
Pavlos Moraitis1,2
1Dept. of Computer Science

University of Cyprus
75 Kallipoleos Str., Nicosia, Cyprus

email: moraitis@cs.ucy.ac.cy

Nikolaos Ι. Spanoudakis2,*
2European Projects Dept.
Singular Software S.A.

26th October 43, 54626, Thessaloniki, Greece
email: nspan@si.gr

Abstract

In this paper we present an enhanced version
of a roadmap we have previously proposed,
concerning how one can implement JADE
agents using the Gaia methodology for analy-
sis and design purposes. This effort is based
on the experience we have acquired by using
this roadmap for implementing a real word
multi-agent system conceived for providing e-
services to mobile users. Thus, our aim here is
to share this experience with future MAS de-
velopers, who would like to follow this re-
fined version of our roadmap, taking into ac-
count several technical issues that emerged
during the implementation phase, in order to
easily model and implement their systems.

1 Introduction

During the last few years, there has been a growth of
interest in the potential of agent technology in the con-
text of software engineering. Some promising agent-
oriented software development methodologies, as Gaia
(Wooldridge et al, 2000), AUML (Odell et al., 2000),
MaSE (Wood and DeLoach, 2000) have been proposed
but they cover only the requirements, analysis and de-
sign phases of the software development cycle (Som-
merville, 2000). An exception in these works is Tropos
(Bresciani et al., 2003), which in its recent version
proposes the covering of the entire software develop-
ment process. Recently there have also been some at-
tempts to provide roadmaps (e.g. Moraitis et al, 2003a)
and tools (e.g. Cossentino et al, 2003) for allowing
analysis and design methodologies to be implemented
using JADE (Bellifemine et al, 2002) or the FIPA-OS
(Emorphia Ltd, 2003) open source frameworks.
Unfortunately, until today no real world applications
have used these roadmaps and tools in order to
evaluate them.

In this paper we discuss our experience using the
roadmap proposed in (Moraitis et al., 2003a) in order
to engineer a real-world multi-agent system (MAS)
that was analyzed and designed using the Gaia meth-
odology and implemented with the JADE framework.
The weak and strong points of Gaia when it comes to

 * This work has been co-funded by the IM@GINE IT IST
research project where Singular Software SA is involved.

implementation using JADE were recognized and we
can now refine the previously proposed roadmap with
enough detail so as to enable future MAS developers
to easily model and implement their systems.

This paper is organized in the following way. In sec-
tion 2 we provide our system requirements and the
resulting Gaia model. In section 3 we discuss on the
added value of the roadmap for implementing Gaia
models using JADE, we provide some examples and
propose a new type of modeling needed before imple-
mentation. Finally, section 4 includes discussion and
future work.

2 Analysis and Design Phases

The Gaia methodology was considered as quite easy to
learn and use in order to analyze and design a multi-
agent system. It proved to be robust, reliable and the
produced models and schemata were used throughout
the project development phases as a reference. More-
over, it proved to be flexible enough, so that it was
easy to iterate through the design and implementation
phases, as is demanded by modern information sys-
tems development. The overall project management
proceeded using the iterative principles of the Rational
Unified Process (Kruchten, 2003) that is an iterative
software development process and demanded that our
plans changed some times during project development.

2.1 The System Requirements
In order for the reader to better understand our experi-
ence on how GAIA and JADE were combined to con-
ceive and implement a multi-agent system (MAS) we
will present a limited version of the system that was
implemented in the framework of the IST IMAGE pro-
ject. This version is extended with regard to the one
presented in (Moraitis et al, 2003a) so that problems
related to the complexity of our task can be presented
adequately. We will show how this system was ana-
lyzed, designed and implemented. The aim of this sys-
tem was to provide e-services for mobile users. For
this system we had the following requirements:

• A user can request a map with his position on it
and, possibly other points of interest (POIs) around
him that can belong to different types (e.g. banks,
restaurants, etc). A user can request for a map with
few or even no parameters.

Combining Gaia and JADE for Multi-Agent Systems Development

• A user can request a route from a specific place to
another specific place, specifying the means of
travel (e.g. public transport, car, on foot) and, pos-
sibly, the desired optimization type (e.g. shortest,
fastest, cheapest route). He can select among a va-
riety of routes that are produced by the Geographi-
cal Information System (GIS). A user can request
for a route with limited or even no parameters.

• The MAS maintains a user profile so that it can fil-
ter the POIs or routes produced by the GIS and
send to the user those that most suit his interests.
The profiling is based on criteria regarding the pre-
ferred transport type (private car, public transport,
bicycle, on foot) and the preferred transport char-
acteristics (shortest route, fastest route, cheapest
route, etc). Moreover, as far as the POI types are
concerned, the system not only allows the user to
store in his profile the types that he/she is inter-
ested in, but it also exhibits self-learning ability in
order to learn the user’s preferences by monitoring
his behaviour and adapting the service to his needs.

• The system keeps track on selected user routes
aiming to receive traffic events (closed roads) and
check whether they affect the user’s route (if that is
the case then inform the user).

This MAS was analyzed and designed using the
Gaia methodology and then was implemented using
the JADE. The full system capabilities, architecture
and functionalities, along with the business model and
requirements can be found in (Moraitis et al, 2003b).

2.2 The Analysis phase
The analysis phase led to the identification of four

roles: EventsHandler, that handles traffic events,
TravelGuide that wraps the GIS, PersonalAssistant,
that serves the user and, finally, SocialType, that han-
dles other agent contacts. A Gaia roles model for our
system is presented in Table 1. This is an enhanced
version of the similar one presented in (Moraitis et al,
2003a). We must note that interactions with the Direc-
tory Facilitator (DF) FIPA agent are presented as ac-
tivities since JADE allows for using DF services by
method invocations (e.g. QueryDF).

Role: SocialType (ST)
Description: It requests agents that perform specific services from the
DF. It also gets acquainted with specific agents.
Protocols and Activities: RegisterDF, QueryDF, SaveNewAcquaint-
ance, IntroduceNewAgent.
Permissions: create, read, update acquaintances data structure.
Responsibilities:

Liveness:
SOCIALTYPE = GetAcquainted. (MeetSomeone) ω
GETACQUAINTED = RegisterDF. QueryDF. [IntroduceNewAgent]
MEETSOMEONE = IntroduceNewAgent. SaveNewAcquaintance

Safety: true

Role: PersonalAssistant (PA)
Description: It acts on behalf of a profiled user. Provides the user with
personalized routing and mapping services. These routes are presented
to the user. Moreover, it can adapt (i.e. using learning capabilities) to a
user’s habits by learning from user selections. Finally, it receives infor-
mation on traffic events, it checks whether such events affect its user’s
route and in such a case it informs the user.
Protocols and Activities: InitUserProfile, DecideOrigin, DecidePOI-
Types, DecidePOIs, DecideDestination, LearnByUserSelection,
CheckApplicability, PresentEvent, UserRequest, RespondToUser, In-
formForNewEvents, FindRoutes, ProximitySearch, CreateMap, Get-
POIInfo
Permissions: create, read, update user profile data structure, read ac-
quaintances data structure.
Responsibilities:

Liveness:
PERSONALASSISTANT = InitUserProfile. ((ServeUser) ω || (Receive-

NewEvents) ω)
RECEIVENEWEVENTS = InformForNewEvents. CheckApplicability.

[PresentEvent]
SERVEUSER = UserRequest. (PlanATrip | WhereAmI). LearnByUs-

erSelection
WHEREAMI = DecideOrigin. [GetPOIsInfo] [DecidePOITypes.

[ProximitySearch. DecidePOIs. [GetPOIsInfo. GeocodeRequest]]
CreateMap] RespondToUser

PLANATRIP = DecideOrigin. [GetPOIsInfo] [DecideDestination.
[DecidePOITypes. [ProximitySearch. [DecidePOIs. GetPOIsInfo.
GeocodeRequest]] FindRoutes. DecideRoutes. [CreateMap]]]
RespondToUser

Safety: true

Role: EventsHandler (EH)
Description: It acts like a monitor. Whenever a new traffic event is
detected it forwards it to all personal assistants.
Protocols and Activities: CheckForNewEvents, InformForNewEvents.
Permissions: read on-line traffic database, read acquaintances data
structure.
Responsibilities:

Liveness:
EVENTSHANDLER = (CheckForNewEvents. InformForNewEvents)ω
Safety: A successful connection with the on-line traffic database is
established.

Role: TravelGuide (TG)
Description: It wraps a Geographical Information System (GIS). It can
query the GIS for routes, from one point to another.
Protocols and Activities: RegisterDF, QueryGIS, RequestRoutes,
RespondRoutes, RequestMap, RespondMap, RequestNearbyPOIs,
RespondNearbyPOIs, RequestPOIsInfo, RespondPOIsInfo
Permissions: read GIS.
Responsibilities:

Liveness:
TRAVELGUIDE = RegisterDF. ([FindRoutes] || [ProximitySearch] ||

[CreateMap] || [GetPOIInfo]) ω

FINDROUTES = RequestRoutes. RespondRoutes
PROXIMITYSEARCH = RequestNearbyPOIs. RespondNearbyPOIs
CREATEMAP = RequestMap. RespondMap
GETPOISINFO = RequestPOIsInfo. RespondPOIsInfo
Safety: A successful connection with the GIS is established.

Table 1: The Gaia Roles Model

The Gaia interaction model denotes which action re-
turns from a request along with the roles that can initi-
ate a request and the corresponding responders. Figure
1 holds the necessary information for our model. How-
ever, we considered that the Gaia interaction model
wasn’t appropriate to represent complex coordination
protocols. We overcame this difficulty by creating
scenarios using AUML sequence diagrams in order to

write down complex liveness formulas (like the
WhereAmI of the PersonalAssistant role).

ProximitySearch

PA TG

Proximity search request

TG PA
Limited POIs' info (id,
coordinates, POI types)

FindRoutes

PA TG
Routes request

TG PA
Routes

ST ST
A new agent is
intantiated

White and yellow page
information of the initiator

GetPOIsInfo

PA TG
POIs ids

TG PA

Full POIs' info

CreateMap

PA TG
Map request

TG PA
Map

EH PA
Event description

RequestPOIsInfo

IntroduceNewAgent

RequestMap

A new event was found

Queries the GIS for POIs
information

Queries the GIS for a map

Ask for a map

InformForNewEvents

RespondMap

Ask for information about specific

RespondPOIsInfo

RespondRoutes

Queries the GIS for Routes

RequestRoutes

Ask for Routes

RequestNearbyPOIs

Ask for POIs of specific types
within a specific distance

RespondNearbyPOIs

Queries the GIS for POIs

Figure 1: Gaia Interactions Model

2.3 The Design Phase
During this phase the Agent model was achieved,
along with the services and acquaintance models. The
Agent model is presented graphically in Figure 2.

The services model for our system is presented in
Table 2. Finally we defined the acquaintances model
(the reader could refer to Moraitis et al., 2003a in or-
der to see the graphic representation). There, the Per-
sonalAssistant agent was shown to interact with all
agent types, while the others interacted only with the
PersonalAssistant agent.

At this point the abstract design of the system was
complete, since the limit of Gaia had been reached.

More effort needed to be done in order to obtain a
good design though. At the end of the design process
the system should be ready for implementation.

EventsHandler
0..*

PersonalAssistant
0..*

TravelGuide
1

TravelGuidePersonalAssistantEventsHandler

SocialType

Legend

Role
Agent Type

number of instances

Figure 2: Gaia Agent Model

Service Obtain a map Obtain route Get traffic event

Inputs Origin, [POI
types], [visibil-
ity radius]

Origin, [destina-
tion], [travel
means/characteris
tics]

-

Outputs A map, [infor-
mation about
POIs shown on
the map]

A set of routes The description of
the event

Pre-
condition

A personalized
assistant agent is
instantiated and
associated with
the user

A personalized
assistant agent is
instantiated and
associated with
the user

A personalized
assistant agent is
instantiated and
associated with
the user. The user
has selected a
route to some-
where. A traffic
event that is rele-
vant to the user’s
route has hap-
pened

Post-
condition

- User selects a
route

-

Table 2: Gaia Services Model

3 Detailed Design and Implementation

Phases

In this section we present an enhanced version of the
roadmap proposed in (Moraitis et al 2003a) in order to
design and implement the Gaia models using the JADE
framework. The novelty of this version concerns
mainly steps 2 and 4. The reasons of this update will
be explained later within this section. Therefore, the
steps now are:

1. Define all the ACL messages by using the Gaia
protocols and interactions models.

2. Define the needed data structures and software
modules that are going to be used by the agents
by using the Gaia roles and agent models. Create
the activities refinement table (see Table 3).

3. Decide on the implementation of the safety
conditions of each role.

4. Define the JADE behaviours. Start by imple-
menting those of the lowest levels, using the
various Behaviour class antecedents provided by
JADE. The Gaia model that is useful in this
phase is the roles model. Behaviours that are ac-
tivated on the receipt of a specific message type
must either add a message receiver behaviour
(if they are complex-FSM behaviours), or re-
ceive a message (with the appropriate message
filtering template) at the start of their action.
Gaia activities that execute one after another
(sequence of actions that require no interaction
between agents) with no interleaving protocols
can be aggregated in one activity (behaviour
method or action). However, for reusability,
clarity and programming tasks allocation rea-
sons, we believe that a developer could opt to
implement them as separate methods (or actions
in an FSM like behaviour). Use state diagrams in
order to model FSM-like behaviours and recog-
nize the common data structures used by the
lower level behaviours. Initialize those data
structures at the upper level behaviour and pass
them as parameters to lower level behaviours.

5. Keep in mind that Gaia roles translated to
JADE behaviours are reusable pieces of code. In
our system, the same code of the behaviours Ge-
tAcquainted and MeetSomeone will be used
both for the personal assistant and events han-
dler agents.

6. At the setup method of the Agent class invoke
all methods (Gaia activities) that are executed
once at the beginning of the top behaviour (e.g.
RegisterDF). Initialize all agent data structures.
Add all behaviours of the lower level in the
agent scheduler.

The overall development process is, thus, top-down
in the analysis and design phase (Gaia) and bottom-up
in the implementation phase, according to the most
successful software engineering practices.

During the detailed design (steps 1 and 2) we intro-
duced the activities refinement table in order to facilitate
the Gaia Roles Model activities design and implemen-
tation. In this table we wrote down the necessary data
structures and algorithms. As an example, the Decide-
POITypes activity of the PersonalAssistant role re-
finement is presented in Table 3. In fact, the goal here
is to facilitate the link of such data to a JADE behav-
iour. Thus, when a behaviour is created the developer
can use this table in order to write the constructor of
the behaviour and define its functionality by imple-
menting the algorithm within its action method.

We used UML class diagrams in order to model the
data structures that would be used by each role’s per-
missions field and defined interfaces for external ser-

vices usage (GIS, database, etc) and the ontology for
our system. Finally we defined the ACL messages that
would be used by each protocol (FIPA performatives,
protocols, content).

Data

Structures
Role Activities

Read Update

Description

PA Decide-
POITypes

user profile
user request

- if
UserRequest.POITypes.length>0
Then RequestNearby-
POIs(UserRequest.POITypes)
else if
UserProfile.POITypes.length>0
then RequestNearby-
POIs(UserProfile.POITypes)
else CreateMap

Table 3: The Gaia roles’ activities refinement table

Then we defined the ways to safeguard the roles’
safety conditions (step 3 of the roadmap). For the
TravelGuide role we decided that whenever a connec-
tion with the GIS fails the relevant protocols will be
replying with FAILURE FIPA performative (FIPA,
2000) to the PersonalAssistant role and the system
administrator will be informed about it with a dialog.
For the EventsHandler role the same dialog is used in
order to inform the administrator about connectivity
problems with the events database.

Step 4 of the roadmap proved to be the most cum-
bersome one, since most of the implementation takes
place in this step. The implementation phase enabled
us to refine the roadmap steps (usually through prob-
lems that came up) as presented above.

One of the technical issues that emerged is that, usu-
ally, many roles/behaviours need to access the same
data structure. For example, in our case, the Persona-
lAssistant role behaviour reads the Acquaintances
structure while the SocialType role behaviour updates
it with new acquaintances. In these cases, data struc-
tures must be instantiated in an upper level. In our ex-
ample, this structure has been declared and instantiated
at the agent’s constructor and then passed as a parame-
ter to each of the two behaviours. Thus, they can both
access it. Here we can remark that we have no syn-
chronization problems regarding access to the same
data structure by different behaviours, since only one
behaviour is executed at any given time by the JADE
scheduler.

Secondly, the Gaia roles model, allowed for com-
plex behaviours to be modeled, but the transformation
to JADE Finite State Machine behaviour (FSMBehav-
iour) instances, wasn’t obvious. Thus we had to create
state diagrams for these FSM behaviours (like the
PlanATrip and WhereAmI behaviours of PersonalAs-
sistant). The state diagram for the WhereAmI behav-
iour of the PersonalAssistant role is presented in Fig-
ure 3. These diagrams provide another important in-
formation that is crucial for easy development. By ob-
serving the information exchanged between the differ-
ent simple behaviours within the FSM behaviour, we
recognize the data structures that must be defined in
the FSM behaviour level so that more than one of its
children behaviours can access them.

For example in the WhereAmI behaviour the neces-
sary data structures are the user request, the user re-
sponse, the user profile and history meta-data (from
where missing information is derived), the agent’s
acquaintances (from which the different sub-
behaviours will find the relevant contacts for achiev-
ing the GetPOIsInfo, ProximitySearch and CreateMap
protocols) and, finally, the different states identifica-
tion numbers that are returned by each finishing sub-
behaviour and allow the FSMBehaviour to decide
which behaviour is next to be added to the agent’s
scheduler. Again these data structures must be initial-
ised at the constructor of the FSM behaviour. It is also
worth observing how many sub-behaviours of these
two high level behaviours are common, for example
the Request/RespondMap behaviours that are used in
order to implement the CreateMap protocol by both
the PlanATrip and WhereAmI roles/behaviours.

REQUEST_POIS_STATE

RESPOND_POIS_AND_SELECT_POIS_STATE

REQUEST_LOCATION_MAP_STATE

RESPOND_LOCATION_MAP_STATE

RESPOND_WHERE_AM_I_STATE

[No POI types included in request]

[POI types included in request]

[A map is requested]

[POIs selected]

REQUEST_POIS_INFO_STATE

RESPOND_POIS_INFO_STATE

CHECK_ORIGIN_STATE

[Requested for selected POIs info]

[Selected POIs info returned]

[No POIs found]

[No map was requested]

GEOCODE_POIS_INFO_STATE

[Origin is POI ID]

[Selected POIs info returned for Geocoding]

[Origin is in coordinates format]

If POI types are not requested
then use Profile POI types

Filter according to requested
POI types and history (knowledge)

[Unsuccessful Geocoding]

[No origin specified]

[Origin is in coordinates format]

Figure 3: The WhereAmI behaviour detailed design

We also propose the FSMChildBehaviour class (see
Figure 4) that proved very useful, since we were able
to automate a lot of repeating code in simple behav-
iours within FSMBehaviours. This class defines two
useful attributes, finished and onEndReturnValue and
implements the methods done (returns true if a behav-
iour has finished, so that it is not inserted again in the
agent behaviour scheduler) and onEnd (returns the
state of the behaviour when it stopped executing). The

FSMChildBehaviour class is extended by behaviours
that are going to be used by FSMBehaviours. These
behaviours would normally need to implement the
done and onEnd methods along with the action meth-
ods, the latter implementing their functionality. By
extending the FSMChildBehaviour class, they now
only need to implement the action methods.

package image.agents;
import jade.core.behaviours.SimpleBehaviour;
import jade.core.Agent;
public class FSMChildBehaviour extends SimpleBehaviour {
 protected boolean finished = false;
 protected int onEndReturnValue;
 public FSMChildBehaviour(Agent a) {
 super(a);
 }
 public void action() {};
 public boolean done() {
 return finished;
 }
 public int onEnd(){
 return onEndReturnValue;
 }
}

Figure 4: The FSMChildBehaviour class

For illustration purposes, in Figure 5, we present the
PersonalAssistant agent class, where both steps 5 and
6 of the roadmap are demonstrated. The reader can see
the SocialTypeBehaviour takes as parameters the type
of the agent, the one to who he wants to introduce
himself and the one that he wants to add to his ac-
quaintances structures. Thus, this behaviour is used as
is by all social agents (we could say as a component).

public class PersonalAssistantAgent extends Agent {
 //declare agent level data structures
 protected Acquaintances contacts = null;
 protected void setup(){
 //get arguments – user profile
 Object [] args = this.getArguments();
 UserProfile userProfile = (UserProfile)args[0];
 //initialize agent data structures
 contacts = new Acquaintances();
 //activate SocialType and PersonalAssistant behaviours
 addBehaviour(new SocialTypeBehaviour(this,contacts,
 //find agent types: TravelGuide and add them to contacts
 new String[]{Acquaintances.TRAVEL_GUIDE},
 //Introduce agent as of type PersonalAssistant to agent
 //types: EventsHandler
 new String[]{Acquaintances.EVENTS_HANDLER},
Acquaintances.PERSONAL_ASSISTANT));
 addBehaviour(new PersonalAssistantBehaviour(this, contacts,
userProfile));
 }
}

Figure 5: The PersonalAssistant agent type class

public class PersonalAssistantBehaviour extends SimpleBehaviour
{
 public PersonalAssistantBehaviour(Agent ag, Acquaintances
contacts, UserProfile userProfile){
 //activate ServeUser and ReceiveNewEvents sub-behaviours
 addBehaviour(new ServeUserBehaviour (this.myAgent(),
contacts, userProfile));
 addBehaviour(new ReceiveNewEventsBehaviour(this.myAgent(),
contacts, userProfile));
 }
}

Figure 6: The PersonalAssistant role/behaviour

The PersonalAssistantBehaviour is presented in
Figure 6. The reader can see that it is simply one be-
haviour that adds the ServeUser and Receive-
NewEvents roles/behaviours. He might wonder why
weren’t they invoked directly from the agent class.

This is a consequence of the bottom-up development
process that is proposed by the roadmap (i.e. the
ServeUserBehaviour and ReceiveNewEventsBehav-
iour are already implemented when the overall Per-
sonalAssistantBehaviour’s time for implementation
has come).

4 Discussion and Future Work

This paper presented en enhanced version of the road-
map proposed in (Moraitis et al 2003a). This version is
based on the technical issues that were pointed out
during the development phase and we propose it in
order to further facilitate the implementation of Gaia
models using the JADE framework.

In general, the process of developing our system can
be considered as an agile process for multi-agent sys-
tems development (Larman, 2003). It allowed for
modularity during design and implementation phases
and for incremental, iterative development. This is
also supported by the fact that we successfully imple-
mented a complex system with 7 agent types that used
about 80 behaviours and about 900Kbytes of source
code in one year. For the overall system design we
used the RUP methodology.

Moreover, the top-down design followed by the bot-
tom-up implementation seemed a very good practice to
us. We actually used behaviours as components for
building agents. The latter provided services, thus be-
coming system level components. Sycara et al (2003)
discuss the large MAS modeling issue and the prob-
lems related to introducing agents in existing commu-
nities, where the new agents can use already provided
services in order to provide new services. Another
comment that is appropriate here is that the services
model that comes at the Gaia design phase is useful for
checking the system requirements and whether those
are satisfied by the modeled system.

The MAS that we developed was a module of a lar-
ger system. It interfaced with a legacy GIS system and
a web-based user interface (UI). The interfaces with
the GIS system were implemented as web services
while the interface with the UI was the exchange of
XML documents through TCP/IP sockets. The reader
can refer to (Moraitis et al, 2003b) for details on why
we selected Gaia and JADE for our MAS develop-
ment.

As future work, we plan to create a modeling tool
that would allow the automatic generation of JADE
classes after analysis and design using Gaia.

Acknowledgements

We would like to thank the European IST
IM@GINE IT project for co-funding our work and the
anonymous referees for their constructive comments
that helped us to improve our paper.

References

[Bellifemine et al., 2002] Bellifemine, F., Caire, G.,
Trucco, T., Rimassa, G.: Jade Programmer’s Guide.
JADE 2.5 http://sharon.cselt.it/projects/jade/, 2002

[Bresciani et al., 2003] Bresciani, P., Giorgini, P., Gi-
unchiglia, F., Mylopoulos, J. and Perini, A.:
TROPOS: An Agent-Oriented Software Develop-
ment Methodology. Accepted in JAAMAS, 2003

[Cossentino et al., 2003] Cossentino, M., Burrafato,
P., Lombardo, S., Sabatucci, L.: Introducing Pattern
Reuse in the Design of Multi-Agent Systems. In R.
Kowalszyk, et al. (eds), “Agent Technologies, Infra-
structures, Tools, and Applications for e-Services”,
LNAI. 2592, Springer-Verlag, 2003

[FIPA, 2000] FIPA specification XC00061E: FIPA
ACL Message Structure Specification.
http://www.fipa.org, 2000

[Emorphia, 2003] Emorphia Ltd. FIPA-OS: A compo-
nent-based toolkit enabling rapid development of
FIPA compliant agents. http://fipa-
os.sourceforge.net/, 2003

[Kruchten, 2003] Kruchten, P.. The Rational Unified
Process: An Introduction, Third Edition. Addison-
Wesley Pub Co, 3rd edition, 2003

[Larman, 2003] Larman, C.. Agile and Iterative De-
velopment: A Manager's Guide. Addison-Wesley
Pub Co; 1st edition, 2003

[Moraitis et al., 2003a] Moraitis, P., Petraki, E.,
Spanoudakis, N.: “Engineering JADE Agents with
the Gaia Methodology”. In R. Kowalszyk, et al.
(eds), “Agent Technologies, Infrastructures, Tools,
and Applications for e-Services”, LNAI 2592,
Springer-Verlag, 2003, pp. 77-91

[Moraitis et al., 2003b] Moraitis, P., Petraki, E. and
Spanoudakis, N.: “Providing Advanced, Personal-
ised Infomobility Services Using Agent Technol-
ogy”. In: Twenty-third SGAI International Confer-
ence on Innovative Techniques and Applications of
Artificial Intelligence (AI2003), Peterhouse College,
Cambridge, UK, December, 2003

[Odell et al., 2000] Odell, J., Parunak, H. and Bauer,
B. Extending UML for Agents. In Proc. of the
Agent-Oriented Information Systems Workshop at
the AAAI00, 2000, pp 3-17

[Sommerville, 2000] Sommerville, I.. Software Engi-
neering. Addison-Wesley Pub Co, 6th edition, 2000

[Sycara et al., 2003] Sycara, K., Giampapa, J.A.,
Langley, B.K. and Paolucci, M.: The RETSINA
MAS, a Case Study. Software Engineering for
Large-Scale Multi-Agent Systems: Research Issues
and Practical Applications, Garcia, A., Lucena, C.,
Zambonelli, F., Omici, A. and Castro, J. (eds.),
LNCS 2603, Springer-Verlag, 2003, pp. 232-250

[Wood and DeLoach, 2000] Wood, M.F. and DeLoach,
S.A.: An Overview of the Multiagent Systems Engi-
neering Methodology. AOSE-2000, The 1st Int.
Workshop on AOSE. Limerick, Ireland, 2000

[Wooldridge et al., 2000] Wooldridge, M., Jennings,
N.R., Kinny, D.: The Gaia Methodology for Agent-
Oriented Analysis and Design. JAAMAS Vol. 3. No.
3, 2000, pp. 285-312

