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Abstract 
 

In this paper we present how to use the Agent 

MOdeling LAnguage (AMOLA) to define agent 

interaction protocols and how to integrate these in an 

agent model. AMOLA provides the syntax and 

semantics for creating models of multi-agent systems 

covering the analysis and design phases of a software 

development process. It supports a modular agent 

design approach and introduces the concepts of intra-

and inter-agent control. The first defines the agent’s 

lifecycle by coordinating the different modules that 

implement his capabilities, while the latter defines the 

protocols that govern the coordination of the society of 

the agents. The modeling of the intra and inter-agent 

control is based on statecharts. The analysis phase 

builds on the concepts of capability and functionality. 

AMOLA deals with both the individual and societal 

aspect of the agents showing how protocols and 

capabilities can be integrated in agents design. 

 

1. Introduction 
 

One of the major issues in Agent Oriented Software 

Engineering (AOSE) is the modeling, representation 

and implementation of agent interaction protocols. A 

wide range of methodologies for AOSE either adopt 

one existing model (most usually AUML), while others 

either employ UML models (like activity diagrams) or 

do not address the issue and just define messages that 

the agents send to each other (allowing the modeling of 

simple protocols). 

In this paper, we use a familiar language, the 

statecharts modeling language [3] for designing agent 

systems. It is not the first time that statecharts have 

been used for modeling agent communication 

protocols, however, it is the first time that they are used 

inside a software development methodology in such a 

way that protocols can be seamlessly integrated with 

the other capabilities of an agent. We use the concepts 

of capability and functionality to show how involved 

actors can reach their goals, thus aiding system 

analysis. In [7] we introduced the Agent Systems 

Engineering Methodology (ASEME), a complete 

software development process that reuses successful 

practices in the literature and introduces a new 

language, the Agent Modeling Language (AMOLA) for 

modeling agent systems [8]. The Agent Modeling 

Language (AMOLA) describes both an agent and a 

multi-agent system. It defines the concept of capability 

as the ability of an agent to achieve specific tasks that 

require the use of one or more functionalities. The 

latter refer to the technical solution(s) to a given class 

of tasks. Moreover, capabilities are decomposed to 

simple activities, each of which corresponds to exactly 

one functionality. 

This paper builds on the work of Moore [5] and 

shows how agent interaction protocols are modeled in 

AMOLA, using the inter-agent control model, and how 

they are integrated in the intra-agent control model 

when building agents as a set of capabilities.  

In section 2 we present the analysis phase models 

and in section 3 we present how they are transformed 

to design phase models and the information inserted at 

that phase. We conclude in section 5. 

 

3. The Analysis Phase Models 
 

The main models associated with this phase are the 

use case model, the agent interactions protocol model 

and the roles model. The first is an extended UML 

(Unified Modeling Language) use case diagram and 

the last is mainly inspired by the Gaia methodology [9] 

roles model. 

The use case diagram helps to visualize the system 

including its interaction with external entities, be they 

humans or other systems. Agents are modeled as roles, 

either within the system box (for the agents that are to 

be developed) or outside the system box (for existing 

agents). Human actors are also represented as roles 

outside the system box with their name written in 

italics. The different use cases must be directly related 



to at least one artificial agent role. These general use 

cases can be decomposed to simpler ones using the 

include use case relationship. 

Based on the use case diagram the system modeler 

can define the agent interaction protocols and roles 

models. A use case that connects two or more (agent) 

roles implies the definition of a special capability type: 

the participation of the agent in an interaction protocol. 

For the AMOLA models demonstration we present 

the analysis and design models for a meetings 

management system as it has been widely used in the 

past for demonstrating the use of methodologies (e.g. 

using the Prometheus and MAS-CommonKADS 

methodologies in [4]). This system’s requirements, in 

brief, are to support the meetings arrangement process. 

A user declares his wish to schedule a meeting (or 

reschedule an existing one) and the system, knowing 

the users’ schedules and preferences, services the 

user’s requests and organizes the meeting aiming to 

maximize overall user satisfaction. 

In the Analysis phase we have the use case diagram 

presented in Figure 1. The number of actors of the 

same type participating in a use case is indicated on the 

line connecting the use case to the actor. It is one, if the 

line connecting the use case to the actor has no 

indication. In our example, all use cases are one to one 

except for the “negotiate meeting date” use case that 

requires a meetings manager participant and two or 

more personal assistants.  

 

 

Figure 1. Use case diagram 

Then, we define the agent interaction protocols. 

Such are all the use cases that connect two or more 

agent roles. These use cases must be refined to simpler 

ones that correspond to elementary tasks. For example, 

in Figure 1, the “request new meeting” use case is 

refined for the “Personal Assistant” actor to the simple 

tasks “send new request” and “receive new results”. In 

Figure 1 we have five general use cases that correspond 

to the goals of the requirements analysis phase – 

however, this phase is out of the scope of this paper 

(the reader should consult [7] for more information) – 

and the two aforementioned simple use cases. The 

general use cases are transformed to agent capabilities. 

The included (simple) use cases, which represent 

simple tasks, are transformed to activities in the agent 

interaction protocol Process field. In Table 1 we 

present the “Negotiate meeting date” agent interaction 

protocol definition. It defines two roles, i.e. Personal 

Assistant and Meetings Manager, the rules for 

engaging (why would they participate in this protocol), 

the outcomes that they should expect in successful 

completion and the process that they would follow in 

the form of a liveness formula. The liveness formula is 

a process model that describes the dynamic behavior of 

the role inside the protocol. It connects all the role’s 

activities using the Gaia operators [9]. The liveness 

formula defines the dynamic aspect of the role, that is 

which activities execute sequentially, which 

concurrently and which are repeating. 

Table 1. Agent interaction protocol 

Negotiate meeting date 

Participants Personal Assistant Meetings Manager 

Rules for 
engaging 

He needs to create 
or participate to a 
meeting 

He has a meeting with 
more than one 
participants that has 
no date assigned to it 

Outcomes 
He has scheduled 
participation to a 
meeting 

He has arranged a 
meeting that met all 
the participants needs 

Process 

negotiate meeting 
date = receive 
proposed date. 
(decide response. 
send results. 
receive outcome)+ 

negotiate meeting date 
= (decide on date. 
send proposed date. 
receive results)+. send 
fixed date. 

 

Then we define the role model for each agent role. 

To build the roles model we add the interaction 

protocols that this agent will be able to participate in. 

We continue with the definition of the liveness model 

inside the roles model. The liveness model has a 

formula at the first line (root formula) where we can 

add capabilities. A capability must be decomposed to 

activities in the following line. Figure 2 shows the role 

model for the Personal Assistant role including six 

liveness formulas. The last imports the part in italics 

from the Personal Assistant’s Process of the “Negotiate 

meeting date” agent interaction protocol (as it was 

presented in Table 1). 

Note that the role imports the liveness formulas 

from the agent interaction protocol model for each 

protocol that it participates. The elements (i.e. 

capabilities or activities) of these formulas are 

integrated in the liveness formula of the role model. So 

there is an interleaving among the capabilities or 

activities imported by the protocol and those defined 

directly at the role level. Moreover, the analyst can 



refine the protocol formulas (if they are too general) so 

that the agent role successfully implements his use 

cases. However, the modifications that the analyst is 

allowed to do is to add new activities that make the 

bridge between the activities of the role and those 

imported by a protocol and/or to refine an activity to 

more specific ones (i.e. add a new formula to define 

more detail in a protocol activity). The analyst, in our 

example, has added the activity “update schedule” to 

the “negotiate meeting date” formula (see the last 

liveness formula in Figure 2 that expands the Personal 

Assistant’s Process depicted in Table 1). 

 

Role: Personal Assistant 
Protocols:  Negotiate meeting date: personal assistant 
    Request change meeting: personal assistant 
    Request new meeting: personal assistant 
Liveness: 
personal assistant = (service user. learn user habits)

ω
 || 

(negotiate meeting date)
ω
 

service user = get user request. (read schedule | request 
change meeting | request new meeting). show results 

learn user habits = learn user preference. update user 
preferences 

request change meeting = send change request. receive 
change results 

request new meeting = send new request. receive new results 
negotiate meeting date = receive proposed date. (decide 

response. send results. receive outcome)+. update 
schedule 

Figure 2. The Personal Assistant role model 

Finally, the activities are associated to generic 

functionalities which correspond to the technologies 

that will be used for realizing them (see Figure 3). The 

reader should note that a special capability not included 

in the use–case diagram named communicate appears. 

This capability includes the “send message” and 

“receive message” activities and is shared by all agents 

and is defined separately because its implementation is 

relative to the functionality provided by the agent 

development platform, e.g., in our example, JADE 

(Java Agent Development), an open source agents 

development framework that adheres to the FIPA 

(Foundation for Intelligent Physical Agents) standards. 

 

 

Figure 3. Capabilities, activities and 
functionalities 

4. The Design phase Models 
 

The models associated with the Design phase are 

the inter-agent control and intra-agent control. They 

define the functional and behavioral aspects of the 

multi-agent system.  

For the Design Phase models we use the language of 

statecharts as it is defined in [3]. Statecharts are based 

on an activity-chart that is a hierarchical data-flow 

diagram, where the functional capabilities of the system 

are captured by activities and the data elements and 

signals that can flow between them. The behavioral 

aspects of these activities (what activity, when and 

under what conditions it will be active) are specified in 

statecharts. There are three types of states in a 

statechart, i.e. OR-states, AND-states, and basic states. 

OR-states have substates that are related to each other 

by “exclusive-or”, and AND-states have orthogonal 

components that are related by “and” (execute in 

parallel). Basic states are those at the bottom of the 

state hierarchy, i.e., those that have no substates. The 

state at the highest level, i.e., the one with no parent 

state, is called the root. Each transition from one state 

(source) to another (target) is labeled by an expression, 

whose general syntax is e[c]/a, where e is the event that 

triggers the transition; c is a condition that must be true 

in order for the transition to be taken when e occurs; 

and a is an action that takes place when the transition is 

taken. All elements of the transition expression are 

optional. The scope of a transition is the lowest OR-

state in the hierarchy of states that is a proper common 

ancestor of the source and target states of the transition. 

Multiple concurrently active statecharts are considered 

to be orthogonal components at the highest level of a 

single statechart. 

Events that can trigger a transition can be an 

incoming (or perceived) inter-agent message, an event 

generated by any other executing agent activity in the 

scope of the transition, or the ending of the executing 

state activity. The latter case is also true for a transition 

with no expression. Finally, each state automatically 

starts its activity on entrance. 

We define the inter-agent control by transforming 

the agent interaction protocols of the analysis phase to 

state diagrams. A state diagram is generated by an 

initial state named after the protocol. Then, all 

participating roles define AND sub-states. The right 

hand side of the liveness formula of each role is 

transformed to several OR-states within each AND-

state by interpreting the Gaia operators in the way 

described in Table 2.  

The items that the designer must add at this phase 

are the data structures used for defining the protocol 



parameters, the timers (defined as in [2]), the message 

types and, finally, the conditions for each transition. 

The resulting statechart is depicted in Figure 4. At this 

point the reader should notice the differences with 

Moore’s proposal ([5]). All states represent activities, 

while in his work they just represent a point in time 

where a condition is true (like in finite state machines). 

The preconditions of the agent interaction protocol 

become the conditions of a source-less transition that 

targets the first state of the protocol for each role. The 

transition will be connected to a source state in the 

intra-agent control model. The preconditions for the 

meetings manager role, which have been described in 

free text in the agent interaction protocol model (see 

rules for engaging in Table 1), concern the 

arrangement of a meeting with a list of more than one 

participants. They become the conditions for the decide 

on date state and can be formally expressed by the 

atoms hasToArrange(m, meeting), participantsListOf( 

meeting, list) and hasLength(list,n).  

Table 2. Templates of extended Gaia operators 
(Op.) for Statechart generation 

Op. Template Op. Template 

x* 
 

x || y 
 

[x]  
x | y 

 x
ω
 

 

x. y  

|x
ω
|
n
 

 

x+ 
 

 

 

Figure 4. The inter-agent control model 

The variables m, meeting, list and d that appear in 

these atoms refer to the meetings manager role, to the 

meeting that needs to be arranged, to the list of 

participants in that meeting and to the date of the 

meeting respectively. Variables pi, i=1,…,n refer to the 

n personal assistants that form the list of participants to 

the protocol instance. The only variable that is assigned 

a value while the protocol is executing is d and that is 

formally expressed by the [assignedValue(d)] condition 

of the transition with source the decide on date activity. 

These variables can be accessed by all the protocol’s 

states, since their scope is the same with the scope of 

the transition in which they appear, i.e. the OR-state 

that contains both the source and target of the 

transition, in this case the negotiate meeting protocol 

state. The goal for both (i.e. manager and participant) 

roles is that a date has been assigned to the meeting 

(from outcomes field in Table 1) and it is formally 

expressed by the atom arrangedMeetingDate(meeting, 

d). A message is expressed by P(x,y,c) where P ∈ { 

accept, propose, reject, inform} is the performative, x 

is the sender, y the receiver and c the message body. 

Note that this statechart is now complete and it can 

be simulated and used for intra-agent control validation 

(see below). Since all states represent an activity that is 

done by a specific agent role resource, the statechart 

can be presented as a process model. Here we should 

also note that the inter-agent control model does not 

impose a specific way for interpreting the exchanged 

messages or a technology for exchanging them. These 

issues are defined by the developers according to the 

platform that they will use for deploying their system 

and their expertise. For example, in FLBC (an agent 

communication language, see [5]) the effects of a 

request message are linked to the beliefs of the sender 

which may not be the case in another communication 

language with different semantics.  

Subsequently, we define the intra-agent control by 

transforming the liveness model of the role to a state 

diagram. We achieve that, by interpreting the Gaia 

operators in the way described in Table 2 as in the case 

of protocols but this time we use the liveness formula 

of the role model. Initially, the statechart has only one 

state named after the left-hand side of the first liveness 

formula of the role model (probably named after the 

agent type). Then, this state acquires substates. The 

latter are constructed reading the right hand side of the 

liveness formula from left to right. If one of the states is 

further refined in a next formula, then new substates are 

defined for it in a recursive way. 

At this stage, the activities that have been defined in 

the roles model are assigned to the states with the same 

name in the statechart. In Figure 5 we present the 

statechart that is derived from the liveness model of our 

example presented in Figure 2. Then, as in the case of 

the inter-agent control model we need to define the 



transition expressions. However, for the part of the 

statechart that implements the agent behavior in a 

protocol, the transition expressions are imported from 

the inter-agent control model.  

 

 

Figure 5. The intra-agent control model 

Finally, the designer defines the modules that will 

be used for the agent. The modules are typically as 

many as the agent capabilities. This allows for a 

modular representation of the agent’s architecture and 

defines the right level of decomposition of an agent. 

Moreover, it allows for the reusability of the modules 

as independent software components in different types 

of agents, having common capabilities. The modules 

are ready for development by transforming the 

statecharts to code, not restricted to JADE development 

like in [6] (with a few differences, however their 

description is out of the scope of this paper), but using 

any tool that transforms statecharts to code, e.g. 

STATEMATE [3] for object oriented languages. 

 

5. Discussion and Conclusion  
 

Concluding, in this paper we presented how 

AMOLA, a language for modeling agent systems, 

caters for modeling agent interaction protocols and 

how they are integrated in an agent’s design. AMOLA 

builds on previous works in Agent Oriented Software 

Engineering, mainly the Gaia methodology [9], and on 

Moore’s work [5]. The analysis and design models are 

based on existing, widely accepted standard languages, 

i.e. UML and statecharts. This allows for easy adoption 

by software developers who can implement the design 

phase models even with no prior knowledge of Agent 

technology (however the analyst and designer should 

be aware of AMOLA). As we already said before 

AMOLA introduces several interesting and original 

issues compared to other existing works in the 

literature (e.g. [2], [6], [4], [9]). 

We propose for the first time a common approach to 

designing agent modules and protocols and a 

methodology for combining them. The AMOLA design 

models are statecharts that can be transformed to 

process models. For both these models there exist tools 

for code generation, simulation and optimization such 

as STATEMATE, Intalio, and others, thus allowing for 

iterative/incremental development. There is a 

straightforward transformation process between the 

models of the analysis phase to those of the design 

phase allowing for automating the process being 

compliant with the modern model driven engineering 

approach [1].   
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