
Applications of Argumentation: The SoDA Methodology

Nikolaos I. Spanoudakis1 and Antonis C. Kakas2 and Pavlos Moraitis3

1 Introduction

The area of argumentation is now at a stage that it can benefit from
the study of systematic methodologies for building applications of
argumentation. Herein, we present such a systematic argumentation
software methodology, called SoDA (Software Development for Ar-
gumentation), that facilitates the principled modeling of real life
problems, and the Gorgias-B tool that supports it. Gorgias-B builds
on the system Gorgias that implements the theoretical framework
proposed in [1]. SoDA and Gorgias-B built on the successful use of
Gorgias during the last ten years by different users for developing
real life applications (see http://gorgiasb.tuc.gr/Apps.html).

2 Background

In [1] the authors proposed a preference-based argumentation frame-
work where theories may be composed at different levels. The frame-
work allows to represent arguments as rules whose heads are either
alternative options (e.g. actions, decisions) or priorities over rules.
An argument attacks (or is a counter argument to) another when they
derive a contrary conclusion. These are conflicting arguments. A con-
flicting argument is admissible if it counter-attacks all the arguments
that attack it. Arguments of the first level (i.e. concerning options)
have to take along priority (or higher level) arguments and make
themselves at least as strong as their counter-arguments.

In applications, we have options and beliefs. Beliefs refer to prop-
erties of the application problem environment. They can be decom-
posed, although not necessarily, into Defeasible and Non-Defeasible
beliefs and some of the defeasible beliefs can be designated as ab-

ducible beliefs. Finally, we can have a complementary or conflict

relation between the different options of the application.
In a medical access application, possible (simplified) examples of

rules at the different levels are (here we are assuming that the param-
eter variables in the rules take values in their respective types, P is
for Patient, D is for Doctor, F is for File, H is for Hospital):
r1(D,P, F ) : denyAccess(D,P, F )← true
r2(D,P, F ) : allowAccess(D,P, F )← medical(P, F ) ∧

worksFor(D,H) ∧ isIn(P,H)
p1(D,P, F ) : h p(r1(D,P, F ), r2(D,P, F ))← true
p2(D,P, F ) : h p(r2(D,P, F ), r1(D,P, F ))← treating(D,P )
pp1(D,P, F ) : h p(p2(D,P, F ), p1(D,P, F ))← true

The first two rules are object-level rules. The next pair of rules are
priority rules at the first level. The last rule is a second level priority
rule.

If the argumentation theory can provide support both for an option
literal and a complement one, then they are both credulously sup-

1 Technical University of Crete, Greece, email: nikos@science.tuc.gr
2 University of Cyprus, Cyprus, email: antonis@cs.ucy.ac.cy
3 LIPADE, Paris Descartes University, France, email: pav-

los@mi.parisdescartes.fr

Figure 1. The SoDA process depicted using SPEM (Software Process
Engineering Metamodel) 2.0 (http://www.omg.org/spec/SPEM/2.0/)

ported. In the case that only one option can be supported then we
have a sceptical conclusion.

3 SoDA: Software Development for Argumentation

The SoDA methodology defines a high level process (presented
graphically in Figure 1) requiring from the developer to consider
questions about the requirements of the problem at various scenar-
ios without the need to consider the underlying software code that
will be generated. The Software Engineering Process is defined as a
series of tasks (or activities) that produce Work Products (WPs). The
different SoDA tasks (T) and their input and output WPs are:

T1: This task defines the different options of the application prob-
lem, including the conflict relation between them (written in
WP1)

T2: The second task identifies the knowledge needed in order to de-
scribe the application environment (written in WP2)

T3: This task aims to separate the information in WP2 into two
types: information that always exists for all instances of the
problem and information that is circumstantial, which may be
present in all instances of the problem. Circumstantial predi-
cates are removed from WP2 and inserted in WP3. The next
two tasks can be executed in parallel (T4 and T5)

T4: This task aims to sort the circumstantial information from the
more general to the more specific application contexts in lev-
els, starting from level one (more general contexts). Indepen-
dent contexts (i.e. when the one is not a refinement of the other)
can appear at the same level

T5: This task begins the process of capturing the application require-
ments. It aims to define for each option, Oi, the different prob-
lem environments, i.e. the sets of preconditions, Ci, in terms

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1722

1722



Figure 2. A screenshot of the Gorgias-B tool with the options view (a), the arguments view (b) and the argue view (c)

of non-circumstantial predicates appearing in WP2, where the
option is possible. Its output, WP4, contains all such sets of
preconditions

T6: This final task iteratively defines sequences of increasingly more
specific partial models or scenarios of the world (stored in
WP5) and considers how options might win over others. This
starts with information from WP4 to precondition the world and
iterates getting each time contextual information from the next
level in WP3. At each level of iteration it defines which option is
stronger over another under the more specific contextual infor-
mation. In the final iteration, the winning options (if they exist)
for each partial model are defined without extra information

4 Tool Support for SoDA Methodology

We have developed a new tool, Gorgias-B 4, to support the devel-
opment of applications of argumentation under Gorgias, following
the SoDA methodology, in a way that allows users with little or no
knowledge of argumentation to model their application domains. Us-
ing Gorgias-B the user can automatically generate source code in the
form of an application argumentation theory in the Gorgias frame-
work. Moreover, this theory can be executed under Gorgias-B by
specifying scenarios of interest and asking which options are credu-
lous or sceptical solutions. The tool returns these together with the
admissible arguments that support them. Gorgias-B also allows to

4 http://www.amcl.tuc.gr/gorgiasb

specify some predicates as abducible, and the tool can find scenario
conditions under which an option will be a solution.

In the Options View (Figure 2(a)), the user defines the different op-
tions. Then, the user can edit preconditions (WP4) for options in the
Argument View (Figure 2(b)). Here the user is building the (object-
level) arguments for the various options. The Argue View (Figure
2(c)) appears as soon as the user clicks the “Resolve conflicts” but-
ton. Here the user selects among scenarios with conflicting options
more specialized cases (if they exist) where one of the other option
can win. When this happens the contextual information of both previ-
ous level scenarios is combined to a new more specific scenario and
the user can then repeat to select contexts in the new current level,
which is always visible at the top of the dialog window.

ACKNOWLEDGEMENTS

We acknowledge the collaboration with the Resilient Information
Systems Security (RISS) group at Imperial College in the study of
the application of SoDA to cyber security and data access and data
sharing problems.

REFERENCES

[1] Antonis C. Kakas and Pavlos Moraitis, ‘Argumentation based decision
making for autonomous agents’, in Proc. Second International Joint
Conference on Autonomous Agents & Multiagent Systems, AAMAS 2003,
Melbourne, Australia, pp. 883–890, (2003).

N.I. Spanoudakis et al. / Applications of Argumentation: The SoDA Methodology 1723


