
An Agent Modeling Language Implementing Protocols through Capabilities

Nikolaos Spanoudakis
1,2

1
Technical University of Crete, Greece

nikos@science.tuc.gr

Pavlos Moraitis
2

2
Paris Descartes University, France

pavlos@mi.parisdescartes.fr

Abstract

In this paper we present how to use the Agent

MOdeling LAnguage (AMOLA) to define agent

interaction protocols and how to integrate these in an

agent model. AMOLA provides the syntax and

semantics for creating models of multi-agent systems

covering the analysis and design phases of a software

development process. It supports a modular agent

design approach and introduces the concepts of intra-

and inter-agent control. The first defines the agent’s

lifecycle by coordinating the different modules that

implement his capabilities, while the latter defines the

protocols that govern the coordination of the society of

the agents. The modeling of the intra and inter-agent

control is based on statecharts. The analysis phase

builds on the concepts of capability and functionality.

AMOLA deals with both the individual and societal

aspect of the agents showing how protocols and

capabilities can be integrated in agents design.

1. Introduction

One of the major issues in Agent Oriented Software

Engineering (AOSE) is the modeling, representation

and implementation of agent interaction protocols. A

wide range of methodologies for AOSE either adopt

one existing model (most usually AUML), while others

either employ UML models (like activity diagrams) or

do not address the issue and just define messages that

the agents send to each other (allowing the modeling of

simple protocols).

In this paper, we use a familiar language, the

statecharts modeling language [3] for designing agent

systems. It is not the first time that statecharts have

been used for modeling agent communication

protocols, however, it is the first time that they are used

inside a software development methodology in such a

way that protocols can be seamlessly integrated with

the other capabilities of an agent. We use the concepts

of capability and functionality to show how involved

actors can reach their goals, thus aiding system

analysis. In [7] we introduced the Agent Systems

Engineering Methodology (ASEME), a complete

software development process that reuses successful

practices in the literature and introduces a new

language, the Agent Modeling Language (AMOLA) for

modeling agent systems [8]. The Agent Modeling

Language (AMOLA) describes both an agent and a

multi-agent system. It defines the concept of capability

as the ability of an agent to achieve specific tasks that

require the use of one or more functionalities. The

latter refer to the technical solution(s) to a given class

of tasks. Moreover, capabilities are decomposed to

simple activities, each of which corresponds to exactly

one functionality.

This paper builds on the work of Moore [5] and

shows how agent interaction protocols are modeled in

AMOLA, using the inter-agent control model, and how

they are integrated in the intra-agent control model

when building agents as a set of capabilities.

In section 2 we present the analysis phase models

and in section 3 we present how they are transformed

to design phase models and the information inserted at

that phase. We conclude in section 5.

3. The Analysis Phase Models

The main models associated with this phase are the

use case model, the agent interactions protocol model

and the roles model. The first is an extended UML

(Unified Modeling Language) use case diagram and

the last is mainly inspired by the Gaia methodology [9]

roles model.

The use case diagram helps to visualize the system

including its interaction with external entities, be they

humans or other systems. Agents are modeled as roles,

either within the system box (for the agents that are to

be developed) or outside the system box (for existing

agents). Human actors are also represented as roles

outside the system box with their name written in

italics. The different use cases must be directly related

to at least one artificial agent role. These general use

cases can be decomposed to simpler ones using the

include use case relationship.

Based on the use case diagram the system modeler

can define the agent interaction protocols and roles

models. A use case that connects two or more (agent)

roles implies the definition of a special capability type:

the participation of the agent in an interaction protocol.

For the AMOLA models demonstration we present

the analysis and design models for a meetings

management system as it has been widely used in the

past for demonstrating the use of methodologies (e.g.

using the Prometheus and MAS-CommonKADS

methodologies in [4]). This system’s requirements, in

brief, are to support the meetings arrangement process.

A user declares his wish to schedule a meeting (or

reschedule an existing one) and the system, knowing

the users’ schedules and preferences, services the

user’s requests and organizes the meeting aiming to

maximize overall user satisfaction.

In the Analysis phase we have the use case diagram

presented in Figure 1. The number of actors of the

same type participating in a use case is indicated on the

line connecting the use case to the actor. It is one, if the

line connecting the use case to the actor has no

indication. In our example, all use cases are one to one

except for the “negotiate meeting date” use case that

requires a meetings manager participant and two or

more personal assistants.

Figure 1. Use case diagram

Then, we define the agent interaction protocols.

Such are all the use cases that connect two or more

agent roles. These use cases must be refined to simpler

ones that correspond to elementary tasks. For example,

in Figure 1, the “request new meeting” use case is

refined for the “Personal Assistant” actor to the simple

tasks “send new request” and “receive new results”. In

Figure 1 we have five general use cases that correspond

to the goals of the requirements analysis phase –

however, this phase is out of the scope of this paper

(the reader should consult [7] for more information) –

and the two aforementioned simple use cases. The

general use cases are transformed to agent capabilities.

The included (simple) use cases, which represent

simple tasks, are transformed to activities in the agent

interaction protocol Process field. In Table 1 we

present the “Negotiate meeting date” agent interaction

protocol definition. It defines two roles, i.e. Personal

Assistant and Meetings Manager, the rules for

engaging (why would they participate in this protocol),

the outcomes that they should expect in successful

completion and the process that they would follow in

the form of a liveness formula. The liveness formula is

a process model that describes the dynamic behavior of

the role inside the protocol. It connects all the role’s

activities using the Gaia operators [9]. The liveness

formula defines the dynamic aspect of the role, that is

which activities execute sequentially, which

concurrently and which are repeating.

Table 1. Agent interaction protocol

Negotiate meeting date

Participants Personal Assistant Meetings Manager

Rules for
engaging

He needs to create
or participate to a
meeting

He has a meeting with
more than one
participants that has
no date assigned to it

Outcomes
He has scheduled
participation to a
meeting

He has arranged a
meeting that met all
the participants needs

Process

negotiate meeting
date = receive
proposed date.
(decide response.
send results.
receive outcome)+

negotiate meeting date
= (decide on date.
send proposed date.
receive results)+. send
fixed date.

Then we define the role model for each agent role.

To build the roles model we add the interaction

protocols that this agent will be able to participate in.

We continue with the definition of the liveness model

inside the roles model. The liveness model has a

formula at the first line (root formula) where we can

add capabilities. A capability must be decomposed to

activities in the following line. Figure 2 shows the role

model for the Personal Assistant role including six

liveness formulas. The last imports the part in italics

from the Personal Assistant’s Process of the “Negotiate

meeting date” agent interaction protocol (as it was

presented in Table 1).

Note that the role imports the liveness formulas

from the agent interaction protocol model for each

protocol that it participates. The elements (i.e.

capabilities or activities) of these formulas are

integrated in the liveness formula of the role model. So

there is an interleaving among the capabilities or

activities imported by the protocol and those defined

directly at the role level. Moreover, the analyst can

refine the protocol formulas (if they are too general) so

that the agent role successfully implements his use

cases. However, the modifications that the analyst is

allowed to do is to add new activities that make the

bridge between the activities of the role and those

imported by a protocol and/or to refine an activity to

more specific ones (i.e. add a new formula to define

more detail in a protocol activity). The analyst, in our

example, has added the activity “update schedule” to

the “negotiate meeting date” formula (see the last

liveness formula in Figure 2 that expands the Personal

Assistant’s Process depicted in Table 1).

Role: Personal Assistant
Protocols: Negotiate meeting date: personal assistant
 Request change meeting: personal assistant
 Request new meeting: personal assistant
Liveness:
personal assistant = (service user. learn user habits)

ω
 ||

(negotiate meeting date)
ω

service user = get user request. (read schedule | request
change meeting | request new meeting). show results

learn user habits = learn user preference. update user
preferences

request change meeting = send change request. receive
change results

request new meeting = send new request. receive new results
negotiate meeting date = receive proposed date. (decide

response. send results. receive outcome)+. update
schedule

Figure 2. The Personal Assistant role model

Finally, the activities are associated to generic

functionalities which correspond to the technologies

that will be used for realizing them (see Figure 3). The

reader should note that a special capability not included

in the use–case diagram named communicate appears.

This capability includes the “send message” and

“receive message” activities and is shared by all agents

and is defined separately because its implementation is

relative to the functionality provided by the agent

development platform, e.g., in our example, JADE

(Java Agent Development), an open source agents

development framework that adheres to the FIPA

(Foundation for Intelligent Physical Agents) standards.

Figure 3. Capabilities, activities and
functionalities

4. The Design phase Models

The models associated with the Design phase are

the inter-agent control and intra-agent control. They

define the functional and behavioral aspects of the

multi-agent system.

For the Design Phase models we use the language of

statecharts as it is defined in [3]. Statecharts are based

on an activity-chart that is a hierarchical data-flow

diagram, where the functional capabilities of the system

are captured by activities and the data elements and

signals that can flow between them. The behavioral

aspects of these activities (what activity, when and

under what conditions it will be active) are specified in

statecharts. There are three types of states in a

statechart, i.e. OR-states, AND-states, and basic states.

OR-states have substates that are related to each other

by “exclusive-or”, and AND-states have orthogonal

components that are related by “and” (execute in

parallel). Basic states are those at the bottom of the

state hierarchy, i.e., those that have no substates. The

state at the highest level, i.e., the one with no parent

state, is called the root. Each transition from one state

(source) to another (target) is labeled by an expression,

whose general syntax is e[c]/a, where e is the event that

triggers the transition; c is a condition that must be true

in order for the transition to be taken when e occurs;

and a is an action that takes place when the transition is

taken. All elements of the transition expression are

optional. The scope of a transition is the lowest OR-

state in the hierarchy of states that is a proper common

ancestor of the source and target states of the transition.

Multiple concurrently active statecharts are considered

to be orthogonal components at the highest level of a

single statechart.

Events that can trigger a transition can be an

incoming (or perceived) inter-agent message, an event

generated by any other executing agent activity in the

scope of the transition, or the ending of the executing

state activity. The latter case is also true for a transition

with no expression. Finally, each state automatically

starts its activity on entrance.

We define the inter-agent control by transforming

the agent interaction protocols of the analysis phase to

state diagrams. A state diagram is generated by an

initial state named after the protocol. Then, all

participating roles define AND sub-states. The right

hand side of the liveness formula of each role is

transformed to several OR-states within each AND-

state by interpreting the Gaia operators in the way

described in Table 2.

The items that the designer must add at this phase

are the data structures used for defining the protocol

parameters, the timers (defined as in [2]), the message

types and, finally, the conditions for each transition.

The resulting statechart is depicted in Figure 4. At this

point the reader should notice the differences with

Moore’s proposal ([5]). All states represent activities,

while in his work they just represent a point in time

where a condition is true (like in finite state machines).

The preconditions of the agent interaction protocol

become the conditions of a source-less transition that

targets the first state of the protocol for each role. The

transition will be connected to a source state in the

intra-agent control model. The preconditions for the

meetings manager role, which have been described in

free text in the agent interaction protocol model (see

rules for engaging in Table 1), concern the

arrangement of a meeting with a list of more than one

participants. They become the conditions for the decide

on date state and can be formally expressed by the

atoms hasToArrange(m, meeting), participantsListOf(

meeting, list) and hasLength(list,n).

Table 2. Templates of extended Gaia operators
(Op.) for Statechart generation

Op. Template Op. Template

x*

x || y

[x]
x | y

 x
ω

x. y

|x
ω
|
n

x+

Figure 4. The inter-agent control model

The variables m, meeting, list and d that appear in

these atoms refer to the meetings manager role, to the

meeting that needs to be arranged, to the list of

participants in that meeting and to the date of the

meeting respectively. Variables pi, i=1,…,n refer to the

n personal assistants that form the list of participants to

the protocol instance. The only variable that is assigned

a value while the protocol is executing is d and that is

formally expressed by the [assignedValue(d)] condition

of the transition with source the decide on date activity.

These variables can be accessed by all the protocol’s

states, since their scope is the same with the scope of

the transition in which they appear, i.e. the OR-state

that contains both the source and target of the

transition, in this case the negotiate meeting protocol

state. The goal for both (i.e. manager and participant)

roles is that a date has been assigned to the meeting

(from outcomes field in Table 1) and it is formally

expressed by the atom arrangedMeetingDate(meeting,

d). A message is expressed by P(x,y,c) where P ∈ {

accept, propose, reject, inform} is the performative, x

is the sender, y the receiver and c the message body.

Note that this statechart is now complete and it can

be simulated and used for intra-agent control validation

(see below). Since all states represent an activity that is

done by a specific agent role resource, the statechart

can be presented as a process model. Here we should

also note that the inter-agent control model does not

impose a specific way for interpreting the exchanged

messages or a technology for exchanging them. These

issues are defined by the developers according to the

platform that they will use for deploying their system

and their expertise. For example, in FLBC (an agent

communication language, see [5]) the effects of a

request message are linked to the beliefs of the sender

which may not be the case in another communication

language with different semantics.

Subsequently, we define the intra-agent control by

transforming the liveness model of the role to a state

diagram. We achieve that, by interpreting the Gaia

operators in the way described in Table 2 as in the case

of protocols but this time we use the liveness formula

of the role model. Initially, the statechart has only one

state named after the left-hand side of the first liveness

formula of the role model (probably named after the

agent type). Then, this state acquires substates. The

latter are constructed reading the right hand side of the

liveness formula from left to right. If one of the states is

further refined in a next formula, then new substates are

defined for it in a recursive way.

At this stage, the activities that have been defined in

the roles model are assigned to the states with the same

name in the statechart. In Figure 5 we present the

statechart that is derived from the liveness model of our

example presented in Figure 2. Then, as in the case of

the inter-agent control model we need to define the

transition expressions. However, for the part of the

statechart that implements the agent behavior in a

protocol, the transition expressions are imported from

the inter-agent control model.

Figure 5. The intra-agent control model

Finally, the designer defines the modules that will

be used for the agent. The modules are typically as

many as the agent capabilities. This allows for a

modular representation of the agent’s architecture and

defines the right level of decomposition of an agent.

Moreover, it allows for the reusability of the modules

as independent software components in different types

of agents, having common capabilities. The modules

are ready for development by transforming the

statecharts to code, not restricted to JADE development

like in [6] (with a few differences, however their

description is out of the scope of this paper), but using

any tool that transforms statecharts to code, e.g.

STATEMATE [3] for object oriented languages.

5. Discussion and Conclusion

Concluding, in this paper we presented how

AMOLA, a language for modeling agent systems,

caters for modeling agent interaction protocols and

how they are integrated in an agent’s design. AMOLA

builds on previous works in Agent Oriented Software

Engineering, mainly the Gaia methodology [9], and on

Moore’s work [5]. The analysis and design models are

based on existing, widely accepted standard languages,

i.e. UML and statecharts. This allows for easy adoption

by software developers who can implement the design

phase models even with no prior knowledge of Agent

technology (however the analyst and designer should

be aware of AMOLA). As we already said before

AMOLA introduces several interesting and original

issues compared to other existing works in the

literature (e.g. [2], [6], [4], [9]).

We propose for the first time a common approach to

designing agent modules and protocols and a

methodology for combining them. The AMOLA design

models are statecharts that can be transformed to

process models. For both these models there exist tools

for code generation, simulation and optimization such

as STATEMATE, Intalio, and others, thus allowing for

iterative/incremental development. There is a

straightforward transformation process between the

models of the analysis phase to those of the design

phase allowing for automating the process being

compliant with the modern model driven engineering

approach [1].

6. References

[1] S. Beydeda, M. Book and V. Gruhn, Model-Driven

Software Development, Springer, 2005.

[2] S.A. Deloach, M.F. Wood and C.H. Sparkman,

“Multiagent Systems Engineering”, Int. Journal of Software

Engineering and Knowledge Eng. 11(3), 2001, pp. 231-258

[3] D. Harel and A. Naamad “The STATEMATE Semantics

of Statecharts”, ACM Transactions on Software Engineering

and Methodology 5(4), 1996, pp. 293-333.

[4] B. Henderson-Sellers and P. Giorgini, Agent-Oriented

Methodologies, Idea Group Publishing, 2005.

[5] S.A. Moore, “On conversation policies and the need for

exceptions”, Issues in Agent Communication, Lecture Notes

in Artificial Intelligence 1916, Springer, 2000, pp. 144–159.

[6] P. Moraitis and N. Spanoudakis, “The Gaia2JADE

Process for Multi-Agent Systems Development”, Applied

Artificial Intelligence Journal 20(4-5), Taylor & Francis,

2006, pp. 251-273.

[7] N. Spanoudakis and P. Moraitis, “The Agent Systems

Methodology (ASEME): A Preliminary Report”,

Proceedings of the 5th European Workshop on Multi-Agent

Systems (EUMAS 07), Hammamet, Tunisia, 13–14

December, 2007.

[8] N. Spanoudakis and P. Moraitis, “The Agent Modeling

Language (AMOLA), Proceedings of the 13th International

Conference on Artificial Intelligence: Methodology, Systems,

Applications (AIMSA 2008), Varna, Bulgaria, 4-6 September

2008.

[9] F. Zambonelli, N.R. Jennings and M. Wooldridge

“Developing multiagent systems: the Gaia Methodology”,

ACM Trans. on Software Eng. and Methodology 12 (3),

2003, pp. 317-370.

