
Using ASEME Methodology for Model-Driven

Agent Systems Development

Nikolaos Spanoudakis1 and Pavlos Moraitis2

1 Technical University of Crete, Dept. of Sciences,
University Campus, 73100 Chania, Greece

nikos@science.tuc.gr
2 Laboratory of Informatics Paris Descartes (LIPADE), Paris Descartes University,

45 rue des Saints-Pères, 75270 Paris Cedex 06, France
pavlos@mi.parisdescartes.fr

Abstract. This paper shows how an AOSE methodology, the Agent
Systems Engineering Methodology (ASEME), uses state of the art tech-
nologies from the Model-Driven Engineering (MDE) domain. We present
the Agent Modeling Language (AMOLA) metamodels and the model
transformation tools that we developed and discuss our choices. More-
over, the way that non-functional requirements are used throughout the
software development lifecycle is discussed and presented with two real-
world case studies. Finally, we compare ASEME with a set of existing
AOSE methodologies.

1 Introduction

During the last years, there has been a growth of interest in the potential of agent
technology in the context of software engineering. A new trend in the Agent
Oriented Software Engineering (AOSE) field is that of converging towards the
Model-Driven Engineering (MDE) paradigm. Thus, a lot of well known AOSE
methodologies propose methods and tools for automating models transforma-
tions, such as Tropos [23] and INGENIAS [7], but this is done only for some of
the software development phases.

This paper aims to show for the first time how the principles of MDE can
be used throughout all the software development phases and how the AOSE
community can use three different types of transformations in order to produce
new models based on previous models. This approach has been used by the
Agent Systems Engineering Methodology (ASEME)1 [26], [28] and shows how
an agent-based system can be incrementally modeled by gradually adding more
information at each development phase using the appropriate type of model.

ASEME offers some unique characteristics regarding the used MDE approach.
It covers all the classic software development phases (from requirements to
implementation) and the transition of one phase to another is done through
1 From the ASEME web site the interested reader can download the tools and meta-

models used in this paper, URL: http://www.amcl.tuc.gr/aseme

D. Weyns and M.-P. Gleizes (Eds.): AOSE 2010, LNCS 6788, pp. 106–127, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

http://www.amcl.tuc.gr/aseme

Using ASEME Methodology for Model-Driven Agent Systems Development 107

model transformations. It employs three transformation types, i.e. model to
model (M2M), text to model (T2M) and model to text (M2T). Thus, the ana-
lysts/engineers and developers just enrich the models of each phase with infor-
mation, gradually leading to implementation. Moreover, the design phase model
of ASEME is a statechart [10], a modeling paradigm well known to engineers,
which can be implemented using a variety of programming languages or an
agent-oriented platform.

Another important aspect of ASEME is the support of documentation of
non-functional requirements even from the requirements analysis phase. These
are propagated in the analysis phase where they are used for taking manage-
rial decisions and selecting the technologies that will be used for design and
development.

This paper presents the ASEME process showing the models transforma-
tions between the different development phases. The models that are used by
ASEME are defined by the Agent Modeling Language (AMOLA, a first version
is presented in [28]). Moreover, it emphasizes on the handling of non-functional
requirements by ASEME. The next paragraph provides a background on meta-
modeling and models transformation followed by the definition of the AMOLA
metamodels in section two. The ASEME MDE process is presented in sec-
tion three discussing the used transformation tools. Section four presents how
ASEME tackles the issue of non-functional requirements. In section five we eval-
uate ASEME using empirical results through the development of two real world
systems. Related work is discussed in section six and the paper is concluded in
section seven.

1.1 Metamodeling and Models Transformation

Model Driven Engineering (MDE) relies heavily on model transformation [25].
Model transformation is the process of transforming a model to another model.
The requirements for achieving the transformation are the existence of metamod-
els of the models in question and a transformation language in which to write
the rules for transforming the elements of one metamodel to those of another
metamodel. The MDE approach has been argued to contribute to non-functional
requirements capture, such as portability, interoperability and reusability [15].

In the software engineering domain a model is an abstraction of a software
system (or part of it) and a metamodel is another abstraction, defining the
properties of the model itself. However, even a metamodel is itself a model. In
the context of model engineering there is yet another level of abstraction, the
metametamodel, which is defined as a model that conforms to itself [13].

There are four types of model transformation techniques [16]:

– Model to Model (M2M) transformation. This kind of transformation is
used for transforming a type of graphical model to another type of graphical
model. A M2M transformation is based on the source and target metamodels
and defines the transformations of elements of the source model to elements
of the target model.

108 N. Spanoudakis and P. Moraitis

– Text to Model (T2M)transformation. This kind of transformation is used
for transforming a textual representation to a graphical model. The textual
representation must adhere to a language syntax definition usually using
BNF. The graphical model must have a metamodel. Then, a transformation
of the text to a graphical model can be defined.

– Model to Text (M2T) transformations. Such transformations are used
for transforming a visual representation to code (code is text). Again, the
syntax of the target language must be defined along with the metamodel of
the graphical model.

– Text to Text (T2T) transformations. Such transformations are used for
transforming a textual representation to another textual representation. This
is usually the case when a program written for a specific programming lan-
guage is transformed to a program in another programming language (e.g.
a compiler).

In the heart of the model transformation procedure is the Eclipse Model-
ing Framework (EMF, [3]). Ecore is EMF’s model of a model (metamodel). It
functions as a metametamodel and it is used for constructing metamodels. It
defines that a model is composed of instances of the EClass type, which can
have attributes (instances of the EAttribute type) or reference other EClass in-
stances (through the EReference type). Finally, EAttributes can be of various
EDataType instances (such are integers, strings, real numbers, etc). EMF allows
to extend existing models via inheritance, using the ESuperType relationship for
extending an existing EClass.

A similar technology, the Meta-Object Facility (MOF), is an OMG standard
[19] for representing metamodels and manipulating them. MOF is older than
EMF and it influenced its design. However, the EMF meta-model is simpler
than the MOF meta-model in terms of its concepts, properties and containment
structure, thus, the mapping of EMF’s concepts into MOF’s concepts is relatively
straightforward and is mostly 1-to-1 translations [8]. EMF is also used today by
a large open source community becoming a de facto standard in MDE.

2 The AMOLA Metamodels

In this section we present the metamodels used in the ASEME MDE process.
Using these metamodels we can derive graphical tools for defining the models
and tools for automating the models tranformations.

2.1 The System Actor Goal Model (SAG)

The SAG model is a subset of the Actor model of the Tropos ecore model [31].
Tropos is, on one hand, one of the very few AOSE methodologies that deal with
requirements analysis, and, on the other hand it borrows successful practices
from the general software engineering discipline. This is why we have been in-
spired by Tropos. The reason for not using the Tropos diagrams as they are is

Using ASEME Methodology for Model-Driven Agent Systems Development 109

Fig. 1. The AMOLA SAG (a) and SUC (b) metamodels

that they provide more concepts than the ones used by AMOLA as they are also
used for system analysis. However, as we will show later, AMOLA defines more
well-suited diagrams for system analysis.

Thus, the AMOLA System Actors Goals diagram is the one that appears in
Figure 1(a) employing the Actor and Goal concepts. The actor references his
goals using the EReference my goal, while the Goal references a unique depender
and zero or more dependees. The reader should notice the choice to add the
requirements EAttribute of Goal. Through this attribute, each goal is related to
functional and non-functional requirements, which are documented in plain text
form.

2.2 The System Use Cases Model (SUC)

In the analysis phase, the analyst needs to start capturing the functionality
behind the system under development. In order to do that he needs to start
thinking not in terms of goal but in terms of what will the system need to do
and who are the involved actors in each activity. The use case diagram helps
to visualize the system including its interaction with external entities, be they
humans or other systems. It is well-known by software engineers as it is part of
the Unified Modeling Language (UML).

In AMOLA no new elements are needed other than those proposed by UML,
however, the semantics change. Firstly, the actor “enters” the system and as-
sumes a role. Agents are modeled as roles, either within the system box (for the
agents that are to be developed) or outside the system box (for existing agents
in the environment). Human actors are represented as roles outside the system
box (like in traditional UML use case diagrams). This approach aims to show
the concept that we are modeling artificial agents interacting with other artifi-
cial agents or human agents. Secondly, the different use cases must be directly
related to at least one artificial agent role.

110 N. Spanoudakis and P. Moraitis

The SUC metamodel containing the concepts used by AMOLA is presented
in Figure 1(b). The concept UseCase has been defined that can include and be
included by other UseCase concepts. It interacts with one or more roles, which
can be Human roles (HumanRole) or Agent roles (SystemRole).

2.3 The System Roles Model (SRM)

An important concept in AOSE is the role. An agent is assumed to undertake
one or many roles in his lifetime. The role is associated with activities and this
is one of the main differences with traditional software engineering, the fact that
the activity is no longer associated with the system, but, rather, with the role.
Moreover, after defining the capabilities of the agents and decomposing them to
simple activities in the SUC model we need to define the dynamic composition
of these activities by each role so that he achieves his goals. Thus, we defined the
SRM model based on the Gaia Role model [34]. Gaia defines the liveness formula
operators that allow the composition of formulas depicting the role’s dynamic
behavior. However, we needed to change the role model of Gaia in order to
accommodate the integration in an agent’s role the incorporation of complex
agent interaction protocols (within which an agent can assume more than one
roles even at the same time), a weakness of the Gaia methodology. The AMOLA
SRM metamodel is presented in Figure 2(a). The SRM metamodel defines the
concept Role that references the concepts:

– Activity, that refers to a simple activity with two attributes, name (its name)
and functionality (the description of what this activity does)

– Capability that refers to groups of activities (to which it refers) achieving a
high level goal, and,

– Protocol. The protocol attributes name and participant refer to the relevant
items in the Agent Interactions Protocol (AIP) model. This model is not
detailed here-in. It is used for identifying the roles that participate in a
protocol, their activities within the protocol and the rules for engaging (for
more details consult [29]).

The Role concept also has the name and liveness attributes (the first is the
role name and the second its liveness formula). The reader should note the func-
tionality attribute of the Activity concept which is used to associate the activity
to a generic functionality. For example, the “get weather information” activity
can be related to the “web service invocation” functionality (see [27], [28]).

2.4 The Intra-Agent Control Model (IAC)

In order to represent system designs, AMOLA is based on statecharts, a well-
known and general language and does not make any assumptions on the on-
tology, communication model, reasoning processes or the mental attitudes (e.g.
belief-desire-intentions) of the agents, giving this freedom to the designer. Other
methodologies impose (like Prometheus or INGENIAS [11]), or strongly imply

Using ASEME Methodology for Model-Driven Agent Systems Development 111

Fig. 2. The AMOLA SRM (a) and IAC (b) metamodels

(like Tropos [11]) the agent mental models. Of course, there are some developers
who want to have all these things ready for them, but there are others who
want to use different agent paradigms according to their expertise. For example,
one can use AMOLA for defining Belief-Desire-Intentions based agents, while
another for defining procedural agents [26].

The inspiration for defining the IAC metamodel mainly came from the UML
statechart definition. Aiming to define the statechart using the AMOLA defini-
tion of statechart [30], the IAC metamodel differs significantly from the UML
statechart. However, a UML statechart can be transformed to an IAC state-
chart, although some elements would be difficult to define (UML does not cater
for transition expressions and association of variables to nodes and uses state-
charts to define a single object’s behaviour). Thus, the IAC metamodel, which
is presented in Figure 2(b), defines a Model concept that has nodes, transitions
and variables EReferences. Note that it also has a name EAttribute. The latter
is used to define the namespace of the IAC model. The namespace should follow
the Java or C# package namespace format. The nodes contain the following
attributes:

– name. The name of the node,
– type. The type of the node, corresponding to the type of state in a statechart,

typically one of AND, OR, BASIC, START, END (see [10]),
– label. The node’s label, and
– activity. The activity related to the node.

112 N. Spanoudakis and P. Moraitis

Nodes also refer to variables. The Variable EClass has the attributes name and
type (e.g. the variable with name “count” has type “integer”). The next concept
defined in this metamodel is that of Transition, which has four attributes:

– name, usually in the form <source node label> TO <target node label>
– TE, the transition expression. This expression contains the conditions and

events that make the transition possible. Through the transition expressions
(TEs) the modeler defines the control information in the IAC. TEs can use
concepts from an ontology as variables. Moreover, the receipt or transmis-
sion of an inter-agent message can be used (in the case of agent interaction
protocols). For the formal definition of the TE and some examples see [26]
or [29].

– source, the source node, and,
– target, the target node.

3 The ASEME Model-Driven Process and Tools

ASEME is described in detail in [26]. It is a complete process incorporating
all the traditional software engineering methodology phases, however, using the
SPEM 2.0 process metamodel [21] it can be modified to provide an agile process.
Figure 3, a screenshot from the EPF2 modelling tool, shows on the left side the
ASEME method library and its various properties. From top to bottom the most
important are the:

– Work Product Kinds, we have defined two product kinds, models (graphical
models, e.g. SAG, SUC, etc) and text (textual representation, e.g. a computer
program).

– Role sets, where the different human actors implicated in the software de-
velopment process are identified.

– Tools, the various tools used in the process, in this case the transformation
tools.

– Processes, can be delivery processes, which provide the project manager with
an initial project template, showing the project milestones with the work
products to be delivered and needed resources, or capability patterns that
allow project managers to use one or more method libraries to compose
their project-specific process.

In Figure 3, the reader can see two defined capability patterns, the first named
ASEME and containing the six software development phases, and a more com-
pact one, the ASEME MDE process where the model-driven development process
for a single agent system is depicted. This process shows the nine tasks needed
for developing an agent-based system:

1. Edit SAG model. The business consultant of the software development firm
identifies the actors involved in the system to be along with their goals.

2 The Eclipse Process Framework (EPF) aims at producing a customizable software
process engineering framework. URL: http://www.eclipse.org/epf/

http://www.eclipse.org/epf/

Using ASEME Methodology for Model-Driven Agent Systems Development 113

Fig. 3. The ASEME MDE Process

2. SAG2SUC. An automated task, as the reader can see in the figure this task
has only a mandatory input model (SAG) and an output model (SUC). It
creates an initial SUC model based on the previously created SAG model.

3. Refine Use Cases. The analyst works on the SUC model and refines the
general use cases using the include relationship. He/she also identifies which
actors will be implemented defining them as human or artificial agent actors.
The overall system design is enriched by identifying the tasks that have to
be carried out by the actors.

4. SUC2SRM. An automated task, it has only a mandatory input model (SUC)
and an output model (SRM). It creates an initial SRM model based on the
previously created SUC model.

5. Refine the SRM model. The analyst works on the SRM model by defining the
liveness formulas that will describe the dynamic compilation of the previously
identified tasks.

6. SRM2IAC. An automated task, it has only a mandatory input model (SRM)
and an output model (IAC). It creates multiple initial IAC models based on
the previously created SRM model, one for each role.

7. Refine the IAC model. The designer works on each IAC model by defining
the conditions and/or events that will enable the transitions from one task
to the other.

114 N. Spanoudakis and P. Moraitis

8. IAC2JADE. An automated task, it has only a mandatory input model (IAC)
and an output model (Java JADE3 Agent and Behaviours code). It creates
a JADE Agent class and multiple JADE Behaviour classes for each IAC
model.

9. Write SimpleBehaviour action methods. The programmer writes code only
for the JADE SimpleBehaviour class descendants’action methods.

The following paragraphs discuss the employed transformations automation
tools that are used in the presented ASEME MDE process.

3.1 The ASEME M2M Transformation Tools (SAG2SUC and
SUC2SRM)

The Atlas Transformation Language (ATL) [14] was used for model to model
(M2M) transformations. Another alternative to ATL would be the Query-View
Transformation (QVT) language [20], however, ATL was better documented on
the internet with a user guide and examples, while the only resource located for
QVT was a presentation. Therefore, and as the requirements of both languages
(ATL and QVT) are the same the decision was to choose the better documented
one. Such transformations are the SAG2SUC and SUC2SRM.

The ATL rules for the SAG2SUC transformation are presented in Figure 4. At
the top of the right window, the IN and OUT metamodels are defined followed
by rules that have an input model concept instance and one or more output con-
cept model instances. The first rule (Goal2UseCase) takes as input a SAG Goal
concept and creates a SUC UseCase concept copying its properties. The ATL
is declarative and has catered for the cases that a concept references another.
The depender and dependee references of a SAG Goal are both transformed to
participator references of the SUC UseCase. The ATL engine searches the rules
to find one that transforms the types of the EReference (i.e. the SAG Actor
concepts to a SUC Role). It finds the second rule (Actor2Role) and fires it, thus
creating the EReference type objects and completing the first rule firing. At the
left hand side of Figure 4 the reader can see the files relevant to this transfor-
mation: a) the SAG.ecore and SUC.ecore metamodel files, b) the SAG2SUC.atl
rules file, c) the SAGModel.xmi file containing the SAG model in XML format
and d) the SUCModelInitial.xmi file containing the automatically derived initial
SUC model.

3.2 The ASEME T2M Transformation Tool (SRM2IAC)

The trick in text to model transformations is to define the meta-model of the
text to be transformed. This can be done in the form of an EBNF syntax (for
languages with a grammar) or through string manipulation. Efftinge and Völter
[6] presented the xtext framework in the context of the Eclipse Modeling Project

3 The Java Agent Development Environment (JADE) is an open source framework
that adheres to the FIPA standards, URL: http://jade.tilab.com

http://jade.tilab.com

Using ASEME Methodology for Model-Driven Agent Systems Development 115

Fig. 4. The eclipse ATL project for the SAG2SUC and the SUC2SRM M2M transfor-
mations

(EMP4). According to their work, an xText grammar is a collection of rules. Each
rule is described using sequences of tokens. Tokens either reference another rule
or one of the built-in tokens (e.g. STRING, ID, LINE, INT). A rule results in
a meta type, the tokens used in the rule are mapped to properties of that type.
xText is used to automatically derive the meta model from the grammar. Then
a textual representation of a model following this grammar can be parsed and
the meta-model is automatically generated.

Rose et al. [24] described an implementation of the Human-Usable Textual
Notation (HUTN) specification of OMG [18] using Epsilon, which is a suite of
tools for MDE. OMG created HUTN aiming to offer three main benefits to MDE:
a) a generic specification that can provide a concrete HUTN language for any
model, b) the HUTN languages to be fully automated both for production and
parsing, and, c) the HUTN languages to conform to human-usability criteria. The
HUTN implementation automates the transformation process by eliminating
the need for a grammar specification by auto defining it accepting as input
the relevant EMF meta-model. This is the main reason for choosing HUTN for
ASEME.

4 The Eclipse Modeling Project provides a unified set of modeling frameworks, tooling,
and standards implementations, URL: http://www.eclipse.org/modeling/

http://www.eclipse.org/modeling/

116 N. Spanoudakis and P. Moraitis

A T2M transformation is used for transforming a liveness formula to a state-
chart (IAC model). We first use an iterative algorithm (see [30]) that creates the
HUTN model, which is then automatically transformed to an IAC model. The
usage of the HUTN technology also helped a lot in debugging the algorithm as
the output was in human-readable format.

3.3 The ASEME M2T Transformation Tool (IAC2JADE)

The last transformation type used in the ASEME process is M2T. The platform
independent IAC model must be transformed to a platform dependent one and
to executable code.

We used the Xpand language offered by the Eclipse. Another commonly used
M2T transformation language (in EMP) is the Java Emitter Templates (JET).
JET uses JSP-like templates, thus it is easy to learn for developers familiar with
this technology.

The advantages of Xpand are the fact that it is source model independent,
which means that any of the EMP parsers can be used for common software
models such as MOF or EMF. Its vocabulary is limited allowing for a quick
learning curve while the integration with Xtend allows for handling complex
requirements. Then, EMP allows for defining workflows that allow the modeler
to parse the model multiple times, possibly with different goals.

In ASEME, the developer uses the IAC2JADE tool that automatically gener-
ates the message receiving and sending behaviours and the composite behaviours
that coordinate the execution of simple behaviours. Thus, the user just needs to
program the action methods of simple behaviours.

4 Non-functional Requirements in ASEME

Throughout this section, and aiming to present the way that ASEME handles
non-functional requirements, some parts of the requirements and system analysis
of two real-world agent-based systems are presented.

4.1 A Real World Case Study: The ASK-IT Project

In this first case study, the requirements were to develop a system that allows
a user to access a variety of location-based services supported by a brokering
system. The system should learn the habits of the user and support him while on
the move. It should connect to an OSGi5 service for getting the user’s coordinates
using a GPS device. It should also handle dangerous situations for the user by
reading a heart rate sensor (again an OSGi service) and call for help. A non-
functional requirement for the system is to execute on any mobile device with

5 The OSGi (Open Services Gateway initiative) Alliance is a worldwide consortium of
technology innovators that advances a proven and mature process to assure interop-
erability of applications and services based on its component integration platform,
URL: http://www.osgi.org

http://www.osgi.org

Using ASEME Methodology for Model-Driven Agent Systems Development 117

the OSGi service architecture. The broker has access to a variety of existing web
services but should also provide added value services. For more details about the
real-world system, which will be referred to as ASK-IT for the remainder of this
document, the reader can refer to [17].

A subset of the SAG model capturing the ASK-IT system requirements is
presented in Figure 5. This model was created after identifying the stakeholders
relevant to this project [26]. Such were the:

– User : The user is a mobility impaired person that wants to get infomobility
services tailored to his needs (e.g. find the nearest toilet that is accessible
according to his type of impairment). This user is assumed to wander in the
environment having access to the internet and wherever possible access to
local area networks using technologies like Wi-Fi. He also has constant access
to devices and services that are on his person and move around with him.
Such can be a GPS device. He also needs assistance in handling dangerous
situations (e.g. if he has a heart attack).

– Broker : This is the ASK-IT B2C (Business to Consumer) Operator. He is
interested in aggregating services offered by diverse service providers either
globally or locally. Whenever a user makes a request he matches the request
to his repository of available services and selects the most relevant one to
request on behalf of the user.

– Added Value Service Providers : These service providers can provide a simple
service or they can introduce new added value services through the aggre-
gation of one or more simple services accessed through the broker. A simple
service provider offers map information for a specific city. An added value
service provider offers map information for any city including the capability
to add points of interest offered by many independent providers.

The stakeholders are modeled as actors. A stakeholder, who is assisted by
a software, introduces a new actor, usually named as personal assistant. Thus,

Fig. 5. The SAG model for the ASK-IT project

118 N. Spanoudakis and P. Moraitis

in Figure 5, the above three stakeholders are represented by four actors, the
user, his personal assistant, the broker and the added value service provider.
The user needs to get location based services and for that he is dependent to his
personal assistant. The latter has three individual goals, to adequately service his
user, to learn his/her habits and to autonomously handle a dangerous situation.
The personal assistant depends on the broker (BR) for getting services. The
broker represents a network operator or portal stakeholder who acts as a service
aggregator and offers the services to its users. Its goals include the maintenance of
a service repository, finding the best service for a user and accessing several web
services offered by third parties. Moreover, he depends for getting added-value
services to the “Added-value service provider” (AVSP), who provides specialized
services for users with special needs or capabilities. For example, an organization
of mobility impaired persons maintains a repository of accessible streets and
buildings and can provide trip planning services to such persons. For offering
their service they depend on the broker themselves in order to get maps or
public transport routing options.

The requirements per goal (RPG) is a simple model aiming to associate SAG
goals to requirements presented in plain text mode. For adding the goal require-
ments the engineer should add the answers to the following questions:

– Why does the actor have this goal and why does he depend to another for
it (this is the most important question and its answer is usually the goal’s
name)

– What is the outcome of achieving the goal (identify related resources)
– How is he expected to achieve this goal (identify the task to be performed

for reaching this goal)
– When is this goal valid (identify timing requirements)

The requirements per goal are documented in the requirements EAttribute of
the Goal concept of the SRM model, see Figure 2(a). A non-functional require-
ment for the personal assistant’s service user goal is to be executed on a mobile
device. Another is that it should reply to a user request within 10 seconds (see
Table 1).

The SUC model presented in Figure 6 is part of the use cases for ASK-IT.
Actually, it is a part focusing in the personal assistant (PA) role. The reader
should notice at this point that the general use cases correspond to the goals of

Table 1. A portion of the Requirements Per Goal (RPG) model for the Personal
Assistant Actor in ASK-IT project

Using ASEME Methodology for Model-Driven Agent Systems Development 119

Fig. 6. A portion of the SUC model of the ASK-IT project

the requirements analysis phase. It is also important to note that at this phase
the task of the system modeler is not to identify goals and dependencies between
actors, like in the SAG, but to analyze the behavior of the system in order to
achieve specific tasks. However, at the highest level of abstraction these tasks
correspond to the system goals. The difference is that the know-how related to
this phase is not that of the business modeler or the business consultant, it is
that of the systems engineer or analyst.

A portion of the SRM for the personal assistant (PA) is presented in Figure 7.
In his liveness model, the root formula states that he executes forever the “service
user” capability in parallel with the “handle dangerous situation” capability.
Each of these capabilities is detailed in the following two formulas whose left
hand side terms are named after them. Other capabilities are further detailed in
following formulas.

Fig. 7. A portion of the SRM model of the Personal Assistant role of the ASK-IT
project

120 N. Spanoudakis and P. Moraitis

Fig. 8. Functionality Table for the personal assistant role of the ASK-IT project

The Functionality Table (FT) is where the analyst associates each activity
participating in the liveness formulas of the SRM to the technology or tool (func-
tionality) that it will use (see an example of FT in Figure 8 for the capabilities of
the PA). The communicate capability includes the “send message” and “receive
message” activities and is shared by all agents as proposed by FIPA6. This is
the point where the analyst proposes the use of a platform for instantiation,
e.g., in our example, JADE. This strategic choice also defines the programming
language that will be used, in this case Java.

Returning to the ASK-IT example, the non-functional requirement for the PA
to execute on any mobile device running OSGi services reveals that such a device
must at least support the Java Mobile Information Device Profile (MIDP), which
offers a specific record for storing data. Therefore, the activities that want to
store or read data from a file must use the MIDP record technology.

The functionality table is defined in the SRM model adding a “functional-
ity” property to each activity. However, a decision maker would prefer to see
this information in a tabular format (like in Figure 8) in order to gain a quick
understanding about the technologies involved in developing each agent.
6 The Foundation for Intelligent Physical Agents (FIPA) is an IEEE Computer Society

standards organization that promotes agent-based technology and the interoperabil-
ity of its standards with other technologies, URL: http://www.fipa.org

http://www.fipa.org

Using ASEME Methodology for Model-Driven Agent Systems Development 121

4.2 A Real World Case Study: The Market-Miner Project

In the Market-Miner project [27], we developed an autonomous product pricing
agent situated in a firm monitoring for changes of the prices of competitors along
with changes in firm policies and deciding on the prices of the products on the
self.

During the analysis phase we identified the actors and the use cases related
to our agent system. We documented these findings using the ASEME System
Use Cases (SUC) model (see Figure 9). For our system, the system actor is
the Market-miner Product Pricing Agent (or MIPA), while the external actors
that participate in the system’s environment are the user, external systems of
competitors, weather report systems (as the weather forecast influences product
demand, like in the case of umbrellas) and municipality systems (as local events
like concerts, sports, etc, also influence consumer demand).

Having defined the involved actors we started identifying general use cases
(like interact with user) and then we elaborated them in more specific ones (like
present information to the user and update firm policy) using the � include �
relation. After refining the use cases, the SUC model was transformed to the
System Roles Model (SRM), see Figure 10(a).

Fig. 9. An extract from the MIPA System SUC Model

122 N. Spanoudakis and P. Moraitis

Fig. 10. MIPA Role Model (a) and the Functionality Table (b)

The next step was to associate each activity to a functionality, i.e. the tech-
nology that would be used for its implementation. In Figure 10(b) the reader
can observe the capabilities, the activities that they decompose to and the func-
tionality associated with each activity. The choice of these technologies is greatly
influenced by non-functional requirements. For example the system will need to
connect on diverse firm databases. Thus, the JDBC7 technology was selected, as
it is database provider independent. Moreover, the different information chan-
nels that are currently used depend on the same functionality, i.e. a web service
invocation. Thus, in the future, new information channels such as a financial
channel where from to get relevant news, such as a financial crisis, can be inte-
grated in the system using the same functionality. In this way, this model allows
for the easy extensibility of the system (another usually desired non-functional
requirement).

5 ASEME Evaluation

For evaluating our work we used two case studies on the development of two real-
world systems. The first, a module of the ASK-IT project [17], included program-
ming for semantic service matching and interfaces to other modules that were
based on OSGi, a service oriented architecture. The ontology was developed using
7 The Java Database Connectivity (JDBC) is a standard for database-independent

connectivity between the Java programming language and a wide range of databases
providing a call-level API for SQL-based database access, URL: http://java.sun.
com/javase/technologies/database/

http://java.sun.com/javase/technologies/database/
http://java.sun.com/javase/technologies/database/

Using ASEME Methodology for Model-Driven Agent Systems Development 123

the Protégé8 ontology editor and its beangenerator add-on, which generates java
files representing an ontology that can be used with the JADE environment. The
second is the Market-Miner project [27], where we used Prolog for implementing
the decision making capability of the agent. Again, we used the Protégé editor
for creating the ontology.

These projects used different implementation platforms, the first the JADE
platform, while the second a Java CASE (Computer-Aided Software Engineer-
ing) tool, IBM Rational Rhapsody (URL: http://www.ibm.com). For the latter
it was needed to transform the SRM model to an IAC model manually (as
Rhapsody does not offer an import tool for statechart models) using the process
defined in [30].

Table 2 shows a quick comparison of ASEME with existing AOSE method-
ologies. It has been inspired by a similar table in [32] from which we use some
criteria (rows). The first row shows the levels of abstraction supported by the
methodologies. Only ASEME maintains three levels of abstraction throughout
the software development phases. Some do not support abstraction at all, while
others do a phase-based abstraction (e.g. define agent interactions and roles
in the analysis phase and focus in the specific agent development in the design
phase). The next row shows the MDE support for the different software develop-
ment phases. ASEME supports all the phases, many methodologies support some
phases and INGENIAS allows the modeler to define his own transformations. The
third row shows if a methodology covers all the software development phases,
i.e. requirements analysis, system analysis, design, implementation, verification
and optimization. The forth row shows what kind of agents each methodology
supports and the fifth row indicates which methodologies define an intra-agent
control model that allows an agent to coordinate his capabilities, thus support-
ing a modular development approach. The sixth row shows that ASEME is the
only methodology to use a uniform representation of inter-agent protocols and
the intra-agent control allowing for an easy integration of protocols in an agent
specification. In Table 2 “n/a” means not applicable.

The last two rows are related to the non-functional requirements capture ca-
pability of the methodologies. Only three of the reviewed methodologies address
this issue as the seventh row suggests. In Tropos, NFRs are either operationalized
(also in MaSE) or are transformed to operational rules in the Late Requirement
Analysis phase. Finally, only in ASEME they are used for selecting implemen-
tation technologies and tools in the analysis phase while in Tropos they are
used for offering alternatives of implementations (also in the form of redundant
sub-systems).

6 Related Work

A number of works in AOSE have introduced concepts and ideas from the model-
driven engineering domain. Most of them just introduce an MDE technique for
8 Protégé is a free, open source ontology editor and knowledge-base framework, URL:
http://protege.stanford.edu

http://protege.stanford.edu

124 N. Spanoudakis and P. Moraitis

Table 2. ASEME compared with existing AOSE methodologies

transforming one of their models to another in one phase, e.g. from a Tropos
plan decomposition diagram to a UML activity diagram in [23] and from a BDI
(Belief-Desire-Intention) representation in XML format to JACK platform code
in [12]. Almost all AOSE methodologies define a single, usually huge metamodel
covering all the requirements, analysis and design phases [1].

Other works aim to create a single meta-model that can be used by different
AOSE methodologies in a specific phase, like in [9], where the authors defined
a meta-model (PIM4Agents) that can be used to model MAS in the PIM level
of MDA, and in [1], where the authors try to envisage a unifying MAS meta-
model. Finally, a more recent work [7] presents an algorithm to generate model
transformations by-example that allows the engineer to define himself the trans-
formations that he wants to apply to models complying with the INGENIAS
metamodel.

ASEME furthers the state of the art by being the first AOSE methodology to
propose a model-driven approach covering all the development phases. Thus, the
developer only at the requirements analysis phase starts a model from scratch
(SAG). All the other models are launched through a transformation that initial-
izes them. Then, the developer adds the new information related to the specific
model.

Regarding the use of non-functional requirements (NFRs), Tropos [2] provides
a means for documenting them in the requirements analysis phase as soft goals.
Then, Tropos uses them in two ways. The first is to evaluate identified tasks as
helping or restricting the soft-goals. The second is to identify tasks that pursue
the soft-goals (in which case soft goals become functional requirements).

Another approach is that proposed by Danny Weyns [33]. In his work, the
author addresses the issue of NFRs by selecting appropriate architectures that

Using ASEME Methodology for Model-Driven Agent Systems Development 125

each addresses a family of NFRs. For example, he proposes that selecting an
agent-based approach to software development contributes to the NFRs open-
ness, adaptability and scalability. Moreover, additional NFRs are modeled in
quality attribute scenarios. These consist of three parts, a) stimulus: an event
occuring in the system, b) environment : the environment conditions at the time
of the stimulus occurence, and, c) response: the activity to be executed when
the stimulus arrives.

In ASEME the way to cater for NFRs has been influenced by the work of
Pérez et al. [22], who believe that non-functional requirements need a way to
influence the way to implement a system or task, and this is what ASEME
uniquely achieves compared to the other AOSE methodologies. In ASEME we
do not define specific situations as NFRs, we allow quality requirements to be
inserted in each goal requirements in the SAG model. Thus, they influence all
analysis phase decisions including the technology selection for achieving the goal.
Moreover, ASEME could allow for the catering of quality attribute scenarios if
they are defined as agent interaction protocols (which define preconditions and
results along with the different interested actors activities).

7 Conclusion

In the previous sections, we presented the formal definition of the AMOLA
metamodels, which have been inspired by previous works but are original in
the way that they uniquely extend those works and insert new semantics, thus
assisting the ASEME process. We also presented the models transformations
that occur in the different phases of ASEME.

The platform independent model of ASEME, i.e. the IAC, is a statechart
which can be transformed to a platform specific model in C++ or Java (using
commercial CASE tools) or in the JADE agent platform. This is another original-
ity of ASEME, it is the first AOSE methodology to provide a PIM model that
is compatible with existing software tools (i.e. the statechart) giving multiple
platform choices to the developers.

The models used are common in the software engineering community, which
means that any engineer can quickly adapt to the ASEME process. Model trans-
formations are automated throughout the software development process.

Moreover, ASEME documents quality or non-functional requirements at the
requirements analysis phase and allows these to influence the architectural deci-
sions of the analyst(s) when selecting technologies (e.g. reasoning, communica-
tion, etc) for realising system tasks. The possiblity of the ASEME IAC model
to be transformed to a process model allows for simulating the analysis model
even before design and validate the system functional and several non-functional
requirements including scalability and robustness.

ASEME has been successfully used for the development of two real world sys-
tems ([17], [27]) and is currently used for development of a robotic system [4].
Moreover, we are working on automating the transformation of the IAC model
to a process model as there are a number of existing tools in the market that
perform system simulation, verification and optimization on such models. In [5]

126 N. Spanoudakis and P. Moraitis

we proposed transformation templates for doing this transformation manually
and performed simulations that showed that the ASK-IT system could deliver
the service to the end user in 10 seconds (thus achieving a non-functional re-
quirement, see Table 1).

Acknowledgements. We thank the reviewers of the AOSE workshop for their
valuable, constructive comments. We also thank the European Union and the
Ambient Assisted Living (AAL) Joint Programme (HERA Project, AAL-45061)
for partially funding and for supporting this work.

References

1. Bernon, C., Cossentino, M., Pavón, J.: Agent-oriented software engineering. Knowl-
edge Eng. Review 20(2), 99–116 (2005)

2. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8, 203–236 (2004)

3. Budinsky, F., Brodsky, S.A., Merks, E.: Eclipse Modeling Framework. Pearson
Education, London (2003)

4. Chatzilaris, E., Kyranou, I., Orfanoudakis, E., Paraschos, A., Vazaios, E.,
Spanoudakis, N., Vlassis, N., Lagoudakis, M.G.: Kouretes 2010 spl team descrip-
tion paper. In: RoboCup 2010 Team Description Papers, Singapore (2010)

5. Delias, P., Spanoudakis, N.: Simulating multi-agent system designs using business
process modeling. In: Proceedings of the 8th European Workshop on Multi-Agent
Systems (EUMAS 2010), Paris, France, December 16-17 (2010)

6. Efftinge, S., Völter, M.: oaw xtext: A framework for textual dsls. In: Eclipse Summit
2006 Workshop: Eclipse Modeling Symposium (2006), http://www.eclipsecon.

org/summiteurope2006/
7. Garćıa-Magariño, I., Rougemaille, S., Fuentes-Fernández, R., Migeon, F., Gleizes,

M.P., Gómez-Sanz, J.J.: A tool for generating model transformations by-example
in multi-agent systems. In: Demazeau, Y., Pavón, J., Corchado, J.M., Bajo, J.
(eds.) 7th International Conference on Practical Applications of Agents and Multi-
Agent Systems (PAAMS 2009), Salamanca, Spain, March 25-27. Advances in Soft
Computing, vol. 55, pp. 70–79. Springer, Heidelberg (2009)

8. Gerber, A., Raymond, K.: Mof to emf: there and back again. In: Burke, M.G. (ed.)
Proceedings of the 2003 OOPSLA Workshop on Eclipse Technology eXchange,
Anaheim, CA, USA, pp. 60–64. ACM, New York (2003)

9. Hahn, C., Madrigal-Mora, C., Fischer, K.: A platform-independent metamodel for
multiagent systems. Autonomous Agents and Multi-Agent Systems 18(2), 239–266
(2009)

10. Harel, D., Kugler, H.: The rhapsody semantics of statecharts (or, on the exe-
cutable core of the uml) - preliminary version. In: Ehrig, H., Damm, W., Desel,
J., Große-Rhode, M., Reif, W., Schnieder, E., Westkämper, E. (eds.) INT 2004.
LNCS, vol. 3147, pp. 325–354. Springer, Heidelberg (2004)

11. Henderson-Sellers, B., Giorgini, P.: Agent-oriented methodologies. Idea Group
Pub., USA (2005)

12. Jayatilleke, G.B., Padgham, L., Winikoff, M.: A model driven component-based
development framework for agents. Comput. Syst. Sci. Eng. 20(4) (2005)

13. Jouault, F., Bézivin, J.: Km3: A dsl for metamodel specification. In: Gorrieri,
R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 171–185. Springer,
Heidelberg (2006)

http://www.eclipsecon.org/summiteurope2006/
http://www.eclipsecon.org/summiteurope2006/

Using ASEME Methodology for Model-Driven Agent Systems Development 127

14. Jouault, F., Kurtev, I.: Transforming models with atl. In: Bruel, J.-M. (ed.)
MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)

15. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston
(2003)

16. Langlois, B., elena Jitia, C., Jouenne, E.: Dsl classification. In: 7th OOPSLA Work-
shop on Domain-Specific Modeling (2007)

17. Moraitis, P., Spanoudakis, N.I.: Argumentation-based agent interaction in an
ambient-intelligence context. IEEE Intelligent Systems 22(6), 84–93 (2007)

18. OMG: Human-Usable Textual Notation V1.0 (2004)
19. OMG: Meta Object Facility (MOF) Core Specification Version 2.0 (2006), http://

www.omg.org/cgi-bin/doc?formal/2006-01-01

20. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification
Version 1.0 (2008), http://www.omg.org/spec/QVT/1.0/PDF/

21. OMG: Software and Systems Process Engineering Meta-Model Specification, ver-
sion 2.0 (2008)

22. Pérez, F.J., Laguna, M.A., González-Carvajal, Y.C., González-Baixauli, B.: Re-
quirements variability support through mdatm and graph transformation. Electr.
Notes Theor. Comput. Sci. 152, 161–173 (2006)

23. Perini, A., Susi, A.: Automating model transformations in agent-oriented mod-
elling. In: Müller, J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp.
167–178. Springer, Heidelberg (2006)

24. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.: Constructing models with the
human-usable textual notation. In: Busch, C., Ober, I., Bruel, J.-M., Uhl, A., Völter,
M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 249–263. Springer, Heidelberg (2008)

25. Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-
driven software development. IEEE Software 20(5), 42–45 (2003)

26. Spanoudakis, N.: The Agent Systems Engineering Methodology (ASEME). Ph.D.
thesis, Paris Descartes University (2009)

27. Spanoudakis, N., Moraitis, P.: Engineering an agent-based system for product pric-
ing automation. Engineering Intelligent Systems for Electrical Engineering and
Communications 17(2-3), 139–151 (2009)

28. Spanoudakis, N.I., Moraitis, P.: The agent modeling language (amola). In: Dochev,
D., Pistore, M., Traverso, P. (eds.) AIMSA 2008. LNCS (LNAI), vol. 5253, pp. 32–
44. Springer, Heidelberg (2008)

29. Spanoudakis, N.I., Moraitis, P.: An agent modeling language implementing pro-
tocols through capabilities. In: Proceedings of the 2008 IEEE/WIC/ACM Inter-
national Conference on Intelligent Agent Technology (IAT 2008), Sydney, NSW,
Australia, December 9-12, pp. 578–582. IEEE, Los Alamitos (2008)

30. Spanoudakis, N.I., Moraitis, P.: Gaia agents implementation through models trans-
formation. In: Yang, J.-J., Yokoo, M., Ito, T., Jin, Z., Scerri, P. (eds.) PRIMA 2009.
LNCS, vol. 5925, pp. 127–142. Springer, Heidelberg (2009)

31. Susi, A., Perini, A., Mylopoulos, J., Giorgini, P.: The tropos metamodel and its
use. Informatica (Slovenia) 29(4), 401–408 (2005)

32. Tran, Q., Low, G.: Comparison of ten agent-oriented methodologies. In: Agent-
oriented methodologies [11]

33. Weyns, D.: Architecture-Based Design of Multi-Agent Systems, 1st edn. Springer
Publishing Company, Heidelberg (2010) (incorporated)

34. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems:
The gaia methodology. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/spec/QVT/1.0/PDF/

	Using ASEME Methodology for Model-Driven Agent Systems Development
	Introduction
	Metamodeling and Models Transformation

	The AMOLA Metamodels
	The System Actor Goal Model (SAG)
	The System Use Cases Model (SUC)
	The System Roles Model (SRM)
	The Intra-Agent Control Model (IAC)

	The ASEME Model-Driven Process and Tools
	The ASEME M2M Transformation Tools (SAG2SUC and SUC2SRM)
	The ASEME T2M Transformation Tool (SRM2IAC)
	The ASEME M2T Transformation Tool (IAC2JADE)

	Non-functional Requirements in ASEME
	A Real World Case Study: The ASK-IT Project
	A Real World Case Study: The Market-Miner Project

	ASEME Evaluation
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

