Applications of Argumentation: The SoDA Methodology

Nikolaos I. Spanoudakis1 and Antonis C. Kakas2 and Pavlos Moraitis3

1 Introduction

The area of argumentation is now at a stage that it can benefit from the study of systematic methodologies for building applications of argumentation. Herein, we present such a systematic argumentation software methodology, called SoDA (Software Development for Argumentation), that facilitates the principled modeling of real life problems, and the Gorgias-B tool that supports it. Gorgias-B builds on the system Gorgias that implements the theoretical framework proposed in [1]. SoDA and Gorgias-B built on the successful use of Gorgias during the last ten years by different users for developing real life applications (see http://gorgiasb.tuc.gr/Apps.html).

2 Background

In [1] the authors proposed a preference-based argumentation framework where theories may be composed at different levels. The framework allows to represent arguments as rules whose heads are either alternative options (e.g. actions, decisions) or priorities over rules. An argument attacks (or is a counter argument to) another when they derive a contrary conclusion. These are conflicting arguments. A conflict argument is admissible if it counter-attacks all the arguments that attack it. Arguments of the first level (i.e. concerning options) have to take along priority (or higher level) arguments and make themselves at least as strong as their counter-arguments.

In applications, we have options and beliefs. Beliefs refer to properties of the application problem environment. They can be decomposed, although not necessarily, into Defeasible and Non-Defeasible beliefs and some of the defeasible beliefs can be designated as abductive beliefs. Finally, we can have a complementary or conflict relation between the different options of the application.

In a medical access application, possible (simplified) examples of rules at the different levels are (here we are assuming that the parameter variables in the rules take values in their respective types, P is for Patient, D is for Doctor, F is for File, H is for Hospital):

\[
\begin{align*}
T1 & : \text{This task defines the different options of the application problem, including the conflict relation between them (written in WP1)} \\
T2 & : \text{The second task identifies the knowledge needed in order to describe the application environment (written in WP2)} \\
T3 & : \text{This task aims to separate the information in WP2 into two types: information that always exists for all instances of the problem and information that is circumstantial, which may be present in all instances of the problem. Circumstantial predicates are removed from WP2 and inserted in WP3. The next two tasks can be executed in parallel (T4 and T5)} \\
T4 & : \text{This task aims to sort the circumstantial information from the more general to the more specific application contexts in levels, starting from level one (more general contexts). Independent contexts (i.e. when the one is not a refinement of the other) can appear at the same level} \\
T5 & : \text{This task begins the process of capturing the application requirements. It aims to define for each option, } O_i, \text{ the different problem environments, i.e. the sets of preconditions, } C_i, \text{ in terms of}
\end{align*}
\]

\[1\] Technical University of Crete, Greece, email: nikos@science.tuc.gr
[2] University of Cyprus, Cyprus, email: antonis@cs.ucy.ac.cy
[3] LI-PADE, Paris Descartes University, France, email: pavlos@mi.parisdescartes.fr
of non-circumstantial predicates appearing in WP2, where the option is possible. Its output, WP4, contains all such sets of preconditions.

T6: This final task iteratively defines sequences of increasingly more specific partial models or scenarios of the world (stored in WP5) and considers how options might win over others. This starts with information from WP4 to precondition the world and iterates getting each time contextual information from the next level in WP3. At each level of iteration it defines which option is stronger over another under the more specific contextual information. In the final iteration, the winning options (if they exist) for each partial model are defined without extra information.

4 Tool Support for SoDA Methodology

We have developed a new tool, Gorgias-B, to support the development of applications of argumentation under Gorgias, following the SoDA methodology, in a way that allows users with little or no knowledge of argumentation to model their application domains. Using Gorgias-B the user can automatically generate source code in the form of an application argumentation theory in the Gorgias framework. Moreover, this theory can be executed under Gorgias-B by specifying scenarios of interest and asking which options are credulous or sceptical solutions. The tool returns these together with the admissible arguments that support them. Gorgias-B also allows to specify some predicates as abducible, and the tool can find scenario conditions under which an option will be a solution.

In the Options View (Figure 2(a)), the user defines the different options. Then, the user can edit preconditions (WP4) for options in the Argument View (Figure 2(b)). Here the user is building the (object-level) arguments for the various options. The Argue View (Figure 2(c)) appears as soon as the user clicks the “Resolve conflicts” button. Here the user selects among scenarios with conflicting options more specialized cases (if they exist) where one of the other option can win. When this happens the contextual information of both previous level scenarios is combined to a new more specific scenario and the user can then repeat to select contexts in the new current level, which is always visible at the top of the dialog window.

ACKNOWLEDGEMENTS

We acknowledge the collaboration with the Resilient Information Systems Security (RISS) group at Imperial College in the study of the application of SoDA to cyber security and data access and data sharing problems.

REFERENCES