
Highlights

Explainable Argumentation as a Service

Nikolaos I. Spanoudakis, Georgios Gligoris, Antonis C. Kakas, Adamos Koumi

• Argumentation-based explainable decision making is
provided as a service

• Developers can author, test and use their theories
on-line

• Developers are assisted in developing their theories
with rule templates

• Multiple scenarios may be used for assisting/automat-
ing the testing phase

• The system supports university courses labs and stu-
dents thesis in three countries

Explainable Argumentation as a Service

Nikolaos I. Spanoudakisa,∗, Georgios Gligorisb, Antonis C. Kakasc, Adamos Koumic

aSchool of Production Engineering and Management,
bSchool of Electrical and Computer Engineering,

Technical University of Crete, University Campus, Chania, 73100, Greece
cDepartment of Computer Science,

University of Cyprus, 75 Kallipoleos Str., P.O. Box 537, Nicosia, CY-1678, Cyprus

Abstract

Gorgias Cloud offers an integrated application development environment that facilitates the development of argumentation-
based systems over the internet. Argumentation is offered as a service in a way that this allows application systems
to remotely access the argumentation service and utilize the results of the argumentative computation. Moreover, the
service results include the explanation of the decision in both human and machine-readable formats. The first is useful
for allowing the application validation to be done by experts, while the second is useful for development. It appears that
this is the first case where argumentation is offered to developers in such an open and distributed way.

Keywords: Argumentation, SaaS, Explainable AI
2000 MSC: 68T35, 68U35, 68N19

1. Introduction

Argumentation is an emerging technology that has ma-
tured enough to produce practical applications for the in-
dustry. Start-up companies, like Argument Theory, al-
ready have clients using argumentation for decision mak-
ing, drawing upon expert knowledge.

Although there is a number of frameworks [1] for devel-
oping argumentation systems, e.g., Gorgias [2], CaSAPI [3],
DeLP [4], and ASPIC+ (TOAST system) [5], web-based
argumentation systems upon which applications can be
built are rare.

A web-based system, SPINdle [6], allows for web-based
development and testing of defeasible logic applications.
Its environment, however, consists simply of a text edi-
tor for writing logic programming rules. Another recent
editor, Web-Gorgias-B [7], allows to build argumentation
theories on-line based on the Gorgias framework.

Gorgias is a structured argumentation framework where
arguments are constructed using a basic (content indepen-
dent) scheme of argument rules. Two types of arguments
are constructed within a Gorgias argumentation theory:
object-level arguments and priority arguments expressing a
preference, or relative strength, between other arguments.
The dialectic argumentation process of Gorgias to deter-
mine the acceptability/admissibility of an argument sup-
porting a desirable claim typically occurs between com-
posite arguments where priority arguments are included
into the composite argument in order to strengthen the
arguments currently committed to.

∗Corresponding Author

The Gorgias framework was introduced in [8], extended
in [2] and has been applied to a variety of real-life applica-
tion problems [9]. The system of Gorgias was introduced in
2003 and has been used by several research groups to de-
velop prototype real-life applications of argumentation in
a variety of application domains, e.g. in portfolio manage-
ment [10], provision of services in ambient intelligence [11],
medical diagnosis [12], product pricing [13], management
of firewall policies [14], conflicts resolution in pervasive ser-
vices [15], [16]).

Web-Gorgias-B eliminates the need for logic program-
ming knowledge for application developers, thus, allowing
naive users to, for example, define their decision policies as
argumentation theories. Web-Gorgias-B achieves this task
by using a table formalism recently proposed in the liter-
ature [9]. According to this, a user can define application
scenarios and select the available options in each scenario.
However, this approach poses a number of limitations to
Gorgias developers preventing, e.g., the use of abducibles,
or arguing about beliefs.

In this paper, we propose a web-based Integrated De-
velopment Environment (IDE) for applications of argu-
mentation, named Gorgias Cloud, offering an argumentation-
based reasoning Application Programming Interface (API),
thus allowing us to build systems that use argumentation
as a service in the context decision making applications.
Moreover, this API provides an explanation capability that
enhances the utility of the service in the application sys-
tems.

The Gorgias Cloud IDE offers three novel features:

1. Assistance for editing argumentation theories in the
internal code language of Gorgias using templates for

Preprint submitted to Web Semantics June 14, 2022

https://www.argument-theory.com/en/
http://gorgiasb.tuc.gr/WebGorgiasB.html
http://www.cs.ucy.ac.cy/~nkd/gorgias/
http://gorgiasb.tuc.gr/GorgiasCloud.html

object level or priority arguments and abducibles

2. Ability to store multiple scenarios to test the be-
haviour of developed theories

3. REST-compliant web API so that Gorgias queries
can be executed from any other programming envi-
ronments (e.g. Java, Python) used for developing
applications.

In the following section of materials and methods, we
review some background information on the Gorgias ar-
gumentation framework along with the main concepts of
explainable artificial intelligence. We also present some of
the main recent web development techniques that we will
be combining with argumentation to build systems. Then,
in section 3, we outline the Gorgias Cloud system’s archi-
tecture, and present the main features of the system, i.e.
the authoring environment, the explainable output and the
API with its usage for building web applications. We dis-
cuss how such applications are build through a simplified
example of a social media assistant. Finally, we focus on
the system evaluation and discussion of our findings before
concluding.

2. Materials and Methods

2.1. The Gorgias Argumentation Framework

Gorgias is a structured argumentation framework where
arguments are constructed using a basic (content indepen-
dent) argument scheme that associates a set of premises
with the claim, or position, of the argument. In this
framework we can represent argument rules, denoted by
Premises▷ Claim linking the Premises, a set of literals, to
a literal Claim: we say that the argument rule supports
the Claim.

The Premises are typically given by a set of conditions
describing a scenario. There are cases, however, where the
conditions are themselves defeasible. We call them be-
liefs, and they can be argued for or against, i.e. the claim
of an argument can also be a literal on a belief predicate.
The distinction, then, between beliefs and options, is that
options cannot be premises of arguments whose Claim is a
belief.

An argument, A, is a set of argument rules. In
an argument, A, through the successive application of its
constituent argument rules several claims including a “fi-
nal or desired” claim are reached and, hence, supported
by A. Argument rules have the syntax of Extended Logic
Programming, i.e. rules whose conditions and conclusion
(claim) are positive or explicit negative atomic statements,
but where negation as failure is excluded from the lan-
guage1. The conclusion of an argument rule can be a pos-
itive or negative atomic statement. The conflict relation
in Gorgias can be expressed either through explicit nega-
tion or a complementarity relation between statements in

1Initially, the framework of Gorgias had the name LPwNF : Logic
Programming without Negation as failure.

the application language or an explicit statement of con-
flict between argument rules and any combination of these
three ways.

An important element of the Gorgias framework is that
it allows a special class of argument rules, namely prior-
ity argument rules that are used to express a context-
sensitive relative strength between (other) argument rules.
They have the same syntactic form as arguments rules, i.e.
they have the form Premises▷ Claim, but now the Claim
is of a special type, a1 > a2 , where a1 and a2 are (the
names of) any two other individual argument rules. Note
that a1 and a2 can themselves be priority argument rules,
in which case we say that the argument is a higher-order
priority argument expressing the fact that we prefer one
priority over another, in the context of the premises of this
higher-order priority. When the claim of an argument is
not a priority statement, i.e. it is a literal on some relation
in the language, this argument is called an object-level
argument.

The purpose of priority arguments, constructed from
priority argument rules, is to represent a relative strength
between arguments and thus to provide the defense re-
lation between arguments and sets of arguments. Infor-
mally, an argument is allowed to defend against another
argument only if it is at least as strong as the argument
that it defends against. Since the arguments in the frame-
work are sets of argument rules and the priority relation
is defined on the elements of these sets we need to lift this
relation onto the sets in order to get a strength relation ≻
on the arguments. Furthermore, the dialectic argumenta-
tion process to determine the acceptability/admissibility
of an argument supporting a desirable claim typically oc-
curs between composite arguments, containing both object
and priority argument rules. Composite arguments are
(minimal and closed) set of arguments, ∆ = (A1 ,AP),
where, A1 , is a subset of object level argument rules and
AP is a subset of priority argument rules, chosen from
the given argumentation theory in an application prob-
lem. Then the ≻ (and hence defense) relation between two
composite arguments is induced from the local strength re-
lation that the priority rules, contained in the respective
composite arguments, give to the other arguments con-
tained in them. Informally, a composite argument, ∆1,
defends another composite argument, ∆2, whenever they
are in conflict, and the arguments in ∆1 are rendered by
the priority arguments that it contains at least as strong
as the arguments contained in ∆2. In other words, if the
priority arguments in ∆2 render an argument in it pre-
ferred over an individual argument in ∆1 then so do the
priority arguments in ∆1: a relative weak argument in ∆1

is balanced by a weak argument in ∆2.

2.2. Explainable AI

Providing explanations for the results of AI systems is
today a major requirement for any AI system as we re-
quire that systems need not only to perform well in the
accuracy of their output but also in the interpretability

2

https://en.wikipedia.org/wiki/Representational_state_transfer

and understandability of their results (see e.g. [17, 18] for
recent surveys on Explainable AI). Explanations of con-
clusions drawn from a learned theory or decisions taken
by an AI system facilitate their usability by other systems
(artificial or human) and contribute significantly towards
building a high level of trust towards information systems.
They have a role to play both at the level of developing
a system and at the level of acceptance of the system in
its application environment. The central idea is that ex-
planations can make our systems interpretable and thus
usable, by formulating, for the developer and or final user,
a “story” line of the production of the output from the
input data, using appropriate human-understandable fea-
tures. Explanations can, thus, help render our systems
transparent, accountable and contestable.

The central challenge facing Explainable AI is in the
generation of explanations that are both interpretable and
complete (i.e. true to the computational model underlying
the system). Depending on the complexity of the system
this trade-off between precision and interpretability of ex-
planation becomes harder. Nevertheless, there are several
properties of good quality explanations that we can follow,
stemming mainly from the need for explanations to be cog-
nitively compatible with the users and to be “socially use-
ful” in clarifying the reasons underlying the results of the
system that they are explaining [19]. Explanations need to
be sensitive to the level of the user and to the purpose that
the user needs the result of the system that is explained.

In general, there are three main cognitive and social
requirements that form a good quality explanation. An
explanation must be attributive, i.e. must give the basic
and important reasons justifying why the result that it is
explaining holds and could be chosen. Equally important
is for the explanation to explain why the particular result
is a good choice in relation to other possible results, i.e.
the explanation must also be contrastive. Finally, a good
explanation is also one that is actionable, i.e. where it is
appropriate, it helps us understand what further actions
we can take to confirm and to further build or utilize the
result.

Systems build based on argumentation naturally lend
themselves to being explainable due to the very close and
direct link between argumentation and justification. Argu-
ments supporting a claim or conclusion can provide the at-
tributive part of an explanation while the defending argu-
ments, within an acceptable coalition of arguments result-
ing from the dialectic argumentation process to defend the
attributive arguments against their counter-arguments, will
provide the contrastive element of the explanation. These
attributive and defending arguments also point towards
taking (further) actions to confirm or question their premises,
particularly when these relate to subjective beliefs or hy-
potheses.

2.3. Web Development

A modern approach to front-end development for web
applications is the Component Based Architecture [20]

(CBA), an evolution of the Model-View-Controller [21]
(MVC) design pattern.

CBA relies on the Object-Oriented Model. The web
application is comprised of components that contain only
elements with related functionality and that, following the
OOD paradigm are encapsulated and loosely coupled. Each
component exposes an API without the need to reveal its
internal components or state. Thus, this approach has the
following properties:

• reusability, a component may be used in multiple
places in the application

• testability, allowing for testing components inde-
pendently using their API

• readability, the code is easy to read and, thus,
maintain

Moreover, and because web development is not only
about designing user interfaces (the front-end), the web
application needs a back-end and a database.

The Spring Boot [22] framework is a technology for de-
veloping a back-end based on the Java programming lan-
guage and a variety of technologies built on it for busi-
ness applications development. Examples are the Java
beans for encapsulating the business logic or data items
and the Hibernate [23] framework for automating rela-
tional database generation and communication. For the
latter, a cross-platform solution is the MySQL relational
database, one of the most popular databases.

Finally, the modern approach to servers development
calls for using virtual machines for executing server soft-
ware, allowing for better load-balancing and for dynamic
resources allocation to servers. Docker [24] is an open plat-
form that allows us to separate applications from infras-
tructure, but also to manage the infrastructure similarly
to managing applications. Docker manages multiple vir-
tual machines allowing to specify if and how they are con-
nected.

3. The Gorgias Cloud System

In this section we present the Gorgias Cloud system.
Specifically, in section 3.1 we provide an overview of the
system architecture. Subsequently, in section 3.2, we fo-
cus on describing the Gorgias Cloud website as a web-based
Integrated Development Environment (IDE), using an ex-
ample to illustrate it. Finally, we focus on two important
and original features of the IDE, i.e., the application level
explanation component (section 3.3) and the Application
Programming Interface (API, section 3.5) for use by ap-
plication developers.

3.1. System Architecture

The overall IDE was designed following the modern
Component Based Architecture [20] (CBA). The client-
side application employs technologies that can run on any
standard browser. We used HTML5 and CSS3.

3

https://spring.io/projects/spring-boot
https://www.mysql.com/
https://www.docker.com/
https://www.w3.org/TR/html/
https://www.w3.org/TR/CSS

The server side includes the front-end, the back-end
and the database in a three layered architecture. For the
front-end we used Angular and for the back-end the Spring
Boot [22] framework.

The front-end is the website of Gorgias Cloud and al-
lows the user to register for an account, log-in and use the
Integrated Development Environment (IDE) for argumen-
tation based decision making, by developing theories to
execute using the Gorgias system.

The back-end provides the business logic of Gorgias
Cloud through services that support the front-end. Some
of these services are also available in the internet as an
API, so that a user application can access the Gorgias
Cloud for managing a user’s projects and files but also for
argumentation-based decision making. The API provides
the following services:

• createProject, to create a new project for a user

• deleteProject, to delete a project of a user

• getUserProjects, to get a list of the projects of a
user

• getProjectFiles, to get a list of the available files
in a user’s project

• addFile, to add (upload) a new file inside a user’s
project

• deleteFile, to delete a file inside a user’s project

• getFileContent, to get the content (text) of a file
in a user’s project

• setFileType, to set the type of a file in a user’s
project. The files can have one of the following types:

– Gorgias File, storing a decision theory

– Scenario File, the scenario files instantiate facts
and beliefs for testing decision theories

– Background File, containing background in-
formation for the application domain in Prolog
syntax

• updateFile, to update (replace) a file in a user’s
project

• GorgiasQuery, to determine if a decision is sup-
ported by an admissible argument of the Gorgias
theory (file) in a user’s project. This is the cen-
tral service of the API.Its input is the user’s project
and file, along with a query predicate and a list of
beliefs/facts that (partially) constitutes the current
context of the application. The output consists of
whether this query is admissible or not. If it is, the
output contains also the query predicate’s instanti-
ated variables and an explanation for its admissibil-
ity both in machine and human readable formats.

 ...

 ...

User application

Database

 ...
Gorgias Cloud website

 Front-end web server

Back-end web server

Figure 1: Gorgias Cloud System Architecture Overview

The back-end, through the use of Data Object Java
Beans (DAO), connects to the MySQL database where the
following information is stored:

• User Data, the users’ access credentials. Each user
is also linked to zero or more:

• Projects, that each is linked to zero or more:

• Files, each file has a content (code) and type (see
the file types above)

The Prolog Service is implemented by the Spring-
Boot programming framework. To establish a connection
between Prolog and Spring Boot we use the Java-Prolog
Interface (JPL) library [25].

Figure 1 outlines the Gorgias Cloud system architecture.
On the top-right we can see the Gorgias Cloud website that
the user can access using any web browser. The website
is offered by the Front-end web server (an instance of NG-
INX) that executes server-side javascript written in the
Angular framework. The Front-end web server is a docker
container. The back-end (also a docker container) is used
by the Front-end but also by user applications, be they web
sites using any kind of technology (e.g. PHP, javascript,
etc), or apps running on smart devices (android or iOS)
or desktop operating systems (Linux, MAC-OS, or, Win-
dows).

3.2. Authoring environment

We will now showcase the main features of the Gorgias
Cloud system using an application example. The example
is about developing a social media assistant that will help
its user to see posts, generated by the user’s social net-
work, in an adapted form according to the user’s wishes
(or policy). The idea is for the personalized assistant to
help the user manage the information overload that can
occur within the social media platforms.

4

https://angular.io
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://www.nginx.com/
https://www.nginx.com/

Let us consider a particular user whose policy is the
following:

Normally, give default priority to a post. If
the topic of a post falls within the user’s in-
terests set the priority to important, unless
the information of the post is negative. Posts
that come from the user’s manager are impor-
tant regardless of whether they are positive or
negative. Hide, posts that are on politics un-
less the post is from the user’s manager. Hide
politics posts from the user’s manager when
negative, but when positive they are set to be
important.

After the user logs in the Gorgias Cloud website the user
can define a new project and start editing a Gorgias file.
The user may also upload a file. The Gorgias Cloud editor,
however, can aid the user in writing the theory by defining
the following five templates that can help the user write
down the theory:

• Argument Rule:
rule(Argument Name,Position,
[Defeasible Premises]): – Non Defeasible Premises.
where:

– Argument Name is a prolog predicate used as
the rule’s label

– Position, is a prolog predicate representing a
Claim. Note that in the rest of the paper a
Claim can also be referred to as a Position

– Defeasible Premises is a comma-separated list
of prolog predicates that are beliefs and premises
to the Position

– Non Defeasible Premises is a comma-separated
list of prolog predicates that are non-defeasible
premises to the Position

• Preference Rule:
rule(Preference Name, prefer(Label 1 ,Label 2),
[Defeasible Premises]): –Non Defeasible Premises.
where:

– Preference Name is a prolog predicate used as
the rule’s label

– Label 1 is a prolog predicate representing a rule’s
label. The rule with this label is preferred over
the rule with Label 2

– Label 2 is a prolog predicate representing the
non-preferred rule’s label Defeasible Premises
is a comma-separated list of prolog predicates
that are beliefs and premises to the prefer rela-
tion

– Non Defeasible Premises is a comma-separated
list of prolog predicates that are non-defeasible
premises to the prefer relation

• Complement:
complement(Option 1 ,Option 2): –
Non Defeasible Premises.
where:

– Option 1 is a prolog predicate representing a
Position not compatible with Position Option 2 .
This means that arguments supporting (whose
Position is)Option 1 attack any arguments sup-
porting Option 2

– Option 2 is a prolog predicate representing a
Position

– Non Defeasible Premises is a comma-separated
list of prolog predicates that are non-defeasible
premises to the validity of the complementarity
relation

• Conflict:
conflict(Label 1 ,Label 2).
where:

– The rule with label Label 1 attacks the rule
with Label 2 and vice-versa

• Abducible:
abducible(Name, [Defeasible Premises]): –
Non Defeasible Premises.
where:

– Name, is a prolog predicate representing a be-
lief

– Defeasible Premises is a comma-separated list
of prolog predicates that are beliefs and premises
to the validity of the abducible

– Non Defeasible Premises is a comma-separated
list of prolog predicates that are non-defeasible
premises to the validity of the abducible

Using the above five templates, the user can define a
decision theory in the Gorgias framework. Figure 2 shows
the code editor of the Gorgias Cloud IDE. Whenever saving
or uploading a file the user is warned if there are syntax
errors or warnings as if using the SWI-Prolog environment.

In Listing 1 we can see the Gorgias code encoding the
above personal policy of our social media assistant ex-
ample. Lines 1-6 define the three positions or options
(default(Post), hide(Post) and important(Post)) as mutu-
ally exclusive using the complement template.

The Argument Rules in lines 7-9 state that all po-
sitions are possible for any given Post . Then lines 10-
25 define the Preference Rules for the user’s policy.
Specifically, lines 10-11 give default preference to rule with
Argument Name : r1 (Post), i.e. the default priority for
any given Post . If the post is in the user’s topics of inter-
est then the priority is important (this is achieved by Pref-
erence Rules 12-14), unless the information of the post is
negative (this is achieved in lines 15-16). If the post comes

5

https://www.swi-prolog.org/

Gorgias
Cloud Logo

The name of
the file being
edited

Buttons that
insert the
relevant
template in
the editor

IDE menu items

By clicking this
icon the user can
get help on the
use of the current
feature of Gorgias
Cloud

Argument
rules

Preference
rules

Abducibles

In this Argument Rule :
Argument_Name : r1(Post)
Position : default(Post)
Non_Defeasible_Premises :
newPost(Post)

In this Preference Rule :
Preference_Name : pr3(Post)
Label_1 : r2(Post)
Label_2 : r1(Post)
Non_Defeasible_Premises :
my_topics(Post)

In this Preference Rule :
Preference_Name : c2(Post)
Label_1 : pr1(Post)
Label_2 : pr3(Post)
Defeasible_Premises :
negative(Post)

In this Abducible :
Name : negative(_)

Figure 2: Authoring the Gorgias theory

from the user’s manager the priority is set to important,
regardless if it is positive or negative (lines 17-19). Posts
that are on politics are hidden (lines 20-23), unless the post
is from the user’s manager. In that case the post must be
hidden, if it is negative, or marked as important, if it is
positive (lines 24-25). Finally, each post can be assumed
to be positive or negative if its status cannot be deter-
mined (note the Abducibles in lines 26-27). It is easy to
see that this Gorgias code can be developed directly from
the policy requirements expressed in a structured natural
language form as that used in the policy for the example.

3.3. Explainable output

In this section we will present the way that Gorgias
Cloud aids the developer to validate or debug the authored
policy. The user can define testing scenarios and save them
to files and s/he can use these pre-defined files for testing
or compose scenarios dynamically using the Gorgias Cloud
IDE.

For our running example, we can have a number of
scenarios to test. One of them, “Test4.pl”, is presented in
Listing 2. In line 4 the reader can see a defeasible knowl-
edge item, i.e. that the post with id p1 is negative. The
method to characterize a post as positive or negative, or
assign a topic to it is out of the scope of this paper. Usu-
ally, it is done using clustering, or, supervised learning

methods, see, e.g. [26, 27]. Clustering is a machine learn-
ing task that involves finding natural grouping in data. It
is also called “topic modeling” when clustering is applied
on text files [27]. The important observation is that the
Gorgias system (and in fact other argumentation systems)
can operate on top of such modules.

A screenshot of the Gorgias Cloud IDE is shown in Fig-
ure 3. “Test4.pl” has been loaded and the query for the
Position hide(Post) has been “Run” by the user (green
button at the bottom of the screen). In this we see the in-
ternal ode Explanation supporting the admissibility of the
position to hide the post as well as an application level
explanation that is build from the internal explanation.

For the argumentation framework of Gorgias this cor-
respondence between admissible coalitions of arguments
and associated explanations at the cognitive level of the
application can be constructed naturally from the inter-
nal Explanation, E, returned by the Gorgias system. We
can automatically use the information (i.e. argument rule
names) in E to construct an explanation, at the applica-
tion level, that exhibits the desired characteristics of being
attributive, contrastive and actionable as follows:

• Attributive: Extracted from the object-level argu-
ment rules in E.

• Contrastive: Extracted from the priority argument

6

The user has
loaded the
Test4.pl scenario
file.

the loaded
theory is
presented
here.

the loaded scenario code
(Test4.pl) is presented here.
The current scenario has one
belief (defeasible knowledge)
and two facts (non-defeasible
knowledge). It is possible to
switch from the scenario code
to the gorgias theory and vice
versa.

The Gorgias prove query
for the hide(Post) position

The (Internal) Explanation with the rule
labels supporting the admissible argument
for hide(Post) and the instantiation of the
variable Post to p1,

The Application Level
Explanation in human-
readable format.

This is where the user can write queries

Figure 3: Execution Panel of Gorgias Cloud, the theory on the left and the results of the query in the center.

rules in E.

• Actionable: Extracted from the hypothetical or ab-
ducible arguments in E.

These characteristics in the human-readable “Applica-
tion Level Explanation” part of the output of the Gorgias
Cloud IDE can be seen for our example in Listing 3. The
attributive part of the explanation is in lines 8-9, while the
contrastive part is in lines 10-12. In this example we do
not have an actionable part.

If we consider the test file shown in Listing 4 the results
will be the ones shown in Listing 5. Here, besides the at-
tributive (lines 8-9) and the contrastive (lines 10-13) parts
we also find the actionable part in line 14. The supporting
condition negative(p2) is provided by the abducible in line
28 of the theory (Listing 1). As the abducible represents
an assumption, the action to verify it is suggested by the
“Application Level Explanation” result.

3.4. Generating Application Level Explanations

Let us summarize informally the automatic process of
extracting an Application Level Explanation from the in-
ternal code Explanation that the Gorgias system returns.
Such internal explanations contain the rule labels that were
used to admissibly support the conclusion. For example,
in Listing 3 the “Explanation” result is the Explanation =

[c4 (p1), c6 (p1), f1 (p1), pr7 (p1), pr8 (p1), r3 (p1)], repre-
senting the (composite) admissible argument for the given
Position.

Initially, the priority rule labels, if any, are isolated
in the Explanation list. Moreover, for each priority rule
of the list, the priority level is calculated. Next, the list
is iterated and overlapping rules are deleted. That is,
the lower priority rules in the rule priority hierarchy are
deleted. Only high priority rules, from which object level
arguments are derived, are kept in the list.

Then the list is sorted in an ascending order. For each
high level priority rule that is in the list: We recursively
iterate the priority rules that lead to the weaker option, of
the specific high level priority rule. The recursive iteration
ends when the weaker object level rule is reached. During
the recursive iteration of the high level priority list, a new
list is created which contains:

• The weaker option for each high level priority rule,

• The weaker option supporting facts,

• The stronger conclusion supporting facts,

• The high level priority rule, supporting arguments,
that hold against the weaker option,

Finally, the supported Position is presented, along with
its supporting arguments. Furthermore, for each overrid-
den Position, its supporting information is presented, along

7

Listing 1: The “socialMediaAssistant.pl” code.

1 complement (hide (Post) , d e f a u l t (Post)) .
2 complement (d e f a u l t (Post) , h ide (Post)) .
3 complement (hide (Post) , important (Post)) .
4 complement (important (Post) , h ide (Post)) .
5 complement (d e f a u l t (Post) , important (Post)) .
6 complement (important (Post) , d e f a u l t (Post)) .
7 r u l e (r1 (Post) , d e f a u l t (Post) , []) :−newPost (Post) .
8 r u l e (r2 (Post) , important (Post) , []) :−newPost (Post

) .
9 r u l e (r3 (Post) , h ide (Post) , []) :−newPost (Post) .

10 r u l e (pr1 (Post) , p r e f e r (r1 (Post) , r2 (Post)) , []) .
11 r u l e (pr2 (Post) , p r e f e r (r1 (Post) , r3 (Post)) , []) .
12 r u l e (pr3 (Post) , p r e f e r (r2 (Post) , r1 (Post)) , []) :−

my topics (Post) .
13 r u l e (c1 (Post) , p r e f e r (pr3 (Post) , pr1 (Post)) , []) .
14 r u l e (pr4 (Post) , p r e f e r (r2 (Post) , r3 (Post)) , []) :−

my topics (Post) .
15 r u l e (c2 (Post) , p r e f e r (pr1 (Post) , pr3 (Post)) , [

negat ive (Post)]) .
16 r u l e (d1 (Post) , p r e f e r (c2 (Post) , c1 (Post)) , []) .
17 r u l e (pr5 (Post) , p r e f e r (r2 (Post) , r1 (Post)) , []) :−

manager (Post) .
18 r u l e (c3 (Post) , p r e f e r (pr5 (Post) , pr1 (Post)) , []) .
19 r u l e (pr6 (Post) , p r e f e r (r2 (Post) , r3 (Post)) , []) :−

manager (Post) .
20 r u l e (pr7 (Post) , p r e f e r (r3 (Post) , r1 (Post)) , []) :−

p o l i t i c s (Post) .
21 r u l e (c4 (Post) , p r e f e r (pr7 (Post) , pr2 (Post)) , []) .
22 r u l e (pr8 (Post) , p r e f e r (r3 (Post) , r2 (Post)) , []) :−

p o l i t i c s (Post) .
23 r u l e (c5 (Post) , p r e f e r (pr8 (Post) , pr4 (Post)) , []) .
24 r u l e (c6 (Post) , p r e f e r (pr8 (Post) , pr6 (Post)) , [

negat ive (Post)]) .
25 r u l e (c7 (Post) , p r e f e r (pr6 (Post) , pr8 (Post)) , [

p o s i t i v e (Post)]) .
26 abduc ib l e (p o s i t i v e () , []) .
27 abduc ib l e (negat ive () , []) .

Listing 2: The “Test4.pl” testing file code.

1 newPost (p1) .
2 manager (p1) .
3 p o l i t i c s (p1) .
4 r u l e (f 1 (p1) , negat ive (p1) , []) .

with the information that caused the supported Position to
be preferred over the overridden one.

Algorithm 1 describes the generation of the informa-
tion we need to compose the application level explanation.
To write the algorithm we have used the same terminol-
ogy as earlier for presenting the code templates. In the
algorithm we do not distinguish between defeasible and
non-defeasible premises as the difference does not inter-
est the user. The output of the algorithm populates the
following data structures:

• Position: the supported position predicate.

• actions: the abducibles that have been employed
for the decision. This is the actionable part of the
explanation.

• attacks: each attack contains two lists, one for the

Listing 3: The hide(Post) query execution results for “Test4.pl”.

1 prove ([h ide (Post)] , Explanation) .
2

3 So lu t i on 1
4

5 Explanation =[c4 (p1) , c6 (p1) , f 1 (p1) , pr7 (p1) , pr8 (
p1) , r3 (p1)] , Post = p1

6

7 Appl i ca t ion Leve l Explanation
8 The statement ” hide (p1) ” i s supported by :
9 − ”newPost (p1) ” and ” p o l i t i c s (p1) ” and ”

negat ive (p1) ”
10 This reason i s :
11 − Stronger than the reason o f ”newPost (p1) ”

support ing ” d e f a u l t (p1) ”
12 − Stronger than the reason o f ”newPost (p1) ”

and ”manager (p1) ” support ing ” important (p1
) ” when ” negat ive (p1) ”

Listing 4: The test1.pl testing file code.

1 newPost (p2) .
2 my topics (p2) .
3 manager (p2) .
4 p o l i t i c s (p2) .

supporting information for the preferred position and
the other the supporting information for the overrid-
den position. These are then put together to produce
the contrastive part of the explanation as statements
of the relative strength of the supporting information
against the attacking information.

An important part of the algorithm is the addSupport
recursive function that iterates through the rules from top
to bottom and adds the relevant supporting information
either to the preferred or to the non-preferred list. Note
that when a rule is non-preferred we reverse the order of
the p and np parameters so as to have the information
at the next level be inserted at the right list (listed in
Algorithm 2).

3.5. Argumentation as a Service

In this section we are going to illustrate how we can
offer the Gorgias decision making functionality as a Ser-
vice through the Gorgias Cloud system. So let us assume
that the user has developed the desired decision policy and
tested it through the execution panel. S/he then wishes to
use this functionality from applications deployed anywhere
- from mobile phones to websites.

To do this, the user will employ the services offered by
the Gorgias Cloud Back-end (see section 3.1). The only re-
quirement is that the user has registered and successfully
logged-in at least once into the Gorgias Cloud website. For
example, the user of our working social media assistant ex-
ample has deployed a website for helping users categorize
their friends posts as shown in the screenshot in Figure 4.
The reader should can see that the human-readable ex-
planation is not the one returned by the service (the one

8

Listing 5: The hide(Post) query execution results for “test1.pl”.

1 prove ([h ide (Post)] , Explanation) .
2

3 So lu t i on 1
4

5 Explanation =[as s (negat ive (p2)) , c4 (p2) , c5 (p2) , c6
(p2) , pr7 (p2) , pr8 (p2) , r3 (p2)] , Post = p2

6

7 Appl i ca t ion Leve l Explanation
8 The statement ” hide (p2) ” i s supported by :
9 − ”newPost (p2) ” and ” p o l i t i c s (p2) ” and ”

negat ive (p2) ”
10 This reason i s :
11 − Stronger than the reason o f ”newPost (p2) ”

support ing ” d e f a u l t (p2) ”
12 − Stronger than the reason o f ”newPost (p2) ”

and ” my topics (p2) ” support ing ” important (
p2) ”

13 − Stronger than the reason o f ”newPost (p2) ”
and ”manager (p2) ” support ing ” important (p2
) ” when ” negat ive (p2) ”

14 The support ing cond i t i on : ” negat ive (p2) ” i s an
assumption and needs to be conf irmed .

presented in Listing 3). The web developer preferred to
use the explanation returned by the API to construct an
explanation customized to the specific application domain.

To illustrate the way that the API is used we include
a code snipet from the PHP file that invokes the Gorgias
query on the Gorgias Cloud API. This is shown in Listing 6.
The reader can see the function executeGorgias taking as
input the data that is known for the post’s context. In
line 3 the project folder along with the specific theory are
used to configure the service request. Then, in lines 4-23
the various found defeasible and non-defeasible pieces of
information are added in the factsList variable. In line 24
this variable is used as a parameter to the service request
and in line 25 the service is configured to return only the
first result (admissible argument). Line 26 defines a data
structure to store whether the different options have ad-
missible arguments and the relevant explanations. In lines
27-28 the goal of the inference is set and line 29 invokes
the remote service. Lines 30-32 check the result status and
store the data, before querying for the next options.

The architecture of the Social Media Assistant is shown
in Figure 5. We note that the Gorgias Cloud API documen-
tation provides some of the relevant code for developers of
such systems to implement this architecture. A user can
use free tools in the internet, such as the Swagger editor
to generate a client in any programming language. This
is how the developer of this App generated the Gorgias
Cloud API for the PHP language. In the architecture fig-
ure, this is shown as the bottom component in the yellow
compartment that connects the PHP code of the developer
to the Gorgias Cloud API.

1 Function explain(List ∆, Theory T):
2 Set attacks = ∅
3 List actions = ∅
4 Set HPRules = ∅
5 for each label in ∆ do
6 rule ← getRule(label)
7 if rule is Argument Rule then
8 Position ← rule.Position

9 else if rule is Preference Rule then
10 found ← false
11 for each label2 in ∆ do
12 rule2 ← getRule(label2)
13 if rule2 is Preference Rule ∧

(rule2 .Label 1 = label ∨
rule2 .Label 2 = label) then

14 found ← true

15 if found = false then
16 HPRules ← HPRules ∪ rule

17 else if rule is Abducible then
18 actions.add(rule.Name)

19 for each rule in HPRules do
20 List attack = ∅
21 List p = ∅
22 p.add(rule.Premises)
23 List np = ∅
24 attack .add(p)
25 attack .add(np)
26 attacks.add(attack)
27 addSupport(rule, p,np)

28 Function getRule(String label , Theory T):
29 for each rule in T do
30 if rule is Argument Rule ∧

rule.Argument Name = label then
31 return rule

32 else if rule is Preference Rule ∧
rule.Preference Name = label then

33 return rule

Algorithm 1: Algorithm for generating the infor-
mation needed for the “Application Level Explana-
tion” feature,

4. Results

Gorgias Cloud has been used, over the last couple of
years, in undergraduate and graduate courses at the Uni-
versity of Cyprus and the University of Paris City. This is
used by students both to learn about argumentation and to
carry out their cognitive assistant projects, implemented
as services over the web similarly but at a larger and more
realistic scale as the example of the social media assistant
in this paper. In general, the students find the use of the

9

https://editor.swagger.io/

Figure 4: A screenshot of the web application for filtering posts from social media.

1 Function addSupport(Rule r, List p, List np):
2 if r is Preference Rule then
3 pRule ← getRule(rule.Label 1)
4 p.add(pRule.Premises)
5 addSupport(pRule, p,np)
6 npRule ← getRule(rule.Label 2)
7 np.add(npRule.Premises)
8 addSupport(npRule,np, p)

9 else
10 p.add(r .Premises)
11 p.add(r .Position)
12 return

Algorithm 2: The addSupport function.

Figure 5: Social Media App Architecture Overview

system easy and very helpful for carrying out their group
project. They appreciate the fact that they can build a

realistic system based on the advanced technology of ar-
gumentation (most of them using the PHP and Python
languages for development of their applications).

It is also used by students for their diploma thesis.
One of our students in the Technical University of Crete
defined and applied energy management polices into smart
buildings [28]. The case study was applied on the building
of Environmental Engineers of the Technical University
of Crete where we used Internet of Things enabled sensors
for measuring basic parameters-data, such as temperature,
lighting and CO2 levels. The result of the work was the
implementation of energy policies that help to reduce en-
ergy consumption as well as the effective management of
situations where there is a conflict of decisions [29]. The
Gorgias Cloud API was invoked by a web server for the
Python programming language using a Python client ap-
plication.

Another student in the National Technical University
of Athens delivered an explainable AI Model for ICU ad-
mission prediction of COVID19 patients [30]. The model
was based on the patients’ symptoms and lab results. Firstly,
the student trained models with a variety of different algo-
rithms using existing COVID19 patients’ data. Then, she
selected the model with the highest accuracy and created
a sum of the most important rules written in the form of
Gorgias arguments. Finally she developed a framework in
the Java language accessing the Gorgias Cloud API using
a Java client application. Similarly, a student at the Uni-
versity of Cyprus has used Gorgias Cloud in her machine
learning project to learn an argumentation theory to pre-
dict the possibility of a gynecological cancer from real-life
data on endometrial tumor images. The explanations of
the resulting argumentation theory enabled the study to
separate the data into groups of typical cases of malignant
or benign tumours.

All in all, more than 240 students and/or researchers
have used the Gorgias Cloud system over the last two years

10

Listing 6: An extract of the PHP file that invokes the Gorgias Cloud
service.

1 pub l i c func t i on executeGorg ias ($pos tT i t l e ,
$myTopicsOfInterestsPost , $managerPost ,
$p o l i t i c s P o s t , $negat ivePost , $p o s i t i v e P o s t)
{

2 $go rg i a s que ry = new GorgiasQuery () ;
3 $gorg ia s query −>s e t G o r g i a s F i l e s (array (”

s o c i a l M e d i a P o s t s F i l t e r i n g /
soc i a lMed i aAs s i s t an t . p l ”)) ;

4 $ f a c t s L i s t=array () ;
5 i f ($myTopicsOfInterestsPost) {
6 $ f a c t=” my topics (” . $p o s t T i t l e . ”) ” ;
7 $ f a c t s L i s t []= $ f a c t ;
8 }
9 i f ($managerPost) {

10 $ f a c t=”manager (” . $p o s t T i t l e . ”) ” ;
11 $ f a c t s L i s t []= $ f a c t ;
12 }
13 i f ($ p o l i t i c s P o s t) {
14 $ f a c t=” p o l i t i c s (” . $p o s t T i t l e . ”) ” ;
15 $ f a c t s L i s t []= $ f a c t ;
16 }
17 i f ($negat ivePost) {
18 $ f a c t=” r u l e (f 1 (” . $p o s t T i t l e . ”) , negat ive (” .

$p o s t T i t l e . ”) , []) ” ;
19 $ f a c t s L i s t []= $ f a c t ;
20 } e l s e i f ($p o s i t i v e P o s t) {
21 $ f a c t=” r u l e (f 1 (” . $p o s t T i t l e . ”) , p o s i t i v e (” .

$p o s t T i t l e . ”) , []) ” ;
22 $ f a c t s L i s t []= $ f a c t ;
23 }
24 $gorg ia s query −>s e tFac t s ($ f a c t s L i s t) ;
25 $gorg ia s query −>s e t R e s u l t S i z e (1) ;
26 $go rg i a sResu l t=array (” hide ”=>false , ”

h ideDel ta ”=>array () , ” important ”=>false ,
” importantDelta ”=>array () , ” d e f a u l t ”=>
false , ” d e f au l tDe l t a ”=>array ()) ;

27 $query = ” hide (” . $p o s t T i t l e . ”) ” ;
28 $gorg ia s query −>setQuery ($query) ;
29 $gorg iasQueryResul t = $ap i Ins tance −>

executeQueryUsingPOST ($go rg i a s que ry) ;
30 i f (! $gorgiasQueryResult−>getHasError ()&&

$gorgiasQueryResult−>getHasResult ()) {
31 $queryResult=$gorgiasQueryResult−>getResu l t

() ;
32 $go rg i a sResu l t [” hide ”]=true ;

for their studies or research.
Gorgias Cloud, has also been used for Proof of Concepts

(PoC) development. For example, in 2020, at the Tech-
nical University of Crete, we employed Gorgias Cloud to
develop a Proof of Concept for automated argumentation-
based PDF documents annotation (ELKE-82300 project).
The PoC was successful and now the system is in pro-
duction, since the start of 2022, by the Argument Theory
start-up company in Paris, France.

5. Discussion

One of the existing systems for argumentation on the
web is that of the SPINdle defeasible logic reasoner. This
includes a text editor where the user writes a defeasible
logic theory and can execute it online to get onclusions.

The response of the service is the set of goals that are
definite provable or not and defeasible provable or not.

Gorgias Cloud goes beyond this and offers an integrated
application environment that facilitates the development
of argumentation-based systems over the internet. Argu-
mentation is offered as a service in a way that this allows
application systems to remotely access the argumentation
service and utilize the results of the argumentative compu-
tation. It appears that this is the first case where argumen-
tation is offered to developers in an open and distributed
way.

An important feature of Gorgias Cloud is the provi-
sion of Explanations for its results. These can be at the
internal code level of Gorgias but also at the level of the
application language that the user/programmer has used
in encoding the argumentation knowledge of their prob-
lem. The latter form of explanation can be very helpful
not only in understanding the results of the computation
but also in evaluating the operational behavior of the Gor-
gias program during its development. They give a high-
level view of how the results are justified at the level of
the declarative understanding of the requirements of the
problem by the developer. Thus, this gives a quick and
cognitively easy first idea of how the program is behaving
that can be very useful in evaluating the current quality
of the program. Furthermore, once the development has
finished and the program is utilized within an application
system the application level explanations can be utilized
to offer more complete and informed services to the users.

Gorgias Cloud frees the developers from writing and de-
ploying argumentation code locally. Nevertheless, develop-
ers are still required to write and develop their argumen-
tation theories at the internal Gorgias code level. This
does not present a major difficulty with developers who
have some familiarity with computing technology, but it
excludes the possibility for the application domain experts
to be actively involved at least partly in the development
of their systems. To facilitate this, we would need high-
level authoring tools that allow the direct elicitation of
the argumentation knowledge of the application domain
and an automatic translation of this into Gorgias code.
Such tools, e.g. Gorgias-B [31], Web-Gorgias-B [7], to-
gether with a high-level methodology for software devel-
opment based on argumentation [32] already exist. The
next step in the development of Gorgias Cloud would be to
integrate these tools as front-ends, thus providing to the
developers an environment where they can work directly
at the level of the systems requirements. Also the recently
formed company Argument Theory operates using such
an authoring tool, called rAIson, integrated with Gorgias
as a production-level SaaS service, allowing the speedy
development of argumentation-based decision modules for
applications.

Gorgias Cloud also forms a step towards supporting ar-
gumentation based interaction among Web services, a fea-
ture that has already been foreseen in the semantic web
community since 2007 [33]. Existing on-line argumenta-

11

https://www.argument-theory.com/en/
http://spindle.data61.csiro.au/spindle/demo.html
https://www.argument-theory.com/en/

tion systems are mostly serving the Social Semantic Web,
e.g. in four types of social media: forums, wikis, blogs, and
microblogs [34, 35]. According to Schneider et al. [35] ar-
guments in the semantic web must be (1) identified, (2) re-
solved, (3) represented and (4) stored, (5) queried, and (6)
presented to users. In our work (1)-(3) are done manually,
however, (4)-(6) can be automated based on the Gorgias
Cloud API.

6. Conclusion

We have presented the Gorgias Cloud system and its
innovative features. These include an API that facilitates
the development of argumentation-based systems on-line
that operate using expressive explanations that are:

• Attributive: Explain why the supported Position is
supported.

• Contrastive: Explain why the supported Position is
preferred over others that would have been possible
in the given situation

• Actionable: Propose that some pieces of informa-
tion that have been assumed to hold so that the sup-
ported Position is preferred over others be further
explored for their validity

Developers and users can use these application level ex-
planations to evaluate the behaviour of their system with
respect to the specification requirements under which the
system is developed. This is made easy as these explana-
tions are at the same high cognitive and language level as
that of the application domain of the system.

Future work lies in the direction of integrating the Gor-
gias Cloud system with the Web-Gorgias-B system that
allows users that are not familiar with argumentation to
develop their decision policies. It is known that most users
do not have formal training in logic or argumentation [34].
Through this integration naive users will be able not only
to develop their theories but also to deploy them through
the Gorgias Cloud API for use by their applications. In-
dependent developers are already looking forward to this
integration [36].

We would also like to integrate semantic web capabili-
ties to the Gorgias Cloud service in such a way that back-
ground knowledge can come from ontologies or knowledge
available on the web. Moreover, we could link the decision
making capabilities in the Gorgias Cloud system to the se-
mantic web so that whenever a web user wants to take
a decision a relevant service can be invoked. This calls
for more extensions to Gorgias Cloud, e.g. the capability
to use a service without logging in by, e.g. automatically
registering a new user through the API.

References

[1] F. Cerutti, S. A. Gaggl, M. Thimm, J. P. Wallner, Foun-
dations of implementations for formal argumentation, The If-

CoLog Journal of Logics and their Applications; Special Issue
Formal Argumentation 4 (8) (September 2017).

[2] A. C. Kakas, P. Moraitis, Argumentation based decision mak-
ing for autonomous agents, in: The Second International Joint
Conference on Autonomous Agents & Multiagent Systems, AA-
MAS 2003, July 14-18, 2003, Melbourne, Victoria, Australia,
Proceedings, ACM, 2003, pp. 883–890. doi:10.1145/860575.

860717.
[3] D. Gaertner, F. Toni, Computing arguments and attacks in

assumption-based argumentation, IEEE Intelligent Systems
22 (6) (2007) 24–33. doi:10.1109/MIS.2007.105.

[4] A. J. Garćıa, G. R. Simari, Defeasible logic programming: An
argumentative approach, TPLP 4 (1-2) (2004) 95–138. doi:

10.1017/S1471068403001674.
[5] M. Snaith, C. Reed, TOAST: online aspic+ implementation, in:

Computational Models of Argument - Proceedings of COMMA
2012, Vienna, Austria, September 10-12, 2012, 2012, pp. 509–
510. doi:10.3233/978-1-61499-111-3-509.

[6] H.-P. Lam, G. Governatori, The Making of SPINdle, in:
A. Paschke, G. Governatori, J. Hall (Eds.), Proceedings of the
2009 International Symposium on Rule Interchange and Appli-
cations (RuleML 2009), Springer-Verlag, Las Vegas, Nevada,
USA, 2009, pp. 315–322. doi:10.1007/978-3-642-04985-9\

_29.
[7] N. Spanoudakis., K. Kostis., K. Mania., Web-gorgias-b: Ar-

gumentation for all, in: Proceedings of the 13th International
Conference on Agents and Artificial Intelligence - Volume 2:
ICAART,, INSTICC, SciTePress, 2021, pp. 286–297. doi:

10.5220/0010269402860297.
[8] A. C. Kakas, P. Mancarella, P. M. Dung, The acceptability

semantics for logic programs, in: Proc. of 11th Int. Conf. on
Logic Programming, 1994, pp. 504–519.

[9] A. C. Kakas, P. Moraitis, N. I. Spanoudakis, GORGIAS : Ap-
plying argumentation, Argument & Computation 10 (1) (2019)
55–81. doi:10.3233/AAC-181006.

[10] K. Pendaraki, N. Spanoudakis, Portfolio performance and risk-
based assessment of the portrait tool, Operational Research
15 (3) (2015) 359–378. doi:10.1007/s12351-014-0162-9.

[11] P. Moraitis, N. I. Spanoudakis, Argumentation-based agent in-
teraction in an ambient-intelligence context, IEEE Intelligent
Systems 22 (6) (2007) 84–93. doi:10.1109/MIS.2007.101.

[12] I. A. Letia, M. Acalovschi, Achieving competence by argumen-
tation on rules for roles, in: Engineering Societies in the Agents
World V, 5th Int. Workshop, ESAW 2004, Toulouse, France, Oc-
tober 20-22, 2004, Revised Selected and Invited Papers, 2004,
pp. 45–59. doi:10.1007/11423355_4.

[13] N. Spanoudakis, P. Moriaitis, Engineering an agent-based sys-
tem for product pricing automation, Engineering Intelligent
Systems 17 (2) (2009) 139.

[14] A. K. Bandara, A. C. Kakas, E. C. Lupu, A. Russo, Using
argumentation logic for firewall configuration management, in:
Integrated Network Management, IM 2009. 11th IFIP/IEEE
International Symposium on Integrated Network Management,
Hofstra University, Long Island, NY, USA, June 1-5, 2009, 2009,
pp. 180–187. doi:10.1109/INM.2009.5188808.

[15] Y. Benazzouz, D. Boyle, Negotiation and Argumentation
in Multi-Agent Systems: Fundamentals, Theories, Systems
and Applications, Bentham Science Publisher, 2014, Ch.
Argumentation-Based Conflict Resolution in Pervasive Services,
pp. 399–419. doi:10.2174/97816080582421140101.

[16] Y. Benazzouz, N. Sabouret, B. Chikhaoui, Dynamic service
composition in ambient intelligence environment, in: 2009 IEEE
International Conference on Services Computing (SCC 2009),
21-25 September 2009, Bangalore, India, 2009, pp. 411–418.
doi:10.1109/SCC.2009.16.

[17] K. Čyras, A. Rago, E. Albini, P. Baroni, F. Toni, Argumen-
tative XAI: A survey, in: Z.-H. Zhou (Ed.), Proceedings of
the Thirtieth International Joint Conference on Artificial In-
telligence, IJCAI-21, International Joint Conferences on Ar-
tificial Intelligence Organization, 2021, pp. 4392–4399. doi:

10.24963/ijcai.2021/600.

12

https://doi.org/10.1145/860575.860717
https://doi.org/10.1145/860575.860717
https://doi.org/10.1109/MIS.2007.105
https://doi.org/10.1017/S1471068403001674
https://doi.org/10.1017/S1471068403001674
https://doi.org/10.3233/978-1-61499-111-3-509
https://doi.org/10.1007/978-3-642-04985-9_29
https://doi.org/10.1007/978-3-642-04985-9_29
https://doi.org/10.5220/0010269402860297
https://doi.org/10.5220/0010269402860297
https://doi.org/10.3233/AAC-181006
https://doi.org/10.1007/s12351-014-0162-9
https://doi.org/10.1109/MIS.2007.101
https://doi.org/10.1007/11423355_4
https://doi.org/10.1109/INM.2009.5188808
https://doi.org/10.2174/97816080582421140101
https://doi.org/10.1109/SCC.2009.16
https://doi.org/10.24963/ijcai.2021/600
https://doi.org/10.24963/ijcai.2021/600

[18] A. Vassiliades, N. Bassiliades, T. Patkos, Argumentation and
explainable artificial intelligence: a survey, The Knowledge En-
gineering Review 36 (2021).

[19] T. Miller, Explanation in artificial intelligence: Insights from
the social sciences, Artificial Intelligence 267 (2019) 1–38. doi:

10.1016/j.artint.2018.07.007.
[20] G. Kunz, Mastering Angular Components: Build component-

based user interfaces using Angular, Packt Publishing Ltd, 2018.
[21] A. Leff, J. T. Rayfield, Web-Application Development Using the

Model/View/Controller Design Pattern, in: 5th International
Enterprise Distributed Object Computing Conference (EDOC
2001), 4-7 September 2001, Seattle, WA, USA, Proceedings,
IEEE, 2001, pp. 118–127. doi:10.1109/EDOC.2001.950428.

[22] C. Walls, Spring Boot in action, Simon and Schuster, 2015.
[23] J. B. Ottinger, J. Linwood, D. Minter, Beginning Hibernate:

For Hibernate 5, Apress, 2016.
[24] C. Anderson, Docker [software engineering], IEEE Software

32 (3) (2015) 102–105. doi:10.1109/MS.2015.62.
[25] T. Ali, Z. Najem, M. Sapiyan, Jpl : Implementation of a pro-

log system supporting incremental tabulation, in: Sixth In-
ternational conference on Computer Science and Information
Technology (CCSIT 2016), Zurich, Switzerland, January 02-03,
2016, 2016, pp. 323–338. doi:10.5121/csit.2016.60127.

[26] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, I. Polosukhin, Attention is all you need,
Advances in neural information processing systems 30 (2017).

[27] P. Kherwa, P. Bansal, Topic modeling: a comprehensive re-
view, EAI Endorsed transactions on scalable information sys-
tems 7 (24) (2020).

[28] P. Krinakis, Development of an intelligent system for decision
policy into smart buildings with the use of hierarchical argu-
mentation theory, Master’s thesis, Technical University of Crete
(2021). doi:10.26233/heallink.tuc.89787.

[29] N. Bassiliades, N. I. Spanoudakis, A. C. Kakas, Towards mul-
tipolicy argumentation, in: Proceedings of the 10th Hellenic
Conference on Artificial Intelligence, SETN ’18, Association
for Computing Machinery, New York, NY, USA, 2018. doi:

10.1145/3200947.3201032.
[30] E. Dazea, An explainable ai model for icu admission prediction

of covid19 patients, Master’s thesis, National Technical Univer-
sity of Athens (2021). doi:10.26240/heal.ntua.21812.

[31] N. I. Spanoudakis, A. C. Kakas, P. Moraitis, Gorgias-b: Argu-
mentation in practice, in: P. Baroni, T. F. Gordon, T. Scheffler,
M. Stede (Eds.), Computational Models of Argument - Pro-
ceedings of COMMA 2016, Potsdam, Germany, 12-16 Septem-
ber, 2016, Vol. 287 of Frontiers in Artificial Intelligence and
Applications, IOS Press, 2016, pp. 477–478. doi:10.3233/

978-1-61499-686-6-477.
[32] N. I. Spanoudakis, A. C. Kakas, P. Moraitis, Applications of

argumentation: The soda methodology., in: ECAI, 2016, pp.
1722–1723.

[33] P. Torroni, M. Gavanelli, F. Chesani, Argumentation in the
semantic web, IEEE Intelligent Systems 22 (6) (2007) 66–74.

[34] J. Schneider, A. Passant, T. Groza, J. G. Breslin, Argumenta-
tion 3.0: how semantic web technologies can improve argumen-
tation modeling in web 2.0 environments, in: Computational
Models of Argument, IOS Press, 2010, pp. 439–446.

[35] J. Schneider, T. Groza, A. Passant, A review of argumentation
for the social semantic web, Semantic Web 4 (2) (2013) 159–218.

[36] S. Almpani, Y. Kiouvrekis, P. Stefaneas, P. Frangos, Com-
putational argumentation for medical device regulatory clas-
sification, International Journal on Artificial Intelligence Tools
31 (01) (2022) 2250005.

13

https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1109/EDOC.2001.950428
https://doi.org/10.1109/MS.2015.62
https://doi.org/10.5121/csit.2016.60127
https://doi.org/10.26233/heallink.tuc.89787
https://doi.org/10.1145/3200947.3201032
https://doi.org/10.1145/3200947.3201032
https://doi.org/10.26240/heal.ntua.21812
https://doi.org/10.3233/978-1-61499-686-6-477
https://doi.org/10.3233/978-1-61499-686-6-477

	Introduction
	Materials and Methods
	The Gorgias Argumentation Framework
	Explainable AI
	Web Development

	The Gorgias Cloud System
	System Architecture
	Authoring environment
	Explainable output
	Generating Application Level Explanations
	Argumentation as a Service

	Results
	Discussion
	Conclusion

