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Abstract   This paper describes an autonomous agent conceived for automating 

the decision making process for pricing products. Product pricing involves the 

interaction of decision makers with different - possibly conflicting - points of 

view. Our approach allows for applying individual pricing policies to each product 

by taking into account different points of view expressed through different 

arguments and the dynamic environment of the application. This is done through 

the use of argumentation technology. The agent development process using the 

Agent Systems Engineering Methodology (ASEME) is also presented. 

1. Introduction 

Automating the product pricing procedure in many different types of enterprises 

like retail businesses, factories, even firms offering services is an important issue. 

Product pricing is concerned with deciding about the price of each of a firm’s 

products. The product pricing agent that we present in this paper allows for the 

integration of the views of different types of decision makers (like financial, 

production, marketing officers) and can reach a decision even when these views 

are conflicting. This is achieved with the use of argumentation. 

Argumentation has been used successfully in the last years as a reasoning 

mechanism for autonomous agents in different situations, as for example for 

deliberating over the needs of a user with a combination of impairments [15] and 

for selecting the funds that should be included in an investment portfolio [19]. It is 

the first time that it is used for decision making in the retail business sector. This 

paper aims to show that argumentation can be applied successfully in this area that 

sparse works provide solutions. A relevant patent [3] only proposes an architecture 

and not the pricing mechanism itself. Existing works in seller and buyer agents 

development and benchmarking (see [5], [6] and [13]) provided us with important 



information regarding the challenges that we faced, but with little practical advice 

since they focus in modeling markets where sellers compete with others in order 

to provide the smallest price to the buyer. The retail business sector demanded a 

system that would have the possibility to apply a pricing policy adjusted to the 

market context, while reflecting the points of view of diverse decision makers. 

The product pricing agent was developed in the context of MARKET-MINER 

project that was co-funded by the Greek government. SingularLogic SA, a leading 

Greek software vendor in the area of business software participated in the project. 

Their consultants and system administrators evaluated our results and considered 

our agent a success that could have an important impact in the business 

intelligence software suite in the next four to five years. 

This paper shows the knowledge engineering approach for the problem domain 

(retail business sector). Then, it presents the product pricing agent software 

development process, for which we used the Agent Systems Engineering 

Methodology (ASEME) [18, 17]. The reader should note that this is the first 

demonstration of the usage of ASEME for engineering a real world system. 

The basics of the used argumentation framework are firstly presented in section 

2. Then, the reader can focus on our knowledge engineering approach for the 

application domain, which is described in section 3. Subsequently, in section 4, 

the paper presents the product pricing agent development process, including 

information on how we conceived and modeled the system using ASEME. Section 

5 presents the results evaluation process and assessment followed by a discussion 

of related work in section 6. Finally, section 7 concludes. 

2. The Theoretical Framework 

Decision makers, be they artificial or human, need to make decisions under 

complex preference policies that take into account different factors. In general, 

these policies have a dynamic nature and are influenced by the particular state of 

the environment in which the agent finds himself. The agent's decision process 

needs to be able to synthesize different aspects of his preference policy and to 

adapt to new input from the current environment. We model the product pricing 

decision maker as such an agent. 

Deciding about the price of different products is a dynamic process that 

depends on several different parameters such as the price of similar products sold 

by concurrent sellers, the season of selling, the nature of the product, its 

characteristics, its usefulness/impact in the everyday life of people, etc. These 

parameters may represent a context (e.g. normal or sales season), general (e.g. the 

color of a product) or particular characteristics of the product, linked (or not) to 

the context (e.g. this product-an umbrella- is more useful in the winter than in the 

summer), and are determined on the basis of different and, very often, 

contradictory pricing policies for the product. For example, we could consider that 

the price of a new model of a product (e.g. an umbrella) should be low in order to 



increase the market share (e.g. expressing a marketing policy point of view) of the 

firm and at the same time consider that the price of this model should be high in 

order to increase the turnover of the firm (e.g. expressing a financial policy point 

of view). Moreover, other, additional reasons, could influence the price of this 

model of umbrella like the season of the introduction to the market, considering 

that if it is during the summer this could be in favor of a low price, while in winter 

this could be in favor of a high price. Thus, two different, conflicting pricing 

policies (i.e. high price vs. low price) could be supported by different, acceptable 

but conflicting reasons (i.e. marketing policy vs. financial policy) or by different 

contexts (i.e. winter vs. summer). In such scenarios, either only one situation 

holds, in which case the conflict is easily resolved (we cannot have summer and 

winter at the same time), or several situations may simultaneously hold (marketing 

policy and financial policy) and in this case additional preferences are necessary 

(e.g. usually the increase of the market share is more important than short term 

profit, but the firm has a big deficit and, therefore, a short term profit increase is 

mandatory) in order to decide. 

For dealing with the above situations we need a decision making framework 

which would allow to make decisions based on conflicting preferences, expressing 

different points of view, but also taking into account the particular context in 

which these decisions are made.  

Argumentation techniques may be used to perform non-monotonic reasoning 

[2]. Argumentation can be abstractly defined as the formal interaction of different 

conflicting arguments for and against some conclusion due to different reasons 

and provides the appropriate semantics for resolving such conflicts. Thus, it is 

very well suited for implementing decision making mechanisms dealing with the 

above requirements. Moreover, the dynamic nature of those conflicting decisions 

due to different situations or contexts needs a specific type of argumentation 

frameworks ([16], [11]). These frameworks are based on object level arguments 

representing the decision policies and then they are using priority arguments 

expressing preferences on the object level arguments in order to resolve possible 

conflicts. Subsequently, additional priority arguments can be used in order to 

resolve potential conflicts between priority arguments of the previous level. 

Therefore, we are concerned with argumentation frameworks that allow for the 

representation of dynamic preferences under the form of dynamic priorities over 

arguments. In this work we are using the framework proposed by Kakas and 

Moraitis ([11], [10]). This framework has been applied in a successful way in 

different applications (see e.g. [15], [19]) involving similar scenarios of decision 

making and it is supported by an open source software called Gorgias. The 

following definitions formally present the basic elements of this framework: 

 

Definition 1. A theory is a pair (T, P) whose sentences are formulae in the 

background monotonic logic (L, ⊢ ) of the form L←L1,…,Ln, where L, L1, …, Ln 

are positive or negative ground literals. For rules in P the head L refers to an 

(irreflexive) higher priority relation, i.e. L has the general form L = h_p(rule1, 



rule2) (h_p stands for higher priority). The derivability relation, ⊢ , of the 

background logic is given by the simple inference rule of modus ponens. 

An argument for a literal L in a theory (T, P) is any subset, T, of this theory 

that derives L, T ⊢ L, under the background logic. A part of the theory T0 ⊂ T, is 

the background theory that is considered as a non defeasible part (the 

indisputable facts). 

 

Definition 2. Let (T, P) be a theory, T, T’ ⊆ T and P, P’ ⊆ P. Then (T’, P’) 

attacks (T, P) iff there exists a literal L, T1 ⊆ T’, T2 ⊆ T, P1 ⊆ P’ and P2 ⊆ P s.t.: 

(i) T1 ∪ P1 ⊢ min L and T2 ∪ P2 ⊢ min ¬L 

(ii) (∃r’ ∈ T1 ∪ P1, r ∈ T2 ∪ P2 s.t. T ∪ P ⊢  h_p(r, r’)) ⇒(∃r’ ∈ T1 ∪ 

P1, r ∈ T2 ∪ P2 s.t. T’ ∪ P’ ⊢  h_p(r’, r)). 

 

T ⊢ min L means that T ⊢ L under the background logic and that L cannot be 

derived from any proper subset of T. Here T ∪ P ⊢ min L means T ⊢ min L. This 

definition means that a composite argument (T’,P’) is a counter-argument to 

another such argument when they derive a contrary conclusion L and (T’∪P’) 

makes the rules of its counter proof at least “as strong” as the rules of the proof of 

the argument that is under attack. The second condition says that an attack can 

occur on a contrary conclusion L that refers to the priority between rules. 

 

Definition 3. Let (T, P) be a theory, T ⊆ T and P ⊆ P. Then (T, P) is 

admissible iff (T ∪ P) is consistent and for any (T’ ∪ P’), T’⊆ T , P’⊆ P, if (T’ ∪ P’) attacks (T ∪ P) then (T ∪ P) attacks (T’ ∪ P’). Given a ground literal L 

then L is a credulous (resp. skeptical) consequence of the theory iff L holds in a 

(resp. every) maximal (wrt set inclusion) admissible subset of T . 

 

Therefore, for an argument (from T) to be admissible it needs to take along with 

it priority arguments (from P) to make itself at least “as strong” as the opposing 

counter-arguments. This need for priority rules can repeat itself when the initially 

chosen ones can themselves be attacked by opposing priority rules and again we 

would need to make the priority rules themselves at least as strong as their 

opposing ones. 

An agent’s argumentation theory for describing his policy can now be defined 

as follows 

 

Definition 4. An agent’s argumentative theory, T, is a tuple T = (T, PR, PC) 

where the rules in T do not refer to h_p, all the rules in PR are priority rules with 

head h_p(r1, r2) s.t. r1, r2 ∈ T and all rules in PC are priority rules with head 

h_p(R1, R2) s.t. R1, R2 ∈ PR ∪ PC. 

 

Thus, in defining the decision maker’s theory three levels are used. The first 

level (T) defines the (background theory) rules that refer directly to the subject 



domain, called the Object-level Decision Rules. In the second level we have the 

rules that define priorities over the first level rules. These priorities can be based 

on the specific roles that agents can assume or to generic and specific conditions 

(or situations), while the third level rules define priorities over these rules based 

on generic or specific contexts. Finally, we can also have priorities over this third 

level rules based on preferences between different contexts. 

To explain how this argumentation framework works, we present an example 

where the theory T represents part of the object-level decision rules of a company 

employee (nonground rules represent their instances in a given Herbrand 

universe). Here and later, we use logic-programming notation, in which any term 

starting with a capital letter represents a variable. Abusing this notation, we’ll 

denote the constant names of the priority rules R and C with capital letters. 

 

r1: give(A, Obj, A1) ← requests(A1, Obj, A) 

r2: ¬give(A, Obj, A1) ← needs(A, Obj) 

 

In addition, a theory PR represents the general default behavior of the 

company’s code of contact in relation to its employees’ roles. That is, a request 

from a superior is generally stronger than an employee’s own need, and a request 

from another employee from a competing department is generally weaker than an 

employee’s own need. 

 

R1: h-p (r1, r2) ← higher_rank(A1, A) 

R2: h-p (r2, r1) ← competitor(A, A1) 

 

Between the two alternatives to satisfy a request from a superior from a 

competing department or not, the first is stronger when these two departments are 

in the specific context of working together on a common project. On the other 

hand, if the employee has an object and needs it urgently, then he would prefer to 

keep it. Such policy is represented at the third level in PC: 

 

C1: h-p (R1, R2) ← common_project(A, Obj, A1) 

C2: h-p (R2, R1) ← urgent(A, Obj) 

 

Gorgias1, a Prolog implementation of the framework presented above, defines a 

specific language for the object level rules and the priorities rules of the second 

and third levels. The language for representing the theories is given by rules with 

the syntax in formula (1). 

rule(Signature, Head, Body). (1) 

                                                           
1 Gorgias is an open source general argumentation framework that combines the 
ideas of preference reasoning and abduction 
(http://www.cs.ucy.ac.cy/~nkd/gorgias) 



In the rule presented in formula (1), Head is a literal, Body is a list of literals 

and Signature is a compound term composed of the rule name with selected 

variables from the Head and Body of the rule. The predicate prefer/2 is used to 

capture the higher priority relation (h_p) defined in the theoretical framework. It 

should only be used as the head of a rule. Using the syntax defined in (1) we can 

write the rule presented in formula (2). 

rule(Signature, prefer(Sig1, Sig2), Body). (2) 

Formula (2) means that the rule with signature Sig1 has higher priority than the 

rule with signature Sig2, provided that the preconditions in the Body hold. If the 

modeler needs to express that two predicates are conflicting he can express that by 

using the rule presented in formula (3). 

conflict(Sig1,Sig2). (3) 

The rule in formula (3) indicates that the rules with signatures Sig1 and Sig2 

are conflicting. A literal’s negation is considered by default as conflicting with the 

literal itself. A negative literal is a term of the form neg(L). There is also the 

possibility to define conflicting predicates that are used as heads of rules using the 

rule presented in formula (4). 

complement(Head1, Head2). (4) 

3. Domain Knowledge Modeling 

Our first step in domain knowledge modeling was to gather the domain knowledge 

in free text format by questioning the decision makers that participate in the 

product pricing procedure. They were officers in Financial, Marketing and 

Production departments of firms in the retail business but also in the manufacture 

domain. Then, we processed their statements aiming on one hand to discover the 

domain ontology and on the other hand the decision making rules. For example, 

let’s consider the expression “If the firm has a high-low strategy then if it 

advertises a product and its price is low the products that accompany it in the 

consumers’ basket are priced high”. This expression identifies the concepts “firm 

strategy” and “product”. The concept “firm strategy” can have the property “high-

low” and the “product” concept can have the property “price” and can be related 

to other products as “accompanied in the consumer’s basket” by them. 

The next step was to ask a team of decision makers to decide on priorities 

between the different conflicting extracted rules. These priorities could be default 

or be dependent on context. 

The knowledge representation process is detailed in the following paragraphs, 

firstly, the ontology definition part and, secondly, the knowledge base 

development. However, the process was not sequential; it was rather iterative as 

the concepts proved to need to evolve as the knowledge base was developed. 



3.1 Ontology definition 

We used the Protégé2 open source ontology editor for defining the domain 

concepts and their properties and relations. Even though we aimed to do reasoning 

using a logic programming language we decided to use a standardized way to 

represent our ontology. The main reasons were that the human-machine interface 

of our agent and its interface to other components (like a database) would be done 

using the Java object-oriented language. The Protégé tool allows – through the use 

of the beangenerator3 add-on – to export the ontology in Java class format. 

In Figure 1, the developed ontology is presented as a UML class diagram. 

Focusing in the Product concept, the reader can see the properties identified in the 

previous paragraph hasPrice and isAccompaniedBy. Price is defined as a real 

number (Single) and isAccompaniedBy relates the product to multiple other 

instances of products that accompany it in the consumer’s cart. The Product fields 

correspond to 

• corporate database values (hasName, advertisedInvention, hasHighDemand, 

hasProductionCost, isLimitedEdition, isSignedByFirm, 

newTechnologyProduct, sellsLowOrExpires, symbol) 

• external data (hasPrice, hasHighDemand) 

• company policy (advertizedByUs) 

• mined data (isAccompaniedBy) 

• decision making results (hasPricePolicy, hasPriceJustification, hasPrice) 

 

Figure 1. The MarketMiner Ontology depicted as a UML class diagram. 

 

                                                           
2 Protégé is a free, open source ontology editor and knowledge-base framework 
(http://protege.stanford.edu) 
3 The ontology bean generator plug-in for Protégé generates java files representing 
an ontology (http://protegewiki.stanford.edu/index.php/OntologyBeanGenerator) 



In Figure 1 we also present the FirmStrategy concept and its properties. As the 

reader can observe they are all Boolean and represent the different strategies that 

the firm can have activated at a given time. For example, the hitCompetition 

property is set to true if the firm’s strategy is to reduce the sales of its competitors. 

Only the last property (i.e. retail_business) does not refer to strategy, it just 

characterizes the firm as one in the retail business sector. Finally the ProductType 

concept has the firm policy properties of hitProductTypeCompetition and 

penetrateProductTypeMarket. 

3.2 Knowledge Base Definition 

For our knowledge base definition we used Prolog. In order to use the concepts 

and their properties as they were defined in Protégé we did the following 

encodings: 

• A Boolean property is encoded as a unary function, for example the 
advertisedByUs property of the Product concept (see Figure 1) is encoded as 
advertisedByUs(ProductInstance) 

• A property with a string, numerical, or any concept instance value is encoded as 
a binary predicate, for example the hasPrice property of the Product concept 
(see Figure 1) is encoded as hasPrice(ProductInstance, FloatValue) 

• A property with a string, numerical, or any concept instance value with 
multiple cardinality is encoded as a binary predicate. However the encoding of 
the property to predicate can be done in two ways. The first possibility is for 
the second term of the predicate to be a list. Thus, the isAccompaniedBy 
property of the Product concept (see Figure 1) is encoded as 
isAccompaniedBy(ProductInstance, [ProductInstance1, ProductInstance2, 

…]), where product instances must not refer to the same product. A second 
possibility is to create multiple predicates for the property. For example the 
hasProductType property of the Product concept is encoded as 
hasProductType(ProductInstance, ProductTypeInstance). In the case that a 
product has more than one product types, one such predicate is created for each 
product type. 

 

Then, we used the Gorgias framework for writing the rules. The goal of the 

knowledge base would be to decide on whether a product should be priced high, 

low or normally. Thus it emerged, the hasPricePolicy property of the Product 

concept. After this decision we could write the object-level rules each having as 

head the predicate hasPricePolicy(Product, Value) where Value can be low, high 

or normal – a constraint of enumeration type. Then, we defined the different 

policies as conflicting, thus only one policy was acceptable (or admissible) per 

product. This is expressed by the Prolog statements shown in Figure 2. 

In order to resolve conflicts we consulted with the firm (executive) officers and 

defined priorities over the conflicting object rules. However, the management of 



those rules became difficult as their number increased. In order to overcome this 

issue we created a matrix with all defined rules both in the row and column 

headings. Then we used the “greater than” symbol (>) to show which rule had 

priority. The decision makers (either by voting or by the decision of the Chief 

Executing Officer) defined the priorities over conflicts. 

 

… 
level(high). 
level(normal). 
level(low). 
complement(hasPricePolicy(Product, X), hasPricePolicy(Product, Y)) :-  
 level(X), level(Y), X\=Y. 
… 

Figure 2. An extract from the rule base showing how we define conflicting 

hasPricePolicy predicates. 

 

In Table 1, the reader can see the priorities set for conflicting rules. Rules with 

the format 1.X are rules for pricing a product low, those with the format 2.X are 

for pricing a product high and rule 3 is for normal pricing. Rule number 4 defines 

the Leader pricing strategy, where a high demand product is priced low so that 

customers are motivated to visit the store. Rule number 5 defines the high-low 

strategy, according to which when an advertised product is priced low the 

products that accompany it in the consumers basket are priced high. Rule number 

6 defines the EDLP (Every Day Low Price) strategy, according to which prices are 

always low. Rule number 7 is about pricing high products based on dynamic 

information (e.g. weather–based sales such as umbrellas). Finally, rule number 8 

is about pricing low products that are close to their expiration date or that simply 

need to be sold quickly for any firm-related reason. For example, rule 1.2 dictates 

that the product should be priced low if the firm wants to hit the competition. 

However, even these rules may be further refined to more rules. Rule 1.2.1 states 

that all products should be priced low for a general hit on the competition, while 

rule 1.2.2 states that only products of a specific product type are priced low as the 

firm just wants to hit the competition on that product type (e.g. electric 

appliances). Rule 2.3 proposes that a product that is a new technology advertized 

invention should be priced high. Rule 1.2 has precedence over rule 2.3 and this is 

marked with the “>” symbol in the second row of the table. 

Figure 3 shows two object level rules. We use the special rule format of 

Gorgias and variables start with a capital letter as it is in Prolog. Rules r1_2_2 and 

r2_3 are conflicting if they are both activated for the same product. The first states 

that a product should be priced low if the firm wants to hit the competition for a 

specific product type, while the second states that a new technology product that is 

also an advertised invention should be priced high. To resolve the conflict we add 

the pr1_2_6 priority rule which states that r1_2_2 is preferable to r2_3. The reader 

should note that for our knowledge base we assume that the closed world 

assumption holds. 



Table 1. The matrix for defining the rules’ priorities. Reading each row the reader 
can understand which rule has priority over another. 

 1.1 1.2 1.3 2.1 2.2 2.3 2.4 3 4 5 6 7 8 

1.1    > > > > >  >  >  

1.2    > > > > >  >  >  

1.3              
2.1   >     > >     

2.2   >     > >     

2.3   >     >      

2.4   >     >      

3              

4      >  >  >  >  
5   >     >      

6      >  >    >  

7   >     >      

8      >  >  >  >  

 

 

#object level rules 
… 
rule(r1_2_2(Product), hasPricePolicy(Product, low), 
 [hitProductTypeCompetition(ProductType),  
 hasProductType(Product, ProductType)]). 
… 
rule(r2_3(Product), hasPricePolicy(Product, high),  
 [newTechnologyProduct(Product), advertisedInvention(Product)]). 
… 
#priority rules 
… 
rule(pr1_2_6(Product), prefer(r1_2_2(Product), r2_3(Product)), []). 
… 

Figure 3. An extract from the rule base showing two conflicting rules and the rule 

defining which has priority over the other. 

4. The Product Pricing Agent 

In this section we firstly describe the MARKET-MINER product Pricing Agent 

(also referred to as MIPA) development process and then we focus on two 

important aspects of it, the decision making module and human-computer 

interaction. 

According to the definition of [23], “an agent is a computer system that is 

situated in some environment, and that is capable of autonomous action in this 

environment in order to meet its design objectives”. MIPA fully qualifies as an 

agent as it: 
a) is situated in the firm environment, 
b) proactively changes the prices regularly, and, 



c) reacts to changes in his environment. 

Thus, we used the Agent Systems Engineering Methodology (ASEME) [18] for 

designing the MIPA. 

4.1 The Agent Development Process 

ASEME was selected among other Agent Oriented Software Engineering 

methodologies [1, 9] because its models can lead to agent development without 

imposing constraints on how the mental model of the agent will be represented (in 

this case using argumentation for decision making). Furthermore, it is an agile 

process allowing for rapid prototyping needing in the fastest case (the one 

presented herein) the editing of just three models. Finally, it allows for modular 

development allowing specialized teams to develop different modules (usually 

related to diverse technologies) using the intra-agent control model (which is a 

statechart [8]) to glue them together. 

During the analysis phase we identified the actors and the use cases related to 

our agent system. We documented these findings using the ASEME System Use 

Cases (SUC) model (see Figure 4). It is defined by the Agent Modeling Language 

[17] (AMOLA), which is used by ASEME for modeling the agent-based system, 

and its innovation, with relation to classical UML Use Case diagrams, is that it 

allows for actors to be included in the system box, thus indicating an agent-based 

system. 

 

 

 

Figure 4. The MARKET-MINER System Use Cases (SUC) model. 

 

For our system, the system actor is MIPA (or Product Pricing Agent as shown 

in Figure 4), while the external actors that participate in the system’s environment 

are the user, external systems of competitors, weather report systems (as the 

weather forecast influences product demand, like in the case of umbrellas) and 



municipality systems (as local events like concerts, sports, etc, also influence 

consumer demand). 

Having defined the involved actors we started identifying general use cases 

(like interact with user) and then we elaborated them in more specific ones (like 

present information to the user and update firm policy) using the <<include>> 

relation (see Figure 4). 

After refining the use cases, the SUC model was transformed to the AMOLA 

System Roles Model (SRM). This model defines the dynamic aspect of the 

system. An SRM model is created for each actor in the use case diagram. General 

use cases connected to the role are transformed to capabilities, while the generic 

ones are transformed to activities. 

We used the Gaia operators ([22, 17]) for creating liveness formulas that define 

the dynamic aspect of the agent system, what happens and when it happens. 

Briefly, A.B means that activity B is executed after activity A, A
ω means that 

activity A is executed forever (when it finishes it restarts), A | B means that either 

activity A or activity B is executed and A || B means activity A is executed in 

parallel with activity B. The SRM model for the Product Pricing Agent is 

presented in Figure 5(a). 

 
 

Role: Product Pricing Agent 
Liveness: 
product pricing agent = (decide 

on pricing policy)
ω
 || (interact 

with user)
ω
 || [(get market 

information)
ω
] 

decide on pricing policy = wait for 
new period. get products 
information. determine 
pricing policy. fix prices 

interact with user = (present 
information to the user | 
update firm policy)+ 

get market information = get 
weather information. get local 
information. get competition 
information. update facts 

Capabilities Activities Functionalities

<decomposition> <uses>Legend:

update firm 

policy
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pricing policy

Human-

Machine 

Interface (HMI)

wait for new 
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update facts File I/O
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(a) (b) 

Figure 5. The MARKET-MINER Product Pricing Agent System Roles Model 

(SRM) (a) and the relation between its Capabilities, Activities and Functionalities 

(b). 

 

The next step was to associate each activity to a functionality, i.e. the 

technology that will be used for its implementation. In Figure 5(b) the reader can 



observe the capabilities, the activities that they decompose to and the functionality 

associated with each activity. The choice of these technologies is greatly 

influenced by non-functional requirements. For example the system will need to 

connect on diverse firm databases. Thus, we selected the JDBC4 technology that is 

database provider independent. Moreover, the different information channels that 

are currently used depend on the same functionality, i.e. a web service invocation. 

Thus, in the future, new information channels such as a financial channel where 

from to get relevant news, such as a financial crisis, can be integrated in the 

system using the same functionality. This step is important as it defines what 

competencies are needed (or the required know-how) for the system 

implementation team. 

The last step, before implementation, is to extract from the roles model the 

Intra-Agent Control (IAC) model that resembles the agent. This is achieved by 

transforming the liveness formula to a statechart in a straightforward process that 

uses templates to transform activities and Gaia operators to states and transitions 

(see [17] for more details). Table 2 shows the Gaia operators transformation 

templates. They are applied recursively reading the SRM model liveness formula 

top to bottom and left to right. 

Table 2. Templates of extended Gaia operators (Op.) for Statechart generation. 

Op. Template Op. Template 

x* 
 

|x
ω
|
n 

 

[x] 
 

x|y  

 x||y  

 

x.y 

 

x+ 
 

x
ω
 

 

 

                                                           
4 The Java Database Connectivity (JDBC) is a standard for database-

independent connectivity between the Java programming language and a wide 

range of databases providing a call-level API for SQL-based database access 

(http://java.sun.com/javase/technologies/database). 



The resulting IAC model for MIPA is depicted in Figure 6. It was defined in 

the Rhapsody Computer-Aided Software Engineering (CASE) tool5. This tool 

automates the process of transforming a statechart to C++, Java, C and Ada code. 

The statechart, in this case was transformed to a Java program. After the initial 

creation of the ProductPricingAgent.java file the developer needed to locate the 

methods concerning the different activities execution and add the functionality – 

specific code there (see e.g. Figure 7). 

 

 

Figure 6. The MARKET-MINER Product Pricing Agent Intra-Agent Control 

(IAC) model. 

 

 

… 
public void GetProductsInformationEnter() { 
 //#[ state ROOT.ProductPricingAgent.ForeverDecideOnPricingPolicy. 
DecideOnPricingPolicy.GetProductsInformation.(Entry)  
 //TO DO to connect to firm data base and update the products’ information 
 //#] 
} 
… 

Figure 7. An extract from the automatically generated ProductPricingAgent.java 

class by the Rhapsody© CASE tool. 

                                                           
5 IBM Rational Rhapsody is a commercial model-driven development tool 

(http://www.telelogic.com/products/rhapsody) 



4.2 The Decision Making Capability 

Figure 5(a) shows that the decision making capability includes four activities: 

1. wait for new period activity: it waits for the next pricing period 

2. get products information activity: it accesses a corporate database in order to 

collect the data needed for inference, 

3. determine pricing policy activity: it reasons on the price category of each 

product, and, 

4. fix prices activity: based on the previous activity’s results, it defines the final 

product price. 

The determine pricing policy activity invokes the prolog rule base presented in 

§3 that includes 274 rules, 31 of which are the object rules and 243 are the priority 

rules. The fix prices activity’s algorithm aims to produce a final price for each 

product. The algorithm’s inputs are: 

1. the procurement/manufacture cost for a product, or its price in the market, 

2. the outcome of the reasoning process (the price policy for each product) 

3. the default profit ratio for the firm 

4. a step for rising the default profit ratio 

5. a step for lowering this ratio 

6. the lowest profit ratio that the firm would accept for any product 

The pricing algorithm also takes into account the number of arguments that are 

admissible for choosing a specific price policy, strengthening the application of 

the policy. This does not hold for normal pricing, the product price in this case is 

computed using the formula (5).   

 

P = C * (1 + R) . (5) 

 

In formula (5), P is the product price, C is the procurement or manufacture cost 

and R is the default profit ratio for the firm. 

If the policy is determined as high then the product price is computed using the 

formula (6). 

 

P = C * (1 + R + m * H) . (6) 

 

In formula (6), m is the number of admissible arguments for applying a high 

price policy, i.e. those with head hasPricePolicy(Product, high), and H is the 

defined step by which the firm expands its profit ratio. 

If the pricing policy is determined as low then the profit is lowered by a step 

per supporting argument. However, in this case the firm can set a threshold 

defining the lowest profit margin that it would accept. In this case the product 

price is computed using the formula (7).  
 



If n* L > D 

Then P = C * (1 + R - D) 

Else P = C * (1 + R – n * L) . 

(7) 

 

In formula (7), n is the number of admissible arguments for applying a low 

price policy, L is the defined step by which the firm limits its profit ratio and D is 

the lowest profit ratio that the firm would accept. 

If the product’s price is not based on procurement or production costs but to its 

actual price in the market (e.g. the price that it has in a competitive firm), then in 

formulas (5), (6) and (7) the R term is eliminated and the term C refers to the 

product’s price in the competition. For example, a product with a normal price 

policy will have the same price with the one it has in a competitor’s store. Finally, 

the algorithm allows for the application of odd-pricing, a strategy for pricing 

products where the price’s last digit is always 5, 8, or 9. Odd pricing can also refer 

to the practice of ending prices in any odd number (1, 3, 5, 7, 9) or to that of 

ending prices in a number other than zero; or to that of pricing just below a zero 

(e.g. $2.99 or $19.95). Odd pricing is prevalent in retailing [7]. 

4.3 Human-Computer Interaction 

A screenshot from the human-machine interface is presented in Figure 8. In the 

figure we present the pricing results to the application user for some sample 

products. The facts inserted to our rule base for this instance are presented in 

Figure 9. 

 

 

Figure 8. The Product Pricing Agent Application 



 

The reader should notice the application of the rules presented in §3 for the 

lcd_tv_32_inches product that is a new technology product and an advertised 

invention but is priced with a low policy because its product type 

(electrical_domestic_appliances) has been marked by the firm as a market where 

it should hit competition. Moreover, the firm has also decided that it wants to 

penetrate the electrical_domestic_appliances market, therefore there are two 

arguments for pricing the lcd_tv_32_inches product low. 

 

rule(f1, high_low_strategy, []). 
rule(f2, hitProductTypeCompetition(electrical_domestic_appliances), []). 
rule(f3, penetrateProductTypeMarket(electrical_domestic_appliances), []). 
rule(f4, hasProductType(jacket_XXL, clothing), []). 
rule(f5, advertisedByUs(lcd_tv_32_inches), []). 
rule(f6, advertisedInvention(lcd_tv_32_inches), []). 
rule(f7, newTechnologyProduct(lcd_tv_32_inches), []). 
rule(f8, isAccompaniedBy(lcd_tv_32_inches, [jacket_XXL]), []). 
rule(f9, hasProductType(lcd_tv_32_inches, electrical_domestic_appliances), []). 
rule(f10, hasProductType(t_shirt_XXL, clothing), []). 

Figure 9. A set of sample facts for decision making. 

 

In Figure 8, these reasons are explained to the user in human-readable format 

and also the final price is computed. The human-readable format is generated 

automatically by having default associations of the predicates to free text. The 

t_shirt_XXL and jacket_XXL products are clothes that are having a normal pricing 

policy. However, the jacket_XXL product accompanies in the consumer’s basket 

the lcd_tv_32_inches product, therefore, it is priced high according to the 

high_low_strategy of the firm. 

5. Evaluation 

The product pricing agent application was evaluated by SingularLogic SA, the 

largest Greek software vendor for SMEs. The Software business unit is involved 

in the development and provision of business software products for the SME 

market, the provision of services (implementation and adaptation of applications, 

training and maintenance services), as well as the promotion and support of 

products by third parties, both in the entirety of the Greek market and the Balkan 

markets. The unit's software applications are trusted by 40,000 businesses both in 

Greece and abroad. 

The MARKET-MINER project included the application analysis, design, 

implementation and evaluation phases. It also produced an exploitation plan [20]. 

The application evaluation goals were to measure the overall satisfaction of its 



users. In the evaluation report [21] three user categories were identified, System 

Administrators, Consultants and Data Analysts.  

At this point the reader should note that the MARKET-MINER project had a 

wider scope than that of our application, therefore we will focus in the part of the 

study relevant to it - the pricing application. Thus, only the Consultants and 

System Administrators user categories are relevant (data analysts were engaged in 

the data mining module of MARKET-MINER that is beyond the scope of this 

paper). 

The following criteria were used for measuring user satisfaction: 
1. Performance (C1): This criterion measures the capability of the system to 

produce valid and accurate results. 
2. Usability (C2): This criterion measures the satisfaction of the user with regard 

to his experience in using the system, including the training phase and the ease 
of achieving his tasks.  

3. Interoperability (C3): MARKET-MINER depends heavily on its seamless 
integration with legacy systems databases. Thus we needed to measure the 
openness of the system or the efficiency of connecting it to the existing 
databases. 

4. Security and Trust (C4): Market Miner accesses enterprise databases and 
handles sensitive information relevant to the firm’s market strategy. Thus, it is 
important that the user feels that the data are securely handled and remain 
confidential. 

 

The users expressed their views in a relevant questionnaire where each criterion 

was presented with several sub-criteria and they marked their experience on a 

scale of one (dissatisfied) to five (completely satisfied) and their evaluation of the 

importance of the criterion on a scale of one (irrelevant) to five (very important). 

The evaluation was based on 25 questionnaires, 15 of which were completed by 

decision makers (with financial background), seven by data analysts (computer 

science background) and three by system administrators. 

The consultants were experienced in applying business intelligence solutions to 

enterprises mostly in the retail sector. The retail sector was identified as the most 

important for the project’s exploitation by the exploitation strategy report. They 

evaluated the system with regard to all the criteria. The system administrators 

were experienced in setting up and maintaining information systems in the 

business software sector. They evaluated the system only with regard to the 

criteria C3 and C4. Also, experienced independent scientists in the economic (as 

consultants) and computer science (as system administrators) fields working at 

another MARKET-MINER project partner (Informatics and Telematics Institute, 

Greece) evaluated the application for the same criteria.  

The Process of Evaluation of Software Products [4] (MEDE-PROS) was used 

for evaluating our system. MEDE-PROS is in use for over 15 years, continually 

evolving and it has been applied to more than 360 software products.  

The results of the evaluation of the MARKET-MINER software prototype are 

presented in Table 3 and they have been characterized as “very satisfactory” by 



the SingularLogic research and development software assessment unit. MARKET-

MINER has been decreed as worthy for recommendation for commercialization 

and addition to the Firm’s software products suite. 

Table 3. MARKET-MINER evaluation results. The rows with white background 
are those of the consultants, while those with grey background represent the 
evaluation of the system administrators (see [21] for more details). 

Criterion Criterion performance Criterion Importance 

C1 86% 0,78 

C2 83% 0,88 

C3 91% 0,88 
C4 83% 0,64 

C3 86% 0,92 

C4 61% 0,92 

 

The responses of the decision makers (executive personnel) of the firms had 

some results that were not expected when defining the requirements for 

MARKET-MINER. The 80% of the responses of executives in the retail business 

domain found an added value in using MARKET-MINER for defining different 

strategies per branch (e.g. in one region they need to hit competition and in 

another they don’t). On the other hand the 75% of the responses of executives in 

the services business domain thought that the technology is still immature for 

automatically pricing a service. Thus, MARKET-MINER is expected to be more 

useful for the retail business sector, while at the beginning it was conceived to 

address the needs for the retail, production and services sectors. 

6. Related Work 

In the agent technology literature product pricing agents have been referred to as 

economic agents, as price bots, or, simply, as seller agents (see e.g. [13], [5] and 

[6]) and their responsibility is to adjust prices automatically on the seller’s behalf 

in response to changing market conditions [13].  

Real world agent-based systems are mostly consumer oriented solutions 

seeking information on the internet and comparing prices for their owners acting 

as recommender systems. However, the Book.com online book-selling store has 

been reported to adjust its price so that it is a little lower than other well-known 

book-sellers like Amazon.com [13]. In traditional markets (like the one we are 

targeting with MARKET-MINER) it is difficult to continuously re-price goods, as 

there is a costly (both in time and resources) procedure for updating prices on the 

self, in contrast to digital markets there is no real cost to changing prices [6]. 

In [13], the authors provide results for a wide range of possibilities for seller 

agents. They consider three types of seller agents: 
1. Game-theoretic computation agents (GT). These agents choose a random price 

from a distribution function whose inputs are a) the number of alternatives that 



each buyer will consider before deciding which product to buy, b) the buyer’s 
maximum price and c) the number of seller agents. 

2. Myopically optimal agents (MY). These agents choose product prices using the 
information needed by the GT agents and the current prices of all sellers aiming 
to maximize their profit in the short term. 

3. Derivative Follower agent (DF). DF does not need any information about the 
buyers or competitors, he adjusts his prices according to their success in the 
market. 

All these types of agents have different success rates depending on the 

competitors’ types. 

In [6], the authors propose a theoretical framework for selling a specific type of 

good (i.e. baseball tickets) introducing the notion of using different strategies 

based on the market condition. Such conditions are the increase or decrease of 

consumer demand throughout the market season. Their first strategy aims to sell 

all the tickets at the highest possible rate and have them available until the last day 

of the market, while their second strategy is similar to the DF strategy in [13].  

In another work ([5]), the authors address the problem of product pricing in 

environments with limited information. They set the agent’s goal to reset the 

product price at regular intervals. In all these works, seller agents that compete 

with their counterparts engage in cycles of price wars where prices decrease until 

they reach a limit where they reach a minimum utility and then decide to raise 

prices and start over. 

All these existing solutions focus on a selected product negotiation rather than 

bundles of products (as in the retail business sector). The MARKET-MINER 

product pricing agent borrows interesting features from these works, i.e. resets 

prices at regular intervals and can employ different strategies for pricing 

depending on market conditions. The added value of the MARKET-MINER 

product pricing agent regarding these approaches is the capability to model human 

knowledge and apply human-generated strategies to automate product pricing with 

the possibility to provide logical explanations to decision makers, if needed.  

A patent just provided some guidelines on an architecture for such a system 

exclusively for super market chains [3]. Earlier works proposed a support of the 

product pricing process for the retail business sector but did not provide an 

automated decision mechanism [14]. 

7.  Conclusion and future perspectives 

This paper presented a novel application of autonomous agents for automating the 

product pricing process. This issue has never been tackled before in this scale. In 

this paper we used argumentation that allows for expressing conflicting views on 

the subject and a mechanism for resolving these conflicts for the first time. Thus, 

this approach represents the points of view of different departments of a firm such 

as the marketing department, the financial department, the production department 



but also information coming from external sources and defines the priorities 

between conflicting rules. It allows the adoption of diverse pricing strategies in the 

literature and most importantly it applies them individually to each product in 

regular intervals (e.g. imagine the marketing department reading the weather 

forecasts just to determine the price of the umbrellas for the next day). 

MARKET-MINER can be used with different facts in different branches of a 

firm, thus it can have a different policy in a geographic area where the competition 

is high (lowering prices) and different in an area where there is no competition 

(pricing high its products). The decision maker can simulate the resulting prices if 

his firm adopts a specific strategy and determine the profit margins that will come 

after such a move. MARKET-MINER can apply the existing pricing policies in 

regular intervals adjusting it to the current market conditions. It can be used both 

for the retail and production business sectors. It allows for applying pricing 

policies according to the competitors’ prices or the profit margin defined by the 

company decision makers.  

This application points out the autonomous agent technology added value, 

because our agent is situated in the firm environment and proactively monitors the 

internet for changes that would have an impact in the pricing process (e.g. a 

competitor changes his prices). Products are priced individually and daily. 

Products that are near their expiration date can be priced low in a day to day basis. 

Finally, the resulting prices can be justified to the firm officers in plain text format 

understandable by humans who can always have a final say in each decision. In 

this paper, we modeled, inside an agent, different policies for product pricing 

within a company. However, we can have several such agents interacting in a 

market upon the price of a product. This kind of interaction can be modeled using 

the same argumentation framework that we use in this paper (as in [12]) and is 

part of our future work. The same solution (the use of different agents) could be an 

improvement of the current system in the case of scaling because the growing 

knowledge of an agent could be shared with different agents each of them 

representing a different department. Such a solution has been proposed for a 

similar problem by the authors in [15]. 

The MIPA agent development successfully demonstrates the use of the 

ASEME development process [17, 18] for real-world agent-based systems 

development. It also provides an encoding of the popular Protégé tool ontology to 

Prolog predicates. It is within the intentions of the authors to automate this 

encoding as future work. 

The presented application is part of a research project, MARKET-MINER co-

funded by the Greek government. Its results (including the pricing application) 

were evaluated according to a widely used process (MEDE-PROS [4]) and they 

were proposed by the SingularLogic research and development department for 

commercialization by the firm. 



Acknowledgements 

We would like to thank the reviewers for their valuable and constructive 

comments. We also thank Singular Logic SA and the General Secretariat for 

Research and Technology of the Greek Ministry of Development for partially 

funding and for supporting this work. 

References 

1. Bergenti F, Gleizes MP, Zambonelli F, editors (2004) Methodologies and Software 
Engineering for Agent Systems. Kluwer 

2. Bench-Capon TJM, Dunne, PE (2007) Argumentation in Artificial Intelligence. 
Artificial Intelligence 171(10-15):619-641 

3. Charles C, Freeny Jr (2000) Automated Synchronous Product Pricing and Advertising. 
United States Patent 6076071 

4. Colombo R, Guerra A (2002) The Evaluation Method for Software Product. In Proc of 
the 15th Int Conf on Softw & Syst Eng & Appl, Paris, France, December 3-4 

5. Dasgupta P, Das S (2000) Dynamic pricing with limited competitor information in a 
multi-agent economy. In LNCS 1906, Springer-Verlag: 291-310 

6. DiMicco JM, Greenwald A, Maes P (2001) Dynamic pricing strategies under a finite 
time horizon. In Proc of ACM Conf on Electron Commer, October 

7. Gendall P, Fox MF, Wilton P (1998) Estimating the effect of odd pricing, J Product & 
Brand Management 7(5):421-432 

8. Harel D, Naamad A (1996) The STATEMATE Semantics of Statecharts. ACM T Softw 
Eng Meth 5(4):293-333 

9. Henderson-Sellers B, Giorgini P, editors (2005) Agent-Oriented Methodologies. Idea 
Group Publishing 

10. Kakas A, Moraitis P, (2002) Argumentative Agent Deliberation, Roles and Context.  
Electronic Notes in Theoretical Computer Science 70(5):39-53 

11. Kakas A, Moraitis P (2003) Argumentation based decision making for autonomous 
agents. In Proc of the 2nd Int Conf on Auton Agents and Multi-Agent Syst, Melbourne, 
Australia, July 14-18 

12. Kakas A, Moraitis P (2006) Adaptive Agent Negotiation via Argumentation. In Proc of 
the 5th Int Conf on Auton Agents and Multi-Agent Syst, Hakodate, Japan:384-391 

13. Kephart JO, Hanson JE, Greenwald AR (2000) Dynamic pricing by software agents. 
Comput Netw 36(6):731-752 

14. Matsatsinis N, Moraitis P, Psomatakis V, Spanoudakis N (2003) An Agent-Based 
System for Products Penetration Strategy Selection. Appl Artif Intell J 17(10):901-925 



15. Moraitis P, Spanoudakis N (2007) Argumentation-based Agent Interaction in an 
Ambient Intelligence Context. IEEE Intell Syst 22(6):84-93 

16. Prakken H, Sartor G (1996) A dialectical model of assessing conflicting arguments in 
legal reasoning. Artifcial Intelligence and Law 4(3-4):331-368 

17. Spanoudakis N, Moraitis P (2008) The Agent Modeling Language (AMOLA). In LNCS 
5253, Springer, Varna, Bulgaria 

18. Spanoudakis N, Moraitis P (2007) The Agent Systems Methodology (ASEME): A 
Preliminary Report. In Proc of the fifth European Workshop on Multi-Agent Systems, 
Hammamet, Tunisia, December 13 - 14 

19. Spanoudakis N, Pendaraki K (2007) A Tool for Portfolio Generation Using an 
Argumentation Based Decision Making Framework. In Proc of the Annu IEEE Int Conf 
on Tools with Artif Intell, Patras, Greece, October 29-31 

20. Toulis P, Tzovaras D, Spanoudakis N (2007) MARKET-MINER Project Exploitation 
Plan. MARKET-MINER Proj Deliv Π6.1 (in Greek language), Singular Logic S.A. 

21. Toulis P, Tzovaras D, Pantelopoulos S (2007) MARKET-MINER System Evaluation 
Report. MARKET-MINER Proj Deliv Π5.1 (in Greek language), Singular Logic S.A. 

22. Wooldridge M, Jennings NR, Kinny D (2000) The Gaia Methodology for Agent-
Oriented Analysis and Design. J Auton Agents and Multi-Agent Syst 3(3):285-312 

23. Wooldridge M (2002) An introduction to multiagent systems. Wiley 

 


