
Modular JADE Agents Design and Implementation using ASEME 
 

 

Nikolaos Spanoudakis 

Technical University of Crete, Greece 

nikos@science.tuc.gr 

 

 

Pavlos Moraitis 

LIPADE, Paris Descartes University, France 

pavlos@mi.parisdescartes.fr 

  

Abstract 
 

ASEME is an emerging Agent Oriented Software 

Engineering (AOSE) methodology. The Model-Driven 

Engineering (MDE) paradigm encourages software 

modelers to automate the transition of one type of 

software model to another and eventually the code 

generation process. This paper builds on previous 

work that describes the model-driven development of 

agent systems using ASEME and creating a Platform 

Independent Model (PIM) that adheres to the language 

of statecharts, the Intra-Agent Control Model. In this 

contribution we use the generated statecharts and 

show how to automatically transform them to Java 

programs using the Java Agent Development 

Framework (JADE). All agent and behaviour classes 

are automatically generated including the agent 

interaction protocols.  

 

1. Introduction 
 

A challenge in the Agent Oriented Software 

Engineering (AOSE) field is the automation of agent 

code generation from a design model. Most 

methodologies either automatically generate portions of 

the agent code or provide guidelines for the 

programmers to transform their design models to 

implementation models. The Java Agent Development 

Framework (JADE) has been used as a target agent 

implementation platform by many AOSE 

methodologies such as Ingenias [5], PASSI [3], Gaia 

[17], and, recently, by the Agent Systems Engineering 

Methodology (ASEME1 [16], [13]). JADE has many 

qualities as it is open source; it is compliant with the 

FIPA (the Foundation for Intelligent Physical Agents 

standardization body) standards and can be compiled 

for devices with limited resources such as PDAs. 

                                                           
1 From the ASEME web site the interested reader can 

download the tools and metamodels defined in this paper, 

URL: http://www.amcl.tuc.gr/aseme 

This paper extends our previous work [14], where 

we showed how to use Model-Driven Engineering 

(MDE) principles to define the Platform Independent 

Model (PIM) of a system specification as an Intra-

Agent Control (IAC) model adhering to the language of 

statecharts [6]. Here-in, we show how the IAC can be 

transformed to a Java program using JADE and 

employing the agent’s capabilities as reusable software 

components.  

We define an automatic transformation of an Intra-

Agent Control (IAC) model to JADE implementation 

(IAC2JADE) including the unique capability to derive 

the needed JADE behaviour types and also the 

possibility to automatically define all interactions 

needed by a complex agents’ interaction protocol. This 

paper not only provides these theoretical results but 

also an implementation using the Xtext and Xpand 

languages [8] and the Eclipse Modeling2 popular 

Integrated Development Environment (IDE). 

 

2. Metamodels and Models Transformation 
 

Model driven engineering relies heavily in model 

transformation [12]. Model transformation is the 

process of transforming a model to another model. The 

requirements for achieving the transformation are the 

existence of metamodels of the models in question and 

a transformation language in which to write the rules 

for transforming the elements of one metamodel to 

those of another metamodel. 

In the software engineering domain a model is an 

abstraction of a software system (or part of it) and a 

metamodel is another abstraction, defining the 

properties of the model itself. However, even a 

metamodel is itself a model. Thus, there is yet another 

level of abstraction, the metametamodel, which is 

defined as a model that conforms to itself [7]. 

                                                           
2 The Eclipse Modeling Project provides a unified set of 

modeling frameworks, tooling, and standards 

implementations, URL: http://www.eclipse.org/modeling/ 
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A transformation that is used for transforming a 

graphical model to a textual representation (i.e. a 

computer program) is called a Model to Text (M2T) 

transformation. The graphical model must have a 

metamodel. Then, a transformation of the graphical 

model to text can be defined. 

In the heart of the model transformation procedure 

is the Eclipse Modeling Framework (EMF, [2]). Ecore 

[2] is EMF’s model of a model (metamodel). It 

functions as a metametamodel and it is used for 

constructing metamodels. It defines that a model is 

composed of instances of the EClass type, which can 

have attributes (instances of the EAttribute type) or 

reference other EClass instances (through the 

EReference type). Finally, EAttributes can be of 

various EDataType instances (such are integers, 

strings, real numbers, etc).  

 

2.1 Statechart Definition and Metamodel 
 

Statecharts [6] are used for modeling systems. They 

are based on an activity-chart that is a hierarchical 

data-flow diagram, where the functional capabilities of 

the system are captured by activities and the data 

elements and signals that can flow between them. 

Statecharts define the behavioral aspects of a set of 

activities. The activities are represented as states that 

can be a) OR-states, b) AND-states, and c) basic states. 

OR-states have substates that are related to each other 

by “exclusive-or”, and AND-states have orthogonal 

components that are executed concurrently, thus are 

“and” related. Basic states are those at the bottom of 

the state hierarchy, i.e., those that have no substates. A 

state with no parent state is called the root. Each 

transition from one state (source) to another (target) is 

labeled by an expression, whose general syntax is 

e[c]/a, where e is the event that triggers the transition; c 

is a condition that must be true in order for the 

transition to be taken when e occurs; and a is an action 

that takes place when the transition is taken. All 

elements of the transition expression are optional. Here 

we must note that if SO is the set of OR-states that are 

proper common ancestors of the source and target 

states of a transition, then the scope of the transition is 

defined as the element of SO that has no substates that 

are members of SO. CONDITION states are used when 

more than one transition have the same source state and 

other-different- states as targets, and the target state is 

determined by one or more conditions. Multiple 

concurrently active statecharts are considered to be 

orthogonal components at the highest level of a single 

statechart. 

The fact that the statechart can capture together the 

functional and behavioral aspects of a system is its 

greatest advantage, as it completely defines a system. 

We use statecharts in a specific level of abstraction, 

that of an agent, in order to model the interactions 

between its components (or capabilities). The 

statechart, therefore, implements the intra-agent 

control model (IAC) of an agent. The formal model 

that is adopted here-in is part of the Agent Modeling 

Language (AMOLA) [13].  

Before giving a formal representation of a statechart 

we need to present some useful definitions. Thus, an 

ordered rooted tree is a rooted tree where the children 

of each internal vertex are ordered [11]. To produce a 

total order of the vertices of an ordered rooted tree all 

the vertices must be labeled. This is achieved 

recursively as follows: 

1. Label the root with the integer 0. Then label its k 

children (at level 1) from left to right with 0.1, 0.2, 

0.3, …, 0.k.  

2. For each vertex ν at level n with label A, label its kν 

children, as they are drawn from left to right, with 

A.1, A.2, …, A.kν. 

Thus, A.1 means that A is the parent of A.1. A 

statechart can therefore be formally defined as follows 

(the definition is inspired by the one proposed by 

David et al. [4]). 

 

Definition 1. A statechart is a tuple (L, δ) where: 

• L = (S, λ, Var, Name, Activity) is an ordered rooted 

tree structure representing the states of the statechart 

─ S⊆�* is the set of all nodes in the tree 

─ λ: S�{AND, OR, BASIC, START, END, 

CONDITION} is a mapping from the set of 

nodes to labels giving the type of each node 

─ Var is a mapping from nodes to sets of variables 

─ Name is a mapping from nodes to their names 

─ Activity is a mapping from nodes to their 

algorithms/functionality in text format 

• δ ⊆ S × TE × S is the set of state transitions 

 

The Intra-Agent Control (IAC) is defined as a 

statechart. IAC allows the modeling of interactions 

between the different capabilities of an agent. Its 

metamodel (see Figure 1) contains nodes and 

transitions according to Definition 1. The metamodel 

defines a Model concept that has nodes, transitions and 

variables EReferences. Note that it also has a name 

EAttribute. The latter is used to define the namespace 

of the statechart. A namespace is an abstract container 

conceived to hold a logical grouping of unique 

identifiers or symbols. The namespace should follow 

the Java or C# modern package namespace format. 
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The nodes contain the following attributes (followed 

by the relevant concept name in the statechart 

definition): a) name (Name), usually named after the 

Gaia liveness formula expression (see section 3 for 

more details), b) type (λ), c) label (label), and, d) 

activity (Activity). Nodes also refer to variables. The 

Variable EClass has the attributes name and type (e.g. 

the variable with name “count” has type “integer”). 

Finally the transitions have four attributes: a) name, b) 

TE, the transition expression, c) source, the source 

node label, and, d) target, the target node label. 

 
Figure 1. The statechart metamodel. 

 

2.2 The JADE Framework 
 

In JADE, each agent is equipped with an incoming 

message box. Moreover, JADE provides methods for 

message filtering. The developer can apply advanced 

filters on the various fields of the incoming messages 

such as sender, performative or ontology.  

Agent tasks or agent intentions are implemented 

through the use of behaviours. Each behaviour 

performs its designated operation by executing the core 

method action(). Behaviour is the root class of the 

behaviour hierarchy that defines several core methods. 

The children of this base class are SimpleBehaviour 

and CompositeBehaviour. 

The classes that descend from SimpleBehaviour 

represent atomic simple tasks that can be executed a 

number of times specified by the developer. The class 

CyclicBehaviour models atomic behaviours that must 

be executed forever. So, its done() method (the method 

called at the end of each behaviour’s action execution) 

always returns false. 

Classes descending from CompositeBehaviour 

support the handling of multiple behaviours according 

to a policy. The actual agent tasks that are executed 

through this behaviour are not defined in the behaviour 

itself, but inside its children behaviours. The class 

SequentialBehaviour executes its sub-behaviours 

sequentially and terminates when all sub-behaviours 

are done. The class ParallelBehaviour executes its sub-

behaviours concurrently and terminates when a 

particular condition on its sub-behaviours is met. 

The developer creates his agents by extending the 

JADE Agent class. He can add any number of 

behaviours along with defining the agent’s initialization 

and termination handling functionality.  

 

3. The IAC2JADE Transformation 
 

In [14] we showed how to automatically transform 

the Gaia liveness property [17] to a statechart 

compatible with the AMOLA Intra-agent Control 

(IAC) model. The analysis phase System Roles Model 

(SRM) of AMOLA has adopted the Gaia liveness 

formulas for defining the dynamic behaviour of the 

role. This section shows how this statechart is 

automatically transformed to Java code using the JADE 

API. The transformation process will be illustrated by 

an example regarding a meetings management system. 

For the better understanding of what happens in the 

design phase we will use an example starting from the 

analysis phase. An agent role participating in a 

meetings management system is the personal assistant 

of each user (see Figure 2). The last formula of this 

role’s liveness property shows how this agent 

implements his participation in an agent interaction 

protocol, i.e. the negotiate meeting date protocol. We 

suppose that the reader is familiar with the Gaia 

methodology. 
 

Role: Personal Assistant 
Liveness: 
personal assistant = (manage meetings. learn user habits)

ω
 || 

(negotiate meeting date)
ω
 

manage meetings = get user request. (read schedule | request 
change meeting | request new meeting). show results 

learn user habits = learn user preference. update user 
preferences 

request change meeting = send change request. receive 
change results 

request new meeting = send new request. receive new results 
negotiate meeting date = receive proposed date. (decide 

response. send results. receive outcome)+. update schedule 

Figure 2. The Personal Assistant Role 

Starting from the role model an automated process 

applies transformation templates to the Gaia operators 

and recursively creates the IAC model. For our 

example the resulting IAC model for the Personal 

Assistant role is shown in Figure 4. The details for this 

transformation are presented in [14]. A rooted tree 

resembles this statechart. For demonstrating the 

recursive tree building process we show a branch of 

this tree in Figure 3 and the templates used for this 

branch in Table 1. Figure 3 presents a graphical 

representation of the statechart according to Definition 
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1 for the negotiation protocol. This protocol is one of 

the capabilities of the agent and it is intended to 

become a software module. In the figure, the reader can 

see for each node its label (top), type (middle) and 

name (bottom). If there is no name listed then the name 

is the same with the node’s label. Grey nodes and 

arrows represent the statechart ordered routed tree, 

while the black arrows represent the state transitions. 

Table 1. Templates for Statechart generation 

Operator Template Tree Branch 

x.y  

x+ 
 

 

 

Having transformed the liveness formula to a 

statechart, the designer can insert conditions for 

executing an activity (which may involve the use of 

variables) and the receipt or the dispatch of inter-agent 

messages as events. AMOLA makes no assumptions on 

ontology, communication means, reasoning processes, 

or the mental attitudes (e.g. belief-desire-intentions) of 

the agents, giving this freedom to the designer. 

However, it does define a grammar (see [13]) for the 

definition of the state transition expressions. The 

ontology can be defined in object-oriented format or in 

logic based format. The definition of the ontology 

using one format does not forbid the use of another 

during the development of the system. For example, in 

[15], we defined a way to encode an ontology that was 

developed using the Protégé ontology editor 

(http://protege.stanford.edu), in object-oriented format, 

to Prolog (logic programming) format. The ontology 

concepts and their properties can be used in defining 

conditions, events and actions in the IAC transition 

expressions. 

 

3.1 The IAC2JADE Transformation Algorithm 
 

Four types of JADE behaviours are automatically 

generated according to the transformation process. The 

transformation algorithm reads the statechart model 

(IAC) and creates Java source code files using 

templates (defined in the Xpand language). 

 
personal assistant

manage meetings

show 

results

get user 

request

request new 

meeting

send new 

request

receive new 

results

request change 

meeting

send 

change 

request

receive 

change 

results

read 

schedule
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negotiate meeting date

receive 

proposed 

date

propose(m, p, meeting)

inform(m, p, meeting)/

isArranged(meeting) = True

decide 

response

accept(p,m,meeting)

∨ reject(p,m,meeting)

send 
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receive 
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p
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o
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p
, 
m
e
e
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n
g
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update 

schedule
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update user 
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learn user 
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Figure 4. Personal Assistant Agent IAC Model 

The transformation algorithm processes each node 

of the statechart (IAC). If it is the root, then it is 

transformed to a JADE Agent descendant class. All the 

 
Figure 3. A graphical representation of a statechart branch starting at depth L. 
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nodes of the statechart that are of types OR, AND or 

BASIC (called the eligible nodes from now on) are 

transformed to some kind of JADE behaviour. Notice 

that the nodes of type START, END and CONDITION 

are not transformed to Behaviour classes. 

For each of the other (than the root) eligible nodes 

one of the following holds: 

• If the node’s type is “BASIC” then it is transformed 

to a JADE SimpleBehaviour (corresponding to a 

Gaia activity). 

o If the node’s name starts with “Send”, then add 

a reference to the JADE ACLMessage class and 

write code for sending a message depending on 

the events of the transitions that have this node 

as their source. For example the “send results” 

activity in Figure 4 should send an ACL 

message with either the accept or reject 

performatives, the personal assistant as sender, 

the meetings manager as receiver and a Meeting 

instance as message body (from the transition 

expression exiting the state). 

o Else, if the node’s name starts with “Receive”, 

then add a reference to the JADE ACLMessage 

class and write code for receiving a message 

depending on the events of the transitions that 

have this node as their target. Also, add a 

reference to the MessageTemplate JADE class 

that is used for defining the type of message 

expected and instantiate it according to the 

events of the transitions that have this node as 

their target. 

o Else, add in the action method of the behaviour 

the contents of the node’s Activity attribute. 

• Else, if the node’s type is “AND”, then it is 

transformed to a JADE ParallelBehaviour (the “||” 

Gaia operator connects its sons). All the eligible 

sons of the node are added as threaded behaviours 

and the ParallelBehaviour ends when all its children 

have ended. 

• Else, if the node has two sons, the second of which 

has a transition to itself then the latter is the case of 

a behavior that will execute forever (corresponding 

to the “ω” Gaia operator). Thus, this node must be 

transformed to a behavior that will continuously 

instantiate its second son (the first is a node of type 

START, thus is ignored). This is achieved by 

transforming it to a CyclicBehaviour that checks if 

the eligible son has finished and if this is true it 

restarts it. 

• Else, if the node has three sons, the second of which 

has a transition to itself then the latter is the case of 

a behavior that will execute one or more times 

(corresponding to the “+” Gaia operator). Thus, this 

node must be transformed to a behavior that will 

continuously instantiate its second son (the first is a 

node of type START, thus is ignored), while a 

specific condition holds. This is achieved by 

transforming it to a SimpleBehaviour that checks if 

the eligible son has finished and then, if the 

condition of the transition that has it as target is true, 

it restarts it. If not the behavior terminates. 

• Else, if the node has a son whose type is 

CONDITION then 

o If the node has four sons, then its third son is the 

case of a behavior that will execute zero or more 

times (corresponding to the “*” Gaia operator). 

Thus this node must be transformed to a 

behavior that will conditionally instantiate its 

third son (the first is a node of type START, the 

second the one of type CONDITION). This is 

achieved by transforming it to a 

SimpleBehaviour that conditionally adds the 

sub-behaviour in its constructor and that checks 

(in its action method) if the eligible son has 

finished and then if the condition of the 

transition that has it as target is true it restarts it. 

If not the behavior terminates. 

o Else this node has a number of eligible sons one 

of which must be instantiated (the “|” Gaia 

operator connects its sons). It is transformed to 

a SequentialBehaviour and at its constructor it 

conditionally instantiates one of its sons. 

• Else this node has a number of eligible sons that 

must be executed sequentially (the “.” Gaia operator 

connects its sons). This is achieved by transforming 

it to a SequentialBehaviour and adding all its 

eligible sons sub-behaviours. 

Using the above algorithm we can deduce that the 

nodes L, L.3.2 (in Figure 3) are transformed to 

SequentialBehaviour descendants and L.2, L.3, L.4, 

L3.2.2, L3.2.3 and L3.2.4 to SimpleBehaviour 

descendants. 

 

3.2 The Algorithm’s Implementation 
 

The transformation process is comprised of multiple 

steps and Eclipse allows to define this process (another 

advantage of using Xpand) using a workflow file. The 

latter can be used to define execution parameters, 

usually through property files, and file generating 

components. It initially loads some parameters through 

a property file, the most important of which are the 

name of the IAC model file and the directory for 

producing the source code.  
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An Xpand file defines the templates for creating the 

Java classes. The definition of the agent Xpand 

template is presented in Figure 5. It starts with the 

DEFINE statement. The FILE statement defines the 

name of the file that is outputted and its body is the file 

template. The used properties of the metamodel are 

inserted in the «» tags. If the text in the «» tags ends 

with parenthesis optionally including more text (e.g. 

the case classFileName())  then it implies the execution 

of an Xtend function. The getAgentBehaviour Xtend 

function for example searches the tree for the eligible 

sons of the root so that it finds the behaviours that need 

to be added to the setup method of the agent. The agent 

Xpand template file continues by defining relevant 

templates for the different behaviours. The template 

that will be used each time is selected according to the 

IAC2JADE algorithm that we showed earlier. 

 
«DEFINE agentClass(String packageName, Model model) 

FOR IAC::Node» 

 «FILE classFileName()» 

 package «packageName»; 

 import jade.core.Agent; 
 public class «className()» extends Agent{ 
  public void setup(){ 

   addBehaviour(«getAgentBehaviour(this,model)»); 

  } 
  protected void takeDown() { 

   doDelete(); 
  } 
 } 

 «ENDFILE» 

«ENDDEFINE» 

Figure 5. The Agent class Xpand template 

For each variable in the IAC model a java class will 

be created. If the variable type is that of an 

ACLMessage then the relevant class is imported from 

the jade framework. For all other variable types it is 

assumed that the ontology created for this project will 

contain them. In the case of the meetings management 

project, there are two variable types, the Meeting 

variable type refers to a class defined in the ontology of 

the project and the ACLMessage variable type. The 

class generated by the Xpand template is named after 

the type of the variable including the string “Holder”. 

Thus, the class generated for the Meeting variable type 

is the MeetingHolder class. The latter has two 

attributes, the owner, which is a reference to a JADE 

Behaviour class (where the behavior that instantiates 

this variable is inserted through the class constructor) 

and the meeting attribute that references the Meeting 

class. This approach, which is transparent to the 

developer, allows a behaviour to change a variable 

value and this change to be visible to all behaviours 

that share this variable. The variables have the scope of 

the transition in the expression of which they are used; 

however, the developer may opt to widen the scope. 

Variables are used to coordinate the execution of the 

different agent capabilities (by being used in transition 

expressions) and to allow capabilities to exchange 

information (the scope of a variable defines which 

capabilities can access it). 

If the user has inserted the activity related to each 

node in java code format he has to denote this by 

starting the activity description with the string “/*Java 

code*/”. In this case the code is inserted as-is in the 

action method of the SimpleBehaviour. However, in 

normal projects it is expected that diverse technologies 

will be involved, in which case the programmers (each 

an expert in his own domain, e.g. logic programming, 

web service invocation, etc) will have to edit the action 

methods of the simple behaviours.  

Thus, the ASEME developer can generate all the 

needed classes for his project just by executing the 

“workflow.oaw” transformation workflow file in the 

Eclipse IDE. The resulting files are the JADE Agent 

and Behaviour descendant classes along with the 

variable holder classes, 31 files total for the personal 

assistant agent. For this transformation the workflow 

execution time was 982 milliseconds in a normal 

workstation with the Intel Core2Duo processor running 

at 2.66GHz and 2GB of RAM. 

The ReceiveOutcomeBehaviour, which corresponds 

to the BASIC state “receive outcome” of the IAC 

model, is depicted in Figure 6. The properties of the 

class are two holders for ACL messages and one holder 

for the Meeting class. These are initialized through its 

constructor. The action and done methods have been 

automatically produced including the definition of the 

MessageTemplate class that defines the characteristics 

of the expected message. 

Finally, it is worth showing how a capability has 

been defined as a software module. The automatically 

generated NegotiateMeetingDateBehaviour.java file is 

presented in Figure 7. It is the implemented personal 

assistant’s part of the “Negotiate Meeting Date” 

protocol. The reader can see that it defines the ACL 

message holders for the types of messages that it 

handles and which it then uses for adding its children 

behaviours to the agent scheduler. This behaviour 

along with its children behaviours and the used 

variables can be used by any future JADE agent that 

wants to participate as a personal assistant to the 

“Negotiate Meeting Date” protocol. He just has to add 

the NegotiateMeetingDateBehaviour to his agent’s 

behaviour scheduler. The MeetingHolder variable is 

used to integrate this module to other agent modules (it 

is the variable passed to the behaviour constructor). 

The reader should also note that the behaviour types 

that are not SimpleBehaviours are not meant to be 

edited by the programmers, they are complete. Thus, 
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among the 31 automatically generated classes for the 

personal assistant agent of our example, the developer 

will need just to define the action methods of 14 of 

them, seven of which are message send and receive 

methods, which will just require a final touch. 

Therefore, the programmers will just have to write 

code for seven methods.  

 
package fr.parisdescartes.mi.meetingsmanagement; 

import jade.core.Agent; 

import jade.core.behaviours.SimpleBehaviour; 

import jade.lang.acl.ACLMessage; 

import jade.lang.acl.MessageTemplate; 

 

public class ReceiveOutcomeBehaviour extends 

SimpleBehaviour { 

 MeetingHolder e = null; 

 ACLMessageHolder inform = null; 

 ACLMessageHolder propose = null; 

 protected MessageTemplate mt = null; 

 boolean finished = false; 

 public ReceiveOutcomeBehaviour(Agent a, 

MeetingHolder e,   ACLMessageHolder inform, 
ACLMessageHolder propose) { 

  super(a); 

  this.e = e; 

  this.inform = inform; 

  this.propose = propose; 

 } 

 public void action() { 

  mt = MessageTemplate.MatchPerformative(ACLMessage. 

PROPOSE); 

  mt = MessageTemplate.or(mt, MessageTemplate. 

MatchPerformative(ACLMessage.INFORM)); 
  ACLMessage msg = myAgent.receive(mt); 

  if (msg != null) { 

   //insert message handling code 

   finished = true; 

  } else {   block();  } 

 } 

 public boolean done() { return finished; } 

} 

Figure 6. A JADE receiver behaviour 

 

4. Related Work and Conclusion 
 

This paper showed how engineers, who adopt the 

ASEME methodology, can design autonomous agents 

(and multi-agent systems) and implement them using 

the JADE framework. ASEME supports automatic 

code generation from the design phase model (the 

AMOLA Intra-Agent Control model), which is itself 

automatically derived from the analysis phase model 

and, specifically, the Gaia liveness formulas. The 

information added in the design phase is the IAC 

(which is a statechart) transition expressions and the 

variables accessed by the different nodes. 

In the past, researchers have proposed some 

methods for generating JADE code from Gaia models. 

The Gaia2JADE process [9], did not automate the 

model transformation procedure from the Gaia roles 

model to JADE code, it just provided some rules of 

thumb for the selection of specific JADE behaviours 

based on the Gaia liveness formula. Another work [1] 

automated this selection using semantic web 

technologies but stopped at defining each Gaia activity 

as a JADE Behaviour (did not go in the detail of what 

type of behaviour and did not use JADE composite 

behaviours). 

Other AOSE methodologies such as PASSI [3] and 

Ingenias [5] also provide some kind of automation for 

producing JADE code. PASSI employs the 

AgentFactory tool to help the developer edit a JADE-

based implementation. This tool allows quick access to 

all FIPA specified communication protocols and the 

defined ontology. Ingenias is itself a development 

framework that the developer must study and learn in 

the same way that he learns the JADE framework. 

Moreover, it uses a specific mental model, while in 

ASEME the developers may use any mental model that 

suits their problem. 
 

package fr.parisdescartes.mi.meetingsmanagement; 

import jade.core.Agent; 

import jade.core.behaviours.SequentialBehaviour; 

 

public class NegotiateMeetingDateBehaviour extends 

SequentialBehaviour { 

 MeetingHolder e = null; 

 ACLMessageHolder accept=new ACLMessageHolder(this); 

 ACLMessageHolder inform=new ACLMessageHolder(this); 

 ACLMessageHolder propose=new ACLMessageHolder(this); 

 ACLMessageHolder reject=new ACLMessageHolder(this); 

 public NegotiateMeetingDateBehaviour(Agent a, 

MeetingHolder e) { 

  super(a); 

  this.e = e; 

  addSubBehaviour(new ReceiveProposedDateBehaviour( 

this.myAgent, e, propose)); 

  addSubBehaviour(new _open_group_DecideResponse_ 

sequence_SendResults_sequence_ReceiveOutcome_close_ 

group__one_or_more_times_Behaviour(this.myAgent, e, 

accept, inform, propose, reject)); 

  addSubBehaviour(new UpdateScheduleBehaviour( 

this.myAgent, e, inform)); 

 } 
} 

Figure 7. A JADE composite behaviour. 

 

This work has some significant advantages 

compared to [1] and [9]. Using the IAC model it allows 

the designer to enrich his roles model by introducing 

variables, agent message types and adding conditions 

and events in the statechart transition expressions used 

in the Agent level to coordinate the execution of the 

agent capabilities. This allows for richer code 

generation using the JADE CompositeBehaviour 

descendant classes to orchestrate the implementation of 

the statechart logic, an advantage over [3] and [5] as 

well. The fact that the statechart logic is expressed 

through the use of 100% automatically generated 

behaviours addresses the "post-editing problem". The 

latter prevents the re-generation of code from models 

after doing some manual editing in the generated 

source files. In ASEME, the developer can manually 

edit the simple behaviors and re-generate the complex 

behaviors when the statechart logic is changed. 
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For evaluating our work we used two case studies 

on the development of two real-world systems. The 

first is a module of the ASK-IT project [10], where we 

built an agent-mediated service brokering system 

including a broker agent and several added value 

service provider agents. It included programming for 

semantic service matching and interfaces to other 

modules that were based on OSGi, a service oriented 

architecture. The ontology was developed using the 

Protégé ontology editor and its beangenerator add-on, 

which generates java files representing an ontology that 

can be used with the JADE environment. 

The second is the Market-Miner project [15] where 

we developed an autonomous product pricing agent 

situated in a firm monitoring for changes of the prices 

of competitors along with changes in firm policies and 

deciding on the prices of the products on the self. In 

Market-Miner we used Prolog for implementing the 

decision making capability of the agent. Again, we 

used the Protégé editor for creating the ontology.  

These projects used different implementation 

platforms, the first the JADE platform, while the 

second a Java CASE tool, IBM Rational Rhapsody 

(URL: http://www.ibm.com). For the latter it was 

needed to transform the SRM model to an IAC model 

manually (as Rhapsody does not offer an import tool 

for statechart models) using the process defined in [14]. 

Table 1 shows the percentages of the total code (code 

is measured in bytes) that was generated automatically 

for each project (26% and 54% respectively) as a 

benchmark. 

Table 2. ASEME case studies 
Project – Case study ASK-IT Market-Miner 

Implementation Platform JADE Rhapsody 

Total project code (bytes) 160,241 179,750 
Automatically generated code 41,759 97,631 

Written Java code 118,482 60,365 

Other written code (Prolog) - 21,754 

Automatically generated 26.06% 54.31% 
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