not included in the use–case diagram named

communicate appears. This capability includes the send message and receive

message activities and is shared by all agents and is defined separately because its

6 Nikolaos Spanoudakis and Pavlos Moraitis

implementation is relative to the functionality provided by the agent development

platform, e.g. JADE3.

Personal Assistant

Broker

System

User

<<include>>

<<include>>

Receive

message

Send

message

Request for

services

Search

broker

Learn user

habits

Service

user

<<include>>

Get user

coordinates

<<include>>

<<include>>

handle

dangerous

situation

<<include>>

<<include>>

Fig. 3. Use case diagram

Role: Personal Assistant
Protocols: Service protocol: initiator
Liveness:
personal assistant = (service user)

ω
 || (handle dangerous situation)

ω

service user = get user order. get user coordinates. get user preferences. request for
services. present information to the user. learn user habits.

handle dangerous situation = invoke heart rate service. determine user condition. [get
user coordinates. request for services]

request for services = search broker. [send message. receive message]
learn user habits = learn user preference. update user preferences.

Fig. 4. The role model, including five liveness formulas

4 The Design phase Models

The models associated with the Design phase are the inter-agent control and intra-

agent control. They define the functional and behavioral aspects of the multi-agent

system. In the past, the MaSE methodology [5] defined agent behavior as a set of

concurrent tasks, each specifying a single thread of control that integrates inter-agent

as well as intra-agent interactions. Our model goes one step further by modeling the

interaction among the capabilities of an agent, i.e. what they call the different threads

of control, but also their execution cycle. The model associated to the first level of

this phase is the inter-agent control, which defines interaction protocols by defining

the necessary roles and the interaction among them. The implementation of the inter-

agent control is done at the agent level via the capabilities and their appropriate

3 The Java Agent Development Environment (JADE) is an open source framework that adheres

to the FIPA standards for agents development, http://jade.tilab.com

The Agent Modeling Language (AMOLA) 7

interaction defined via the intra-agent control. Finally, in the third level each

capability is defined with regard to its functionality, what technology is used, how it

is parameterized, what data structures and algorithms should be implemented. The

models defined in this phase are the Platform Independent Model (PIM).

Capabilities Activities Functionalities

communicate

invoke OSGi service

send message

<decomposition> <uses>Legend:

get user coordinates

service user

machine learning

MIDP record

technology

JADE FIPA AMS
receive message

learn user habits

request for services

present information

to the user

learn user preference

search broker JADE FIPA DF

update user

preferences

get user preferences

Human-Machine

Interface (HMI)
get user order

handle dangerous

situation

invoke heart rate

service

determine user

condition algorithm

Fig. 5. Capabilities, activities and functionalities

For the Design Phase models we use the language of statecharts as it is defined in

[6]. Statecharts are used for modeling systems. They are based on an activity-chart

that is a hierarchical data-flow diagram, where the functional capabilities of the

system are captured by activities and the data elements and signals that can flow

between them. The behavioral aspects of these activities (what activity, when and

under what conditions it will be active) are specified in statecharts. There are three

types of states in a statechart, i.e. OR-states, AND-states, and basic states. OR-states

have substates that are related to each other by “exclusive-or”, and AND-states have

orthogonal components that are related by “and” (execute in parallel). Basic states are

those at the bottom of the state hierarchy, i.e., those that have no substates. The state

at the highest level, i.e., the one with no parent state, is called the root. Each transition

from one state (source) to another (target) is labeled by an expression, whose general

syntax is e[c]/a, where e is the event that triggers the transition; c is a condition that

must be true in order for the transition to be taken when e occurs; and a is an action

that takes place when the transition is taken. All elements of the transition expression

are optional. Action a can be the special action start(P) that causes the activity P to

start. The scope of a transition is the lowest OR-state in the hierarchy of states.

Multiple concurrently active statecharts are considered to be orthogonal components

at the highest level of a single statechart. If one of the statecharts becomes non-active

8 Nikolaos Spanoudakis and Pavlos Moraitis

(e.g. when the activity it controls is stopped) the other charts continue to be active and

that statechart enters an idle state until it is restarted.

In the past, statecharts have been used for modeling agent behaviors in MaSE [5].

In our work we use statecharts to model intra-agent control. As we said before, it

corresponds to modeling the interaction between different capabilities, defining the

behavior of the agent. This interaction defines the interrelation in a recursive way

between capabilities and also between activities of the same capability that can imply

concurrent or sequential execution. This is the basic and main difference with the way

that statecharts have been used in the past. Moreover, we use statecharts in order to

model agent interaction, thus using the same formalism for modeling inter and intra-

agent control, which is also a novelty. However, the use of statecharts for the inter-

agent control is out of the scope of this paper.

In the agent level, we define the intra-agent control by transforming the liveness

model of the role to a state diagram. We achieve that, by interpreting the Gaia

operators in the way described in Table 1. The reader should note that we have

defined a new operator, the |x
ω
|
n
, with which we can define an activity that can be

concurrently instantiated and executed more than one times (n times). Initially, the

statechart has only one state named after the left-hand side of the first liveness

formula of the role model (probably named after the agent type). Then, this state

acquires substates. The latter are constructed reading the right hand side of the

liveness formula from left to right, and substituting the operator found there with the

relevant template in Table 1. If one of the states is further refined in a next formula,

then new substates are defined for it in a recursive way.

Table 1. Templates of extended Gaia operators (Op.) for Statechart generation

Op. Template Op. Template Op. Template

x*

x || y

x . y

x | y

x+

|x
ω
|
n

 x
ω

[x]

At this stage, the activities that have been defined in the roles model are assigned

to the states with the same name in the statechart. An agent percept, a monitored for

environmental effect, an event generated by any other executing agent activity, or the

ending of the executing state activity can cause a transition from one state to another.

In Figure 6 we present the statechart that is derived from the liveness model of our

example presented in Figure 4. At this point, we need to define the events that cause

transitions, their conditions and also the data elements that will be used for the

statechart. These events can be inter-agent messages, or other kinds of events

generated by the execution of the agent activities.

Finally, the designer defines the modules that will be used for the agent. The

modules are typically as many as the agent capabilities. This allows for a modular

representation of the agent’s architecture and defines the right level of decomposition

The Agent Modeling Language (AMOLA) 9

of an agent. Thus, it allows for the reusability of the modules as independent software

components in different types of agents, having common capabilities. This is also a

main difference with other methodologies. The agent implements the root formula of

the statechart. The substates are implemented in the relevant modules. The modules

are ready for development by transforming the statecharts to code, not restricted to

JADE development like in [12], but using any tool that transforms statecharts to code,

e.g. STATEMATE [6] for object oriented languages. In order to transform the models

to JADE code the developer should transform complex states to instances of the

FSMBehaviour class and the simple states to SimpleBehaviour instances in a fashion

relevant to the one in [12].

Fig. 6. The intra-agent control model

Fig. 7. The agent modules

10 Nikolaos Spanoudakis and Pavlos Moraitis

In the next ASEME phase the modeler firstly creates the platform specific models

and then implements the system. The designer defines the modules that will be used

for the agent. The modules are presented in a UML component diagram; Figure 7

shows the modules of our example. The modules are typically as many as the agent

capabilities. The aggregation of these modules leads to a new module, namely the

agent. The agent module only implements the root formula of the statechart. The

substates are implemented in the relevant modules. All these modules are now

concrete components and could be reused in the future by another agent. The grey

components in Figure 7 are the used functionalities. The reader will notice that the

abstract functionalities like algorithm are not shown in this diagram as they do not

refer to an existing software component. They are analyzed, designed and

programmed like any other software component using an existing method, e.g. UML.

5 Related Work

Comparing AMOLA with the Gaia methodology [19] we first notice that the latter

does not support the requirements analysis phase and its agent design models do not

lead in a straightforward way to implementation. For example, the services model

isn’t concrete – does not relate to code. In the past, Gaia has been modified in order to

cover the implementation phase [12], but certain aspects proved difficult to deal with,

such as the definition of complex agent interaction protocols or the way to merge two

roles in one agent. In [12] we offered some extensions but they were in rather

practical than conceptual level. These extensions allowed for easily conceiving and

implementing relatively simple agents. Finally, its models cannot be used for

simulation-optimization. AMOLA can be connected with successful method

fragments in the requirements analysis phase (such as the actor diagram of Tropos)

and its models are statecharts. The latter is a well known language for which there are

numerous tools for code generation and simulation/optimization.

TROPOS [3] provides a formal language and semantics that greatly aid the

requirements analysis phase. It can also lead to successful requirements verification

for a system. However, the user must come down to attributes definitions (extremely

detailed design including data types) in order to use simulation. It is a process centric

design approach, not a module based one, like AMOLA. We believe that the module

based approach proposes the right level of decomposition of an agent because it

allows for the reusability of the modules as independent software components in

different types of agents, having some common capabilities. Moreover, the detailed

design phase of TROPOS proposes the use of AUML [13] (as well as in the work

presented in [14]). However, AUML has specific shortcomings when it comes to

defining complex protocols (the reader can refer to [15] for an extensive list). Finally,

Tropos has been applied for modeling relatively simple agents, not complex ones [7].

AUML has been proposed as a language for modeling multi-agent systems.

However, it does not come along with a methodology or a complete process for

software development. Thus, many methodologies just use some of its models, mainly

the agent interaction protocol (AIP) model that has been defined as an extension to

the UML sequence diagram. The Layered approach to protocols provides a

The Agent Modeling Language (AMOLA) 11

mechanism for specifying the program that implements a protocol but does not

specify how it is integrated with other such programs (other protocols), or how to

integrate it with the other agent capabilities. AMOLA caters for this issue by using the

same formalism (statecharts) for modeling inter and intra-agent control.

MaSE [5] defines a system goal oriented MAS development methodology. They

define for the first time inter and intra-agent interactions that must be integrated.

However, in their models they fail to provide a modeling technique for analyzing the

systems and allowing for model transformation between the analysis and design

phases. Their concurrent tasks model derives from the goal hierarchy tree and from

sequence diagrams in a way that cannot be automated. In our work the model

transformation process is straightforward. For example, we provide simple rules for

obtaining the design phase intra-agent control from the analysis phase liveness model.

Moreover, we distinguish independent modules that are integrated for developing an

agent, which can be reusable components. We define agent types that originate from

actors of the requirements phase, while the agents in MaSE are related to system

goals. This restricts the definition of autonomous agents. Finally, in MaSE agents are

implemented using AgentTool while in AMOLA more implementation possibilities

are allowed.

In Prometheus [14] the authors use the terms of functionality and capability.

However, they correspond to different concepts compared to our work. In fact,

functionalities and capabilities refer to same concept as it evolves through the

development phases (i.e. the abilities that the system needs to have in order to meet its

design objectives). In our work capabilities refer to a specific goal and functionality is

related to the used technologies that are application independent (e.g. argumentation,

abduction, induction for reasoning mechanism implementation). Moreover, in our

approach, with the proposal of the intra-agent control we are able to model in a

recursive way the dynamic interaction between capabilities and between activities of

the same capability. The support for implementation, testing and debugging of

Prometheus models is limited and it has less focus on early requirements and analysis

of business processes [7]. AMOLA’s capability to be integrated with method

fragments and the fact that its design models are statecharts overcomes these issues.

One interesting approach that is based on UML is Ingenias [16], which proposes

several meta-models that define specific structures for different concepts like agent,

role, resource, etc. For some developers it could be useful, but for others it could be

considered as a constraint, as it imposes a particular structure for an agent and agent

organizations. Moreover, Ingenias does not offer the convenience of gradually

modeling a multi-agent system by considering it at three levels of abstraction.

The authors of [2] proposed a capability concept for BDI agents. In their view,

capability is “a cluster of plans, beliefs, events and scoping rules over them”.

Capabilities can contain sub-capabilities and have at most one parent capability.

Finally, the agent concept is defined as an extension of the capability concept

aggregating capabilities. The differences of our work in comparison to this one is the

fact that the capability concept for us is more general (not limited to BDI agents) and

it leads to the definition of the module that can be a reusable software component.

Capability in AML [18] is used to model an abstraction of a behavior in terms of

its inputs, outputs, pre-conditions, and post-conditions. A behavior is the software

component and its capabilities are the signatures of the methods that the behavior

12 Nikolaos Spanoudakis and Pavlos Moraitis

realizes accompanied by pre-conditions for the execution of a method and post-

conditions (what must hold after the method’s execution). However, in AMOLA the

concept of capability is more abstract and is used for modeling an agent’s abilities

that are more general than method signatures. The latter are defined as functionalities

and the activity within the capability defines when and how the functionalities are

used by the agent.

6 Conclusion

Concluding, in this paper we defined AMOLA, a language for modeling agent

systems that has many qualities compared to other relevant methodologies (e.g. the

Prometheus, Gaia, Tropos, PASSI and MaSE discussed in [7]):

• The intra-agent control, whose novelty is to allow the modeling of interactions

between the different capabilities of an agent. For this purpose we use statecharts

and their orthogonality concept in an original way

• The inter-agent control that corresponds to the agent interaction protocol. This part

of the methodology is out of the scope of this paper but that which is important is

the use of statecharts like in the intra-agent control, thus simplifying the designer’s

task by using the same formalism

• There is a straightforward transformation process between the models of the

analysis phase to those of the design phase and then to an implementation platform

• It defines three abstraction levels (the society, agent and capability levels), thus

supporting the development of large-scale systems.

• The models of AMOLA can lead to agent development without imposing

constraints on how the mental model of the agent will be defined (e.g. like in

Ingenias [16] and Prometheus [14])

• We define the terms of capability and functionality that have been used with

different meanings in the past in order to provide new concepts for modeling

agent-based systems with relation to previous methodologies like, e.g. for object-

oriented development.

Currently we are working on the society level using statecharts in order to model

agent interaction protocols. Moreover, we are working on the way that these models

will be integrated and implemented through the agent capabilities.

References

1. Bracciali, A., Demetriou, N., Endriss, U., Kakas, A., Lu, W. and Stathis, K.: Crafting the

Mind of a PROSOCS Agent. Applied Artificial Intelligence, 20(4-5), April (2006)

2. Braubach, L., Pokahr, A., Lamersdorf, W.: Extending the Capability Concept for Flexible

BDI Agent Modularization. In: Proc. of the Third Int. Workshop on Programming Multi-

Agent Systems (ProMAS'05), Springer Verlag (2005)

3. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: TROPOS: An Agent-

Oriented Software Development Methodology. Journal of Autonomous Agents and Multi-

Agent Systems, Kluwer Academic Publishers (2004)

The Agent Modeling Language (AMOLA) 13

4. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent design

methodologies: from standardisation to research. Int. Journal of Agent-Oriented Software

Engineering, Vol. 1, No.1, pp. 91-121 (2007)

5. Deloach, S.A., Wood, M.F. and Sparkman, C.H.: Multiagent Systems Engineering. Int.

Journal of Software Engineering and Knowledge Eng., Vol. 11, No. 3, pp. 231-258 (2001)

6. Harel D., Naamad, A.: The STATEMATE Semantics of Statecharts. ACM Transactions on

Software Engineering and Methodology, 5(4), pp. 293-333 (1996)

7. Henderson-Sellers, B. and Giorgini, P. (Eds.): Agent-Oriented Methodologies. Idea Group

Publishing (2005)

8. Karacapilidis N., Lazanas A., Megalokonomos G, Moraitis P., "On the Development of a

Web-based System for Transportations Services", Information Sciences, Vol. 176, Issue 13,

pp. 1801-1828, Elsevier Publishers, July (2006)

9. Karacapilidis, N., Moraitis P.: Intelligent Agents for an Artificial Market System. Proc. fifth

Int. Conf. on Autonomous Agents (AGENTS'01), Montreal, Canada, pp. 592-599 (2001)

10. Kleppe, A., Warmer, S., Bast, W.: MDA Explained. The Model Driven Architecture:

Practice and Promise. Addison-Wesley, April (2003)

11. Moraitis, P., Spanoudakis N.: Argumentation-based Agent Interaction in an Ambient

Intelligence Context. IEEE Intelligent Systems, 22(6), pp. 84-93 (2007)

12. Moraitis, P., Spanoudakis, N.: The Gaia2JADE Process for Multi-Agent Systems

Development. Applied Artificial Intelligence Journal, 20(4-5), Taylor & Francis (2006)

13. Odell, J., Parunak, H. V. D. and Bauer, B.: Representing Agent Interaction Protocols in

UML. The First International Workshop on Agent-Oriented Software Engineering (AOSE-

2000), Limerick, Ireland, June 10 (2000)

14. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical Guide.

Wiley, (2004)

15. Paurobally, S., Cunningham, R., Jennings, N.R.: Developing agent interaction protocols

using graphical and logical methodologies. The first Int. Workshop on Programming

Multiagent Systems languages, frameworks, techniques and tools (PROMAS 2003),

AAMAS 2003

16. Pavón, J., Gómez-Sanz, J.J. & Fuentes, R.: The INGENIAS Methodology and Tools. In:

Henderson-Sellers, B. and Giorgini, P., editors: Agent-Oriented Methodologies. Idea Group

Publishing, pp. 236-276 (2005)

17. Spanoudakis N., Moraitis, P.: The Agent Systems Methodology (ASEME): A Preliminary

Report. In: Proceedings of the 5th European Workshop on Multi-Agent Systems

(EUMAS'07), Hammamet, Tunisia, December 13 - 14 (2007)

18. Trencansky, I. and Cervenka, R.: Agent Modelling Language (AML): A comprehensive

approach to modelling MAS. Informatica 29(4), pp. 391–400 (2005)

19. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: the Gaia

Methodology. ACM Trans. on Software Eng. and Methodology 12 (3), pp. 317-370 (2003)

