
Engineering JADE Agents with the Gaia Methodology

Pavlos Moraïtis 1, Eleftheria Petraki2, Nikolaos I. Spanoudakis3

1Dept. of Computer Science
University of Cyprus

P.O. Box 20537, CY-1678 Nicosia, Cyprus
moraitis@ucy.ac.cy

1,2,3Singular Software,

26th October 43, 54626, Thessaloniki, Greece
{epetraki, nspan}@si.gr

Agent Oriented Software Engineering (AOSE) is one of the fields of the agent
domain with a continuous growing interest. The reason is that the possibility to
easily specify and implement agent-based systems is of a great importance for
the recognition of the add-value of the agent technology in many application
fields. In this paper we present an attempt towards this direction, by proposing a
kind of roadmap of how one can combine the Gaia methodology for agent-
oriented analysis and design and JADE, a FIPA compliant agent development
framework, for an easer analysis, design and implementation of multi-agent
systems. Our objective is realized through the presentation of the analysis,
design and implementation phases, of a limited version of a system we
currently develop in the context of the IST IMAGE project.

1. Introduction

During the last few years, there has been a growth of interest in the potential of agent
technology in the context of software engineering. This has led to the proposal of
several development environments to build agent systems (see for example Zeus [3],
AgentBuilder [10], AgentTool [5], RETSINA [11], etc), software frameworks to
develop agent applications in compliance with the FIPA specifications (see for
example FIPA-OS [7], JADE [2], etc). These development environments and software
frameworks demanded that system analysis and design methodologies, languages and
procedures would support them. As a consequence, many of these were proposed
along with a methodology (e.g. Zeus [4], AgentTool [12]) while in parallel have been
proposed some promising agent-oriented software development methodologies, as
Gaia [13], AUML [1], Tropos [8], MASE [12]. Also, the Aspect Oriented
Programming [9] can be used as a methodology for design and implementation of
agent role models. However, despite the possibilities provided by these
methodologies, we believe that a further progress must be made, so that agent-based
technologies realize their full potential, concerning the full covering of the software
life cycle and the proposal of standards to support agent interoperability.

In this paper we present an attempt to use Gaia in order to engineer a multi-agent
system (MAS) that is to be implemented with the JADE framework. The only

2 Pavlos Moraïtis, Eleftheria Petraki, Nikolaos I. Spanoudakis

pretension we have with this paper is to share our experience to conceive and develop
a MAS, by combining Gaia and JADE, in the context of the IST IMAGE project, with
people who are interested in the development of real life agent-based systems. The
Gaia methodology can be applied in a high level design. There is no given way to go
from a Gaia model to a system design model. System implementation is still done
through object-oriented techniques. Thus, the aim of this paper is to describe a kind of
roadmap for implementing a Gaia model using the JADE framework. Towards this
end, we provide some additional modeling techniques and make some slight
modifications to the Gaia original specification, without obviously altering its
philosophy and concepts.

This paper is organized in the following way. In sections 2 and 3 we briefly present
the Gaia methodology and JADE framework. In section 4 we provide a sample Gaia
model. In section 5 we provide a methodology for converting the Gaia model to a
JADE implementation. Moreover, we propose some models useful for the detailed
design phase. Finally, we discuss on AOSE.

2. Gaia Overview

The Gaia methodology is an attempt to define a complete and general methodology
that it is specifically tailored to the analysis and design of MASs. Gaia is a general
methodology that supports both the levels of the individual agent structure and the
agent society in the MAS development process. MASs, according to Gaia, are viewed
as being composed of a number of autonomous interactive agents that live in an
organized society in which each agent plays one or more specific roles. Gaia defines
the structure of a MAS in terms of a role model. The model identifies the roles that
agents have to play within the MAS and the interaction protocols between the
different roles.

The objective of the Gaia analysis process is the identification of the roles and the
modeling of interactions between the roles found. Roles consist of four attributes:
responsibilities, permissions, activities and protocols. Responsibilities are the key
attribute related to a role since they determine the functionality. Responsibilities are
of two types: liveness properties – the role has to add something good to the system,
and safety properties – the role must prevent and disallow that something bad happens
to the system. Liveness describes the tasks that an agent must fulfill given certain
environmental conditions and safety ensures that an acceptable state of affairs is
maintained during the execution cycle. In order to realize responsibilities, a role has a
set of permissions. Permissions represent what the role is allowed to do and in
particular, which information resources it is allowed to access. The activities are tasks
that an agent performs without interacting with other agents. Finally, protocols are the
specific patterns of interaction, e.g. a seller role can support different auction
protocols. Gaia has formal operators and templates for representing roles and their
attributes and also it has schemas that can be used for the representation of
interactions between the various roles in a system.

The operators that can be used for liveness expressions-formulas along with their
interpretations are presented in Table 1. Note that in liveness formulas activities are
written underlined.

Engineering JADE Agents with the Gaia Methodology 3

Table 1. Gaia Operators for Liveness Formulas

Operator Interpretation

x . y x followed by y

x | y x or y occurs

x* x occurs 0 or more times

x+ x occurs 1 or more times

x ω x occurs infinitely often

[x] x is optional

x || y x and y interleaved

In the Gaia design process the first step is to map roles into agent types and to

create the right number of agent instances of each type. An agent type can be an
aggregation of one or more agent roles. The second step is to determine the services
model needed to fulfill a role in one or several agents. A service can be viewed as a
function of the agent and can be derived from the list of protocols, activities,
responsibilities and the liveness properties of a role. Finally, the last step is to create
the acquaintance model for the representation of communication between the different
agents. The acquaintance model does not define the actual messages that are
exchanged between the agents it is rather a simple graph that represents the
communication pathways between the different agent types.

3. JADE Overview

JADE is a software development framework fully implemented in JAVA language
aiming at the development of multi-agent systems and applications that comply with
FIPA standards for intelligent agents. JADE provides standard agent technologies and
offers to the developer a number of features in order to simplify the development
process:
• Distributed agent platform. The agent platform can be distributed on several hosts,

each one of them executes one Java Virtual Machine.
• FIPA-Compliant agent platform, which includes the Agent Management System

the Directory Facilitator and the Agent Communication Channel.
• Efficient transport of ACL messages between agents.

All agent communication is performed through message passing and the FIPA
ACL is the language that is used to represent the messages. Each agent is equipped
with an incoming message box and message polling can be blocking or non-blocking
with an optional timeout. Moreover, JADE provides methods for message filtering.
The developer can apply advanced filters on the various fields of the incoming
message such as sender, performative or ontology.

FIPA specifies a set of standard interaction protocols such as FIPA-request, FIPA-
query, etc. that can be used as standard templates to build agent conversations. For

4 Pavlos Moraïtis, Eleftheria Petraki, Nikolaos I. Spanoudakis

every conversation among agents, JADE distinguishes the role of the agent that starts
the conversation (initiator) and the role of the agent that engages in a conversation
started by another agent (responder). According to the structure of these protocols, the
initiator sends a message and the responder can subsequently reply by sending a not-
understood or a refuse message indicating the inability to achieve the rational effect of
the communicative act, or an agree message indicating the agreement to perform the
communicative act. When the responder performs the action he must send an inform
message. A failure message indicates that the action was not successful. JADE
provides ready-made behaviour classes for both roles, following most of the FIPA
specified interaction protocols. Because the FIPA interaction protocols share the same
structure, JADE provides the AchieveREInitiator/Responder classes, a single
homogeneous implementation of interaction protocols such as these mentioned above.
Both classes provide methods for handling all possible protocol states.

In JADE, agent tasks or agent intentions are implemented through the use of
behaviours. Behaviours are logical execution threads that can be composed in various
ways to achieve complex execution patterns and can be initialized, suspended and
spawned at any given time. The agent core keeps a task list that contains the active
behaviours. JADE uses one thread per agent instead of one thread per behaviour to
limit the number of threads running in the agent platform. A scheduler, hidden to the
developer, carries out a round robin policy among all behaviours available in the
queue. The behaviour can release the execution control with the use of blocking
mechanisms, or it can permanently remove itself from the queue in run time. Each
behaviour performs its designated operation be executing the core method action().

Behaviour is the root class of the behaviour hierarchy that defines several core
methods and sets the basis for behaviour scheduling as it allows state transitions
(starting, blocking and restarting). The children of this base class are SimpleBehaviour
and CompositeBehaviour. The classes that descend from SimpleBehaviour represent
atomic simple tasks that can be executed a number of times specified by the
developer. Classes descending from CompositeBehaviour support the handling of
multiple behaviours according to a policy. The actual agent tasks that are executed
through this behaviour are not defined in the behaviour itself, but inside its children
behaviours. The FSMBehaviour class, which executes its children behaviours according
to a Finite State Machine (FSM) of behaviours, belongs in this branch of hierarchy.
Each child represents the activity to be performed within a state of the FSM, with the
transitions between the states defined by the developer. Because each state is itself a
behaviour it is possible to embed state machines. The FSMBehaviour class has the
responsibility of maintaining the transitions between states and selects the next state
for execution. Some of the children of an FSMBehaviour can be registered as final
states. The FSMBehaviour terminates after the completion of one of these children.

4. A Gaia model

In order to better understand our proposal on how GAIA and JADE can be combined
to conceive and implement a multi-agent system (MAS) we will present a limited
version of the system that is currently being implemented in the framework of the IST
IMAGE project. We will show how this system can be analyzed, designed and
implemented. For this system we have defined the following requirements:

Engineering JADE Agents with the Gaia Methodology 5

• A user can request a route from one place to another. He can select among a
variety of routes that are produced by the Geographical Information System (GIS).

• The MAS maintains a user profile so that it can filter the routes produced by the
GIS and send to the user those that most suit him. The profiling will be based on
criteria regarding the preferred transport type (private car, public transport, bicycle,
on foot) and the preferred transport characteristics (shortest route, fastest route,
cheapest route, etc).

• The system keeps track on selected user routes aiming:
• To receive traffic events (closed roads) and check whether they affect the user’s

route (if that is the case then inform the user).
• To adapt the service to user habits and needs.
In the following sections this MAS will be analyzed, designed and implemented.

4.1. The Analysis phase

The analysis phase has led to the identification of four roles: one role, called
EventsHandler, that handles traffic events, one role called TravelGuide that wraps the
GIS, one role, called PersonalAssistant, that serves the user and, finally, a social type
role, called SocialType, that should be taken by all agents. A Gaia roles model for our
system is presented in Table 2.

Table 2. The Gaia Roles Model

Role: EventsHandler
Description: It acts like a monitor. Whenever a new traffic event is detected it
forwards it to all personal assistants.
Protocols and Activities: CheckForNewEvents, InformForNewEvents.
Permissions: read on-line traffic database, read acquaintances data structure.
Responsibilities:

Liveness:
EVENTSHANDLER = (PushEvents)ω
PUSHEVENTS = CheckForNewEvents. InformForNewEvents
Safety: A successful connection with the on-line traffic database is
established.

Role: TravelGuide

Description: It wraps a Geographical Information System (GIS). It can query the GIS
for routes, from one point to another.
Protocols and Activities: RegisterDF, QueryGIS, RequestRoutes, RespondRoutes.
Permissions: read GIS.
Responsibilities:

Liveness:
TRAVELGUIDE = RegisterDF. (FindRoutes) ω

FINDROUTES = RequestRoutes. QueryGIS. RespondRoutes
Safety: A successful connection with the GIS is established.

6 Pavlos Moraïtis, Eleftheria Petraki, Nikolaos I. Spanoudakis

Role: PersonalAssistant
Description: It acts on behalf of a profiled user. Whenever the user wants to go
somewhere it gets the available routes and determines which routes best match the
user’s profile. These routes are presented to the user. Moreover, it can adapt (i.e.
using learning capabilities) to a user’s habits by learning from user selections. Finally,
it receives information on traffic events, it checks whether such events affect its user’s
route and in such a case it informs the user.
Protocols and Activities: InitUserProfile, UserRequest, InferUserNeeds,
PresentRoutes, LearnByUserSelection, CheckApplicability, PresentEvent,
RequestRoutes, RespondRoutes, InformForNewEvents.
Permissions: create, read, update user profile data structure, read acquaintances data
structure.
Responsibilities:

Liveness:
PERSONALASSISTANT = InitUserProfile. ((ServeUser) ω ||
(ReceiveNewEvents) ω)
RECEIVENEWEVENTS = InformForNewEvents. CheckApplicability.
[PresentEvent]
SERVEUSER = UserRequest. RequestRoutes. RespondRoutes.
[InferUserNeeds]. PresentRoutes. LearnByUserSelection
Safety: true

Role: SocialType

Description: It requests agents that perform specific services from the DF. It also gets
acquainted with specific agents.
Protocols and Activities: RegisterDF, QueryDF, SaveNewAcquaintance,
IntroductsNewAgents.
Permissions: create, read, update acquaintances data structure.
Responsibilities:

Liveness:
SOCIALTYPE = GetAcquainted. (MeetSomeone) ω
GETACQUAINTED = RegisterDF. QueryDF. [IntroductNewAgent]
MEETSOMEONE = IntroductNewAgent. SaveNewAcquaintance
Safety: true

Here it must be noted that another role is involved in the MAS operation. It is the

Directory Facilitator (DF) FIPA role that is supported by JADE. However, this role
concerns the operational level of the MAS and not the application itself, that’s why a
Gaia representation is not supplied for this role. Moreover, interactions with it are not
presented as protocols, as they are defined in Gaia methodology, but as activities.
Indeed, the activities RegisterDF (denoting the registration to the DF) and QueryDF
(querying for agents of specific types or that have registered specific services
activities) are DF services provided directly by JADE framework, provided not as a
result of interaction between agents, but as method invocations.

The Gaia interaction model denotes which action returns from a request along with

the roles that can initiate a request and the corresponding responders. Table 3 holds
the necessary information for our model.

Engineering JADE Agents with the Gaia Methodology 7

Table 3. Gaia Interactions Model

Protocol IntroductNewAgent InformForNewEvents RequestRoutes

Initiator(s) SocialType EventsHandler PersonalAssistant

Receiver(s) SocialType PersonalAssistant TravelGuide

Responding
Action

- - RespondRoutes

Purpose/
Parameters

Introduce an agent
to other agents.
Possible content is
the services and
name associated
with the initiator
agent.

Inform an assistant
that a new traffic event
has occurred.

The assistant agent
requests a set of routes
from one place to
another. The response
includes different routes
with different
characteristics (shortest,
fastest, cheapest) and for
different transportation
(private car, public
transport, on foot).

4.2. The Design phase

During this phase the Agent model is achieved, along with the services and
acquaintance models.

Personal Assistant *

PersonalAssistant

Travel Guide 1

TravelGuide

Events Handler *

EventsHandler

SocialType

Legend

: Agent Types

: Roles

* : Zero or more Agent Type instances

Fig. 1. Gaia Agent Model

8 Pavlos Moraïtis, Eleftheria Petraki, Nikolaos I. Spanoudakis

The Agent model creates agent types by aggregating roles. Each emerging agent type
can be represented as a role that combines all the aggregated roles attributes
(activities, protocols, responsibilities and permissions). The agents model for our
system will include three agent types: the personal assistant agent type, who fulfills the
PersonalAssistant and SocialType roles, the events handler agent type, who fulfills the
EventsHandler and SocialType roles and the travel guide agent type, who fulfills the
TravelGuide role.
There will be one travel guide agent, as many personal assistants as the users of the
system and zero or more events handlers. The Agent model is presented graphically in
Figure 1.

The services model for our system is presented in Table 4.

Table 4. Gaia Services Model

Service Obtain route Get notified on a relevant to the
user’s route traffic event

Inputs Origin, destination -

Outputs A set of routes The description of the event

Pre-condition A personalized assistant agent is
instantiated and associated with
the user

A personalized assistant agent is
instantiated and associated with
the user. The user has selected a
route to somewhere. A traffic
event that is relevant to the
user’s route has happened

Post-condition User selects a route -

Finally we define the acquaintances model. For this model we propose a slight

modification compared to the original definition presented in Gaia.

Table 5. Gaia Acquaintances Model

 Personal Assistant Travel Guide Events Handler

Personal Assistant I, A I

Travel Guide I

Events Handler I, A

Legend:
I: Interacts (read “I” occurrences in rows, e.g. the personal assistant agent type
interacts with travel guide and events handler agent types).
A: Is acquainted, has the agent type in his acquaintances data structure (read “A”
occurrences in rows, e.g. the personal assistant agent type knows travel guide agent
types).

Engineering JADE Agents with the Gaia Methodology 9

We believe that this modification takes better into account the idea that an agent
can interact with another agent (e.g. just responding to a request) without having
necessarily any knowledge (information) about him. Therefore an analyst needs not
only to specify which agent interacts with which, but which agent is acquainted with
whom (i.e. knows whom) also. So, the personal assistants are acquainted and interact
with travel guides and just interact with events handlers. Events handlers are acquainted
and interact with personal assistants, while travel guides are not aware of the other
agents however they interact with (service requests of) personal assistants. The above
scheme is illustrated in Table 5.

At this point the abstract design of the system is complete, since the limit of Gaia
has been reached. More effort must be done in order to obtain a good design though.
At the end of the design process the system must be ready for implementation.

5. Developing JADE Agents from a Gaia Model

When moving from the Gaia model to an implementation using the JADE framework
we have to make some assumptions and definitions.
Let’s consider the liveness part of each role as its behaviour (usually having the same
name with the role) in correspondence with the JADE terminology. Thus a simple or a
complex behaviour represents each role. This behaviour is considered as the top-level
behaviour of the role. Each behaviour may contain other behaviours, as in the JADE
behaviours model. Let the contained behaviours be called lower level behaviours. The
SocialType role of our system, for instance, has the SocialType top behaviour. This
behaviour has two lower level behaviours, GetAcquainted and MeetSomeone.

The ω and || operators on Gaia liveness formulas now have the following meaning.
The ω means that a lower level behaviour is added by the behavior that contains it in
the Gaia liveness formula and is only removed from the agent’s scheduler when the
behavior that added it, is removed itself. If such behaviours are more than one, they
are connected with the || symbol which denotes that they execute “concurrently”.
Concurrency in JADE agent behaviours is simulated. As noted before, only one
thread executes per agent and behaviour actions are scheduled in a round robin policy.

5.1. Detailed Design

Many important design issues have yet to be covered when trying to implement a
Gaia model with the JADE framework. Some of them are: a) ACL Messages
(ontologies, protocols, content), b) Data structures, c) Algorithms and software
components.

The ACL messages should be defined with respect to the FIPA ACL Message
Structure Specification [6] and the JADE ACL Message class fields. The ACL
Messages RequestRoutes and RespondRoutes are presented in Figure 2. It is obvious
that FAILURE and REFUSE ACL messages should be defined for global use in cases
that, an action failed, is not supported or is denied.

10 Pavlos Moraïtis, Eleftheria Petraki, Nikolaos I. Spanoudakis

ACL Message: RequestRoutes ACL Message: RespondRoutes

Sender: Personal Assistant Agent Sender: Travel Guide Agent

Receiver: Travel Guide Agent Receiver: Personal Assistant Agent

FIPA performative: REQUEST FIPA performative: INFORM

Protocol: RequestRoutes Protocol: RequestRoutes

Language: SL Language: SL

Ontology: ImageOntology Ontology: ImageOntology

Content: Ontology action: RequestRoutes Content: Ontology concept: Routes

Fig. 2. ACL Messages Definition

Finally, the designer of the MAS will easily implement agents whose internal
structures and methods are pre-defined. To that end, the data structures and the AI
tools that are to be used should be defined in this stage. For our system the following
structures and methods should be clarified at this point:
• The acquaintances structure: It will contain information about other agents. Some of

this information might include names, types (or services) and addresses (as will see
in the following in JADE address and name are quite the same). The SocialType
role maintains this structure (see the permissions field of the role definition in
Table 2).

• The user profile structure: What information will be known about the user, how is
it organized. Such questions must be answered at this point. The PersonalAssistant
role maintains this structure (see the permissions field of the role definition in
Table 2).

• The route structure: What is a route, what attributes are associated with a route.
This structure is needed by both the TravelGuide and PersonalAssistant roles, the
former instantiates such objects by information that it gets from the GIS (QueryGIS
activity), while the latter filters the route structure objects according to the user
profile (InferUserNeeds activity).

• The traffic event structure: What is a traffic event, what attributes are associated
with it, how is it associated with a route. Both the EventsHandler and
PersonalAssistant roles use this structure. The former instantiates such objects by
information that it gets from external sources (CheckForNewEvents activity), while
the latter checks whether a traffic event structure object is in a user’s active route
(CheckApplicability activity).

• The learning method: What will be learned about the user, how, where is it going to
be stored, which machine learning algorithm will be used (different goals can
indicate different algorithms). A learning method will be used by the
LearnByUserSelection activity of the PersonalAssistant role.

• The components and technologies that will enable communication with external
systems. Such systems are the on-line traffic database and the GIS. If the GIS
services are available as web services then a suitable SOAP (Simple Object Access

Engineering JADE Agents with the Gaia Methodology 11

Protocol) client must be developed along with an XML parser that will translate
the SOAP message content to an ontology concept or a JAVA object.

5.2. The JADE Implementation

At this point the MAS designer should have the full plan on how to implement the
system. In our case the framework is JADE and the purpose of this paragraph is
precisely to explain how the Gaia model is translated to a JADE implementation.

The procedure is quite straightforward. All Gaia liveness formulas are translated to
JADE behaviours. Activities and protocols can be translated to JADE behaviours, to
action methods (which will be part of finite state machine - FSM like behaviours) or
to simple methods of behaviours. The JADE behaviours that can be useful for our
model are the SimpleBehaviour, FSMBehaviour, AcheiveREResponder and
AchieveREInitiator.

The behaviours that start their execution when a message arrives, can receive this
message either at the beginning of the action method (simple behaviours) or by
spawning an additional behaviour whose purpose is the continuous polling of the
message box (complex behaviours). For behaviours that start by a message from the
Graphical User Interface (GUI), a GUI event receiver method should be implemented
on the agent that starts the corresponding behaviour. Finally, those behaviours that
start by querying a data source, or by a calculation, should be explicitly added by their
upper level behaviour. For example, the SocialType role adds both the GetAcquained
and the MeetSomeone behaviours. The difference is that GetAcquained will set itself as
finished after executing once, while the MeetSomeone will continue executing forever
- or until the agent is “killed”.

The safety properties of the Gaia roles model must be taken into account when
designing the JADE behaviours. Some behaviours of the role, in order to execute
properly, require the safety conditions to be true. Towards that end, one at least
behaviour is responsible for monitoring each safety condition of a role. Whenever a
safety condition is found to be false, the functionality of the behaviours that depend
on this safety condition is suspended and the monitoring behaviour initializes a
procedure that will reestablish the validity of safety conditions. This procedure, for
instance, can be the addition to the agent scheduler of a specific behaviour that will
address the task of restoring the validity of safety conditions. In general, this
procedure depends on the nature of the implemented system and the safety conditions.
When the safety conditions are restored, the suspended functionalities are reactivated.

In our case, the safety requirement of the TravelGuide role is the establishment of
communication with the GIS. The FindRoutes behaviour is responsible for monitoring
the validity of this safety requirement. Whenever a connection fails to be established
the FindRoutes behaviour sends to the agent GUI an event that results in a connection
failure message, while responding to the personal assistant agent with a FAILURE
ACL message. The system administrator must act in order to restore the GIS
communication.

All behaviours of the lowest level are implemented first:
• PushEvents: A SimpleBehaviour that queries a database and if it gets a new event

prepares an ACL message and sends it to all personal assistant agents.

12 Pavlos Moraïtis, Eleftheria Petraki, Nikolaos I. Spanoudakis

• FindRoutes: It is a SimpleBehaviour that waits until it receives a specific ACL
message, queries the GIS and sends back to the original sender a responding ACL
message.

• ReceiveNewEvents: A SimpleBehaviour that waits until it receives a specific ACL
message verifies if it is of interest for the specific user and sends an appropriate
event to the GUI.

• ServeUser: a complex behaviour more like an FSMBehaviour with three states. At
the first state it gets the user request (it is added to the agent scheduler as a
consequence of that request) and sends an ACL message to the travel guide agent.
Then it waits for its response. Alternatively, after getting the user request it could
add an AchieveREInitiator behaviour. When it gets the response (second state) it
infers on which routes should be forwarded to the user, forwards them and
terminates its execution. If the user selects a route through the GUI, the GUI event
catcher method of the agent starts this behaviour, but sets it immediately at the
third state, which employs the learning algorithm in order to gain knowledge from
the user action.

• GetAcquainted: This is a SimpleBehaviour that registers the agent to the DF, gets all
needed agents from the DF and finally sends appropriate IntroductNewAgent ACL
messages to all agents whom this agent wants to notify about his appearance. After
the execution of these tasks the behaviour removes itself.

• MeetSomeone: a SimpleBehaviour that waits until it receives a specific ACL message
then updates its acquaintance data structure with a new contact and the services that
the new contact provides.
A good architecture paradigm contains no functionality at the top-level behaviour,

instead, the agents tasks are embedded in lower level behaviors. Thus, the top-level
behaviours that represent the actions performed in the setup phase of the agent are:
• EventsHandlerAgent: initialize the Acquaintances data structure, add the PushEvents,

GetAcquainted and MeetSomeone behaviours.
• TravelGuideAgent: register to the DF and add the FindRoutes behaviour.
• PersonalAssistantAgent: initialize the Acquaintances data structure, get the initial user

profile, add the GetAcquainted, MeetSomeone, ServeUser and ReceiveNewEvents
behaviours.
Summarizing, the following steps should be followed in order to easily translate a

Gaia model to a JADE implementation:
1. Define all the ACL messages by using the Gaia protocols and interactions models.
2. Design the needed data structures and software modules that are going to be used

by the agents by using the Gaia roles and agents models.
3. Decide on the implementation of the safety conditions of each role.
4. Define the JADE behaviours. Start by implementing those of the lowest levels,

using the various Behaviour class antecedents provided by JADE. The Gaia model
that is useful in this phase is the roles model. Behaviours that are activated on the
receipt of a specific message type must either add a receiver behaviour, or receive
a message (with the appropriate message filtering template) at the start of their
action. Gaia activities that execute one after another (sequence of actions that
require no interaction between agents) with no interleaving protocols can be
aggregated in one activity (behaviour method or action). However, for reusability,
clarity and programming tasks allocation reasons, we believe that a developer

Engineering JADE Agents with the Gaia Methodology 13

could opt to implement them as separate methods (or actions in an FSM like
behaviour).

5. Keep in mind that Gaia roles translated to JADE behaviours are reusable pieces of
code. In our system, the same code of the behaviours GetAcquainted and
MeetSomeone will be used both for the personal assistant and events handler agents.

6. At the setup method of the Agent class invoke all methods (Gaia activities) that are
executed once at the beginning of the top behaviour (e.g. RegisterDF). Initialize all
agent data structures. Add all behaviours of the lower level in the agent scheduler.

6. Discussion

In this paper we have presented the analysis, design and implementation phases of a
limited version of a system developed in the context of the IST IMAGE project. As
we already have said before, the only pretension we have with this paper is to share
our experience on how one can combine the Gaia methodology and the JADE
development environment in order to implement a real multi-agent system. Gaia
methodology is an easy to use agent-orient software development methodology that
however presently, covers only the phases of analysis and design. On the other hand
JADE is a FIPA specifications compliant agent development environment that gives
several facilities for an easy and fast implementation. Our aim was to reveal the
mapping that may exists between the basic concepts proposed by Gaia for agents
specification and agents interactions and those provided by JADE for agents
implementation, and therefore to propose a kind of roadmap for agents developers.
Presently we have introduced a slight modification for the Gaia acquaintances model
and our future work, through our main work on IMAGE project, will be to examine if
there could be proposed some modifications in both, Gaia and JADE, that would help
to make more efficient their combination.

Acknowledgements

We gratefully acknowledge the Information Society Technologies (IST) Programme
and specifically the Research and Technological Development (RTD) “Intelligent
Mobility Agent for Complex Geographic Environments” (IMAGE, IST-2000-30047)
project for contributing in the funding of our work.

References

1. Agent UML: http://www.auml.org/
2. Bellifemine, F., Caire, G., Trucco, T., Rimassa, G.: Jade Programmer’s Guide.

JADE 2.5 (2002) http://sharon.cselt.it/projects/jade/
3. Collis, J. and Ndumu, D.: Zeus Technical Manual. Intelligent Systems Research

Group, BT Labs. British Telecommunications. (1999)

14 Pavlos Moraïtis, Eleftheria Petraki, Nikolaos I. Spanoudakis

4. Collis, J. and Ndumu, D.: Zeus Methodology Documentation Part I: The Role
Modelling Guide. Intelligent Systems Research Group, BT labs. British
Telecommunications (1999)

5. DeLoach S. and Wood, M.: Developing Multiagent Systems with agentTool. In:
Castelfranchi, C., Lesperance Y. (Eds.): Intelligent Agents VII. Agent Theories
Architectures and Languages, 7th International Workshop (ATAL 2000, Boston,
MA, USA, July 7-9, 2000),. Lecture Notes in Computer Science. Vol. 1986,
Springer Verlag, Berlin (2001)

6. FIPA specification XC00061E: FIPA ACL Message Structure Specification (2000)
http://www.fipa.org

7. FIPA-OS: A component-based toolkit enabling rapid development of FIPA
compliant agents: http://fipa-os.sourceforge.net/

8. Giunchiglia, F., Mylopoulos, J., Perini, A.: The Tropos Software Development
Methodology: Processes, Models and Diagrams, in AAMAS02

9. Kendall, E.A.: Role Model Designs and Implementations with Aspect Oriented
Programming. Proceedings of the 1999 Conference on Object- Oriented
Programming Systems, Languages, and Applications (OOPSLA'99)

10. Reticular Systems Inc: AgentBuilder An Integrated Toolkit for Constructing
Intelligent Software Agents. Revision 1.3. (1999) http://www.agentbuilder.com

11. Sycara, K., Paolucci, M., van Velsen, M. and Giampapa, J.: The RETSINA MAS
Infrastructure. Accepted by the Journal of Autonomous Agents and Multi-agent
Systems (JAAMS)

12. Wood, M.F. and DeLoach, S.A.: An Overview of the Multiagent Systems
Engineering Methodology. AOSE-2000, The First International Workshop on
Agent-Oriented Software Engineering. Limerick, Ireland (2000)

13. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-
Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent
Systems Vol. 3. No. 3 (2000) 285-312

