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Compensation of Wave Actuator Dynamics
for Nonlinear Systems

Nikolaos Bekiaris-Liberis and Miroslav Krstic, Fellow, IEEE

Abstract—The problem of stabilization of PDE-ODE cascades
has been solved in the linear case for several PDE classes, whereas
in the nonlinear case the problem has been solved only for the
transport/delay PDE, namely for compensation of an arbitrary
delay at the input of a nonlinear plant. Motivated by a specific
engineering application in off-shore drilling, we solve the problem
of stabilization of the cascade of a wave PDE with a general
nonlinear ODE. Due to the presence of nonlinearities of arbitrary
growth and the time-reversibility of the wave PDE, and due to the
possibility of using arguments based on Lyapunov functionals or
explicit solutions, several stability analysis approaches are possi-
ble. We present stability results in the H2 × H1 and C1 × C0

norms for general nonlinear ODEs, as well as in the H1 × L2

norm for linear ODEs. We specialize our general design for wave
PDE-ODE cascades to the case of a wave PDE whose uncontrolled
end does not drive an ODE but is instead governed by a nonlinear
Robin boundary condition (a “nonlinear spring,” as in the friction
law in drilling). This is the first global stabilization result for wave
equations that incorporate non-collocated destabilizing nonlinear-
ities of superlinear growth. We present two numerical examples,
one with a nonlinear ODE and one with a nonlinear spring at the
uncontrolled boundary of the wave PDE.

Index Terms—Distributed parameter systems, nonlinear con-
trol systems, delay systems.

I. INTRODUCTION

A common type of instability in oil drilling is the friction-
induced stick-slip oscillation [8], which results in tor-

sional vibrations of the drillstring and can severely damage the
drilling facilities (see Fig. 1 from [26]). The torsion dynamics
of a drillstring are modeled as a wave PDE (that describes
the dynamics of the angular displacement of the drillstring)
coupled with a nonlinear ordinary differential equation (ODE)
that describes the dynamics of the bottom angular velocity of
the drill bit [27]. A control approach based on linearization
is presented in [26]. In this article we present a design for
general nonlinear ODE plants with a wave PDE as its actuator
dynamics. This design solves the oil drilling problem (globally)
as a special case.

For linear systems, predictor feedback and backstepping
have been successful in compensation of input delays [2], [7],
[16], [21], [25], [40] as well as for the compensation of more
complex input dynamics such as diffusive and wave PDEs
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Fig. 1. A drillstring used in oil drilling. The angular displacement u of the
drillstring is controlled through a torque U .

[3], [4], [16], [24], [32]–[34]. For nonlinear systems, results
are available for the compensation of input delays [10], [11],
[17], [22], [23] but there exist no results for the compensation
of more complex actuator dynamics in nonlinear systems, al-
though there are results for the control of nonlinear PDEs using
backstepping [19], [20], [36]–[39].

In this article, we consider finite-dimensional nonlinear
plants which are controlled through a string and design a
predictor-based feedback law that compensates the string
(wave) dynamics in the input of the plant. Our design is based
on a preliminary transformation which allows one to convert the
wave PDE to a 2 × 2 system of first-order transport equations
which convect in opposite directions (one towards the plant and
one away from the plant), with an additional scalar state (Sec-
tion II). We then introduce a backstepping transformation of the
transport state which convects towards the plant. Backstepping
transforms the original system to a “target system” for which
we construct a Lyapunov functional. Due to the fact that the
transformed 2 × 2 system of the first-order transport equations
is not autonomous (the state of the plant is acting back on the
actuator state through a nonlinear relation) we have to use in our
Lyapunov functional the H2 × H1 norm of the actuator state
(Section III).

We also provide stability estimates in the (lower) C1 ×
C0 norm of the actuator state. For proving stability in the
C1 × C0 norm we use two different techniques-one based
on a Lyapunov construction and one based on estimates on
the solutions of the closed-loop system. In the former case,
a Lyapunov construction is possible after introducing a new
backstepping transformation, of the transport PDE that con-
vects in the opposite direction (i.e., away from the plant), that
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TABLE I
STABILITY RESULTS IN THE ARTICLE

Fig. 2. Top: A nonlinear system with a wave PDE in the input as in (1)–(4). Bottom: The equivalent representation of the wave PDE/nonlinear ODE cascade
using the change of variables (5), (6), as given in (10)–(14) and using the fact that ut(1, t) = U(t) + ω(1, t).

converts the original system to a new target system. In this
new target system the transformed 2 × 2 transport system is
autonomous, and in particular, is a cascade of two transport
PDEs with coupling only at the boundary (Section IV-A). Yet,
this Lyapunov construction comes with one limitation-in order
to guarantee the well-posedness and invertibility of the new
backstepping transformation, one has to impose the assumption
that both the open and closed-loop systems are not only forward
but also backward complete. Our second, alternative proof, is
based on constructing estimates on the solutions of the closed-
loop system and exploiting the predictor nature of the feedback
law (Section IV-B). We specialize our results to linear systems,
for which we prove exponential stability in the (most desirable)
H1 × L2 norm of the actuator state (Section V).

Our results are new even when we remove the ODE part
from the PDE-ODE cascade and consider the stabilization
problem of the wave PDE whose uncontrolled end does not
drive an ODE but is instead governed by a nonlinear spring. We
specialize our general design to this case and design the first
global stabilizing control law for wave equations that incorpo-
rate non-collocated destabilizing nonlinearities of superlinear
growth (Section VI). We extend our design methodology to
nonlinear systems with actuator dynamics that are governed by
a wave PDE with anti-damping on the uncontrolled boundary
(Section VII). Finally, we present two numerical examples. One
with a nonlinear ODE and one with a nonlinear spring at the
uncontrolled boundary of the wave PDE (Section VIII).

Notation: We use the common definition of class K, K∞ and
KL functions from [13]. For an n-vector, the norm | · | denotes
the usual Euclidean norm. For a scalar function u∈L∞[0, 1]
we denote by ∥u(t)∥∞ its supremum norm, i.e., ∥u(t)∥∞=
supx∈[0,1] |u(x, t)|. For a scalar function u∈H1(0, 1), we de-

note by ∥u(t)∥H1 the norm ∥u(t)∥H1 =(
∫ 1
0 u(x, t)2dx)1/2+

(
∫ 1
0 ux(x, t)2dx)1/2. For any c > 0, we denote the weighted

supremum norm of u by ∥u(t)∥c,∞=supx∈[0,1] e
c(1+x)|u(x, t)|

and the weighted H1 norm by ∥u(t)∥c,H1 =(
∫ 1
0 ec(1+x)u(x,

t)2dx)1/2+(
∫ 1
0 ec(1+x)ux(x, t)2dx)1/2. For a vector valued

function p ∈ L∞[0, 1] we denote by ∥p(t)∥∞ its supremum
norm, i.e., ∥p(t)∥∞ = supx∈[0,1]

√
p1(x, t)2 + . . . pn(x, t)2.

We denote by Cj(A) the space of functions that have contin-
uous derivatives of order j on A.

II. CONTROLLER DESIGN

We consider the system

Ẋ(t) = f (X(t), u(0, t)) (1)
utt(x, t) = uxx(x, t) (2)
ux(0, t) = h (X(t), u(0, t)) (3)
ux(1, t) = U(t) (4)

where X ∈ Rn, U ∈ R, t ∈ R+, f : Rn × R → Rn is locally
Lipschitz with f(0, 0) = 0, and h : Rn+1 → R is continuously
differentiable with h(0, 0) = 0. Our controller design is based
on converting the wave equation to a 2 × 2 system of first-order
transport equations which convect in opposite directions (see
Fig. 2). To achieve this we define the following transformations:

ζ(x, t) = ut(x, t) + ux(x, t) (5)
ω(x, t) = ut(x, t) − ux(x, t) (6)

together with their inverses given by

ut(x, t) =
ζ(x, t) + ω(x, t)

2
(7)

ux(x, t) =
ζ(x, t) − ω(x, t)

2
. (8)

Defining

ξ(t) = u(0, t) (9)
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and noting from (3) that ζ(0, t) = ut(0, t) + h(X(t), ξ(t)),
system (1)–(4) is written as

Ż(t) = g (Z(t), ζ(0, t)) (10)
ωt(x, t) = − ωx(x, t) (11)
ω(0, t) = ζ(0, t) − 2h (Z(t)) (12)
ζt(x, t) = ζx(x, t) (13)
ζ(1, t) = U(t) + ut(1, t) (14)

where

Z =

[
X

ξ

]
(15)

g(Z, v) =

[
f(X, ξ)

−h(X, ξ) + v

]
. (16)

Our feedback design, that compensates the wave actuator
dynamics, is based on applying the predictor approach to a
nominal feedback law µ∗ : Rn+1 → R that stabilizes the plant
Ż = g(Z,U) defined in (10), i.e., a nominal feedback law for
the following system

Ẋ(t) = f (X(t), ξ(t)) (17)
ξ̇(t) = − h (X(t), ξ(t)) + U(t). (18)

Note that such a nominal control law for the augmented system
(17), (18) can be constructed, using one step of backstepping,
if there exists a control law κ that stabilizes the plant Ẋ =
f(X, U), i.e., such that Ẋ = f(X,κ(X)) is globally asymp-
totically stable. A choice of the feedback law µ∗ is then

µ∗ (X(t), ξ(t)) = µ (X(t), ξ(t)) + h (X(t), ξ(t)) (19)
µ (X(t), ξ(t)) = − c1 (ξ(t) − κ (X(t)))

+
∂κ (X(t))

∂X
f (X(t), ξ(t)) . (20)

Noting that the input to the Z system is the delayed version
of the signal ζ(1, t) = U(t) + ut(1, t), we conclude that our
control law has to employ the prediction of Z.

The predictor-based control law that compensates the wave
dynamics is chosen as U(t) = −ut(1, t) + µ∗(X(t + 1), ξ(t +
1)) and is given by

U(t) = −ut(1, t) − c1 (p2(1, t) − κ (p1(1, t))) +
∂κ (p1(1, t))

∂p1

×f (p1(1, t), p2(1, t)) + h (p1(1, t), p2(1, t)) (21)

where c1 > 0 is arbitrary, and p1 ∈ Rn and p2 ∈ R, the predic-
tors of X(t) and u(0, t), respectively, are

p1(x, t) = X(t) +

x∫

0

f (p1(y, t), p2(y, t)) dy,

for all x ∈ [0, 1] (22)

p2(x, t) = u(x, t) +

x∫

0

ut(y, t)dy

−
x∫

0

h (p1(y, t), p2(y, t)) dy, ∀x ∈ [0, 1] (23)

with initial conditions for all x ∈ [0, 1]

p1(x, 0) = X(0) +

x∫

0

f (p1(y, 0), p2(y, 0)) dy (24)

p2(x, 0) = u(x, 0) +

x∫

0

ut(y, 0)dy

−
x∫

0

h (p1(y, 0), p2(y, 0)) dy. (25)

The name “predictors” for p1 and p2 is chosen to emphasize
that p1(1, t) and p2(1, t) are actually the 1-time unit ahead
predictors of X(t) and u(0, t) respectively, i.e., it holds that
p1(1, t) = X(t + 1) and p2(1, t) = u(0, t + 1). This fact is
shown in the next section.1 Note that the control law (21) is
implementable (see [10], [11] for a discussion on the imple-
mentation of nonlinear predictors).

III. LYAPUNOV-BASED STABILITY ANALYSIS

IN THE H2 × H1 NORM

A. Statement of Main Stability Result

Assumption 1: The plant Ż = g(Z, v) is strongly forward
complete, that is, there exist a smooth positive definite function
Rf and class K∞ functions α1 . . .α3 such that

α1 (|Z|) ≤Rf(Z) ≤ α2 (|Z|) (26)
∂Rf(Z)

∂Z
g(Z, v) ≤Rf(Z) + α3 (|v|) , (27)

for all Z ∈ Rn+1 and for all v ∈ R.
Forward completeness implies that for every initial condition

and every locally bounded input signal the corresponding
solution is defined for all t ≥ 0. Strong forward completeness
differs from the standard forward completeness property [1]
in that we assume that g(0, 0) = 0 and hence, Rf(·) is positive
definite.

Assumption 2: The system Ẋ = f(X,κ(X) + v) is input-
to-state stable (ISS) with respect to v and the function κ : Rn →
R is twice continuously differentiable with κ(0) = 0.

Theorem 1: Consider the closed-loop system consisting of
the plant (1)–(4) and the control law (21), (22), (23). Under
Assumptions 1–2, for any initial condition u(·, 0) ∈ H2(0, 1),
ut(·, 0) ∈ H1(0, 1) which is compatible with the feedback law
(21) and is such that ux(0, 0) = h(X(0), u(0, 0)), the closed-
loop system has a unique classical solution

X(t) ∈C1 ([0,∞), Rn) (28)
(u(·, t), ut(·, t)) ∈C ([0,∞), H2(0, 1) × H1(0, 1))

∩ C1 ([0,∞), H1(0, 1) × L2(0, 1)) (29)

1Another way to see this is as follows. Construct first the standard 1-time unit
ahead predictor for Z satisfying (10) as P (t)=Z(t)+

∫ t

t−1
g(P (θ),Ξ(θ))dθ,

where Ξ(t+x−1)=ζ(x, t) (see [16]). Defining P (t+x−1)=p(x, t), we

rewrite the predictor as p(1, t)=Z(t)+
∫ 1

0
g(p(x, t), ζ(x, t))dx. Using def-

initions (15), (16) and noting that p2(1, t)=u(0, t) +
∫ 1

0
ux(x, t)dx+∫ 1

0
ut(x, t)dx−

∫ 1

0
h(p1(x, t), p2(x, t))dx, we get after integrating ux re-

lations (22), (23) for x = 1.
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Fig. 3. Target system (34)–(38) used in the stability analysis of Theorem 1, where Z, g are defined in (15), (16), and µ∗ in (19).

and there exist a class KL function β such that for all t ≥ 0

Ω(t) ≤β (Ω(0), t) (30)
Ω(t) = |X(t)| + ∥u(t)∥∞ + ∥ut(t)∥H1 + ∥ux(t)∥H1

. (31)

B. Proof of Theorem 1

The proof of the theorem is based on a series of technical
lemmas which are given next and whose proofs are provided in
the Appendix A.

Lemma 1: The backstepping transformation of ζ defined as

z(x, t) = ζ(x, t) − µ (p(x, t)) − h (p(x, t)) (32)

for all x ∈ [0, 1], where for all x ∈ [0, 1]

p(x, t) = Z(t) +

x∫

0

g (p(y, t), ζ(y, t)) dy (33)

and µ is defined in (20), and the control law (21)–(23) transform
system (10)–(14) to the target system given by (see also Fig. 3)

Ż(t) = g (Z(t), µ∗ (Z(t)) + z(0, t)) (34)
ωt(x, t) = − ωx(x, t) (35)
ω(0, t) = z(0, t) + µ (Z(t)) − h (Z(t)) (36)
zt(x, t) = zx(x, t) (37)
z(1, t) = 0. (38)

Lemma 2: The inverse backstepping transformation of ζ is
defined for all x ∈ [0, 1] as

ζ(x, t) = z(x, t) + µ (π(x, t)) + h (π(x, t)) , (39)

where for all x ∈ [0, 1]

π(x, t) = Z(t) +

x∫

0

g (π(y, t), µ (π(y, t))

+h (π(y, t)) + z(y, t)) dy. (40)

Lemma 3: System Ż = g(Z, µ∗(Z) + v), where µ∗ is given
by (19), (20) is input-to-state stable with respect to v.

Lemma 4: There exists a class KL function β3 such that the
following holds:

Ξ̂(t) ≤β3

(
Ξ̂(0), t

)
, for all t ≥ 0 (41)

Ξ̂(t) = |Z(t)| + ∥z(t)∥H1
+ ∥ω(t)∥H1

. (42)

Lemma 5: There exists a class K∞ function ρ1 such that

∥p(t)∥∞ ≤ ρ1 (|Z(t)| + ∥ζ(t)∥∞) . (43)

Lemma 6: There exists a class K∞ function ρ̂1 such that

∥π(t)∥∞ ≤ ρ̂1 (|Z(t)| + ∥z(t)∥∞) . (44)

Lemma 7: There exist class K∞ functions ρ3, ρ̂3 such that

|Z(t)| + ∥z(t)∥H1
≤ ρ3

(
|Z(t)| + ∥ζ(t)∥H1

)
(45)

|Z(t)| + ∥ζ(t)∥H1
≤ ρ̂3

(
|Z(t)| + ∥z(t)∥H1

)
. (46)

Proof of Theorem 1: Combining Lemmas 4 and 7 we get

Ψ(t) ≤β∗ (Ψ(0), t) (47)

Ψ(t) = |Z(t)| + ∥ζ(t)∥H1
+ ∥ω(t)∥H1

, (48)

where the class KL function β∗ is defined as β∗(s, t) =
ρ̂3(β3(ρ3(s) + s, t)) + β3(ρ3(s) + s, t). Using the fact that
Z(t) =

[ X(t)
u(0,t)

]
, we get

Γ(t) ≤
√

2β∗ (Γ(0), t) (49)

Γ(t) = |X(t)| + |u(0, t)| + ∥ζ(t)∥H1
+ ∥ω(t)∥H1

. (50)

Using the triangle inequality and (5)–(8), we get that

∥ζ(t)∥H1
+∥ω(t)∥H1

≤2
√

2
(
∥ut(t)∥H1 +∥ux(t)∥H1

)
(51)

∥ut(t)∥H1 +∥ux(t)∥H1
≤
√

2
(
∥ζ(t)∥H1

+∥ω(t)∥H1

)
. (52)

Therefore

Ξ(t) ≤ 2β∗
(
2
√

2Ξ(0), t
)

(53)

Ξ(t) = |X(t)| + |u(0, t)| + ∥ut(t)∥H1 + ∥ux(t)∥H1
. (54)

Using the fact that u(x, t) = u(0, t) +
∫ x
0 uy(y, t)dy, we get

with the aid of the Cauchy-Schwartz inequality

∥u(t)∥∞ ≤ |u(0, t)| + ∥ux(t)∥H1
. (55)

With the fact that |u(0, t)| ≤ ∥u(t)∥∞ we get (30) with
β(s, t) = 4β∗(2

√
2s, t). Using (37) and (38), we get

z(x, t) =

{
z0(t + x), 0 ≤ x + t < 1
0, x + t ≥ 1

(56)

where the initial condition z0(x) is given by (32) with t = 0.
Using relation (5), the fact that ut(·, 0) ∈ H1(0, 1) and that
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u(·, 0) ∈ H2(0, 1), we conclude that ζ(·, 0) ∈ H1(0, 1), and
hence, using the fact that p satisfies the following boundary
value problem in x:

px(x, t) = g (p(x, t), ζ(x, t)) (57)

p(0, t) = Z(t) (58)

and the Lipschitzness of g we conclude the existence and
uniqueness of p(x, 0) ∈ C1[0, 1]. Therefore, with (32) and the
compatibility condition we get that z0 ∈ H1(0, 1) with z0(1) =
0, and hence, with (34), (56) and the Lipschitzness of g and µ∗

we conclude the existence and uniqueness of (X(t), u(0, t)) ∈
C1[0,∞). The fact that z0 ∈ H1(0, 1) with z0(1) = 0 and
(56) guarantee the existence of z ∈ C([0,∞), H1(0, 1)) ∩
C1([0,∞), L2(0, 1)). The uniqueness of this solution follows
from the uniqueness of the solution to (37), (38) (see Sections
2.1 and 2.3 in [5]). With the same arguments and using relation
(6), relations (35), (36) and the fact that

ω(x, t)=

⎧
⎨

⎩

ω0(x−t), 0≤ t<x
z0(t−x)+H (Z(t−x)) , 0≤ t−x<1
H (Z(t−x)) t−x≥1

(59)

H (Z(s))= µ (Z(s))−h (Z(s)) (60)

we get, with the compatibility condition of the control law, the
compatibility condition ux(0, 0)=h(X(0), u(0, 0)) and the fact
that (X(t), u(0, t)) ∈ C1[0,∞) the existence and uniqueness
of ω ∈ C([0,∞), H1(0, 1)) ∩ C1([0,∞), L2(0, 1)). With the
inverse backstepping transformation (39), the fact that p(x, t)=
Z(t + x) ∈ C1[0,∞), which implies that p(x, t) ∈ C1([0, 1] ×
[0,∞)) and the fact that π ≡ p, we get the existence and
uniqueness of ζ∈C([0,∞), H1(0, 1)) ∩ C1([0,∞), L2(0, 1)).
Therefore, using (7), (8) we conclude that there exists a unique
solution (ut, ux)∈C([0,∞), H1(0, 1))∩C1([0,∞), L2(0, 1)),
and hence, with (30) that there exists a unique solution (29).

IV. STABILITY ANALYSIS IN THE C1 × C0 NORM

In this section, we provide two alternative stability results
with estimates that incorporate only the L∞ norm of u, ux and
ut. The first result relies on the construction of a Lyapunov
functional. Yet, this construction is based on the introduction
of an additional backstepping transformation for the ω state.
The well-posedness and the invertibility of this transformation
requires an additional assumption that the system is not only
forward, but also backward complete. The second result is
based on stability estimates on the solutions of the closed-loop
system, i.e., it does not employ a Lyapunov functional.

A. Lyapunov-Based Stability Analysis Under Backward
Completeness Assumption

We introduce the following backstepping transformation forω

w(x, t) = ω(x, t) − µ (r(x, t)) + h (r(x, t)) (61)

for all x ∈ [0, 1], where r is the “reverse” predictor2 of Z and is
given for all x ∈ [0, 1] by

r(x, t)=Z(t) −
x∫

0

g (r(y, t), 2h (r(y, t)) + ω(y, t)) dy (62)

and µ is defined in (20). Note that in the present case µ and h are
allowed to be only locally Lipschitz, and κ only continuously
differentiable functions. By combining the backstepping trans-
formation (62) with (32) and the control law (21)–(23), system
(10)–(14) is transformed to the new target system given by (see
also Fig. 4)

Ż(t) = g (Z(t), µ∗ (Z(t)) + z(0, t)) (63)

wt(x, t) = − wx(x, t) (64)

w(0, t) = z(0, t) (65)

zt(x, t) = zx(x, t) (66)

z(1, t) = 0. (67)

To see this, first apply Lemma 1 to get relations (66), (67).
Relation (65) follows similarly by setting x = 0 into (61), (62)
and using the fact that z(0, t) = ζ(0, t) − µ(Z(t)) − h(Z(t)).
Relation (64) follows by the fact that r in (62) satisfies rt =
−rx. Note that the new boundary condition for the transformed
state w(0, t) depends only on z(0, t) and not on Z. This enables
us to construct a Lyapunov functional by directly incorporating
in the Lyapunov functional the L∞ norm of both w and z. To
see this define the following Lyapunov functional for the target
system (63)–(67)

V (t) = S (Z(t)) +
2

c

∥v(t)∥c,∞∫

0

α7(r)

r
dr (68)

where S and α7 are the dissipative Lyapunov function and one
of the supply functions respectively, of the Lyapunov charac-
terization of the input-to-state stability property of system Ż =
g(Z, µ∗(Z) + v) (see (A.10), (A.11) in Appendix A), c > 0 is
arbitrary and the new variable v(x, t), x ∈ [−1, 1] is defined as

v(x, t) =

{
z(x, t), for all x ∈ [0, 1]
w∗(x, t), for all x ∈ [−1, 0]

(69)

where w∗(x, t)=w(−x, t) and ∥v(t)∥c,∞=supx∈[−1,1] e
c(1+x)

|v(x, t)|. Noting from (64)–(67) that for all x ∈ [−1, 1],
vt(x, t) = vx(x, t) and v(1) = 0, with similar calculations as
in [17, Th. 5], we get

d ∥v(t)∥c,∞

dt
≤ −c ∥v(t)∥c,∞ . (70)

2The fact that r is the reverse predictor of Z is based on the fact that
r(x, t) = Z(t − x). The proof of this fact follows the same lines with the
proof of the fact that p(x, t) = Z(t + x) which is proved in Lemma 1. In
other words, it is shown that r(x, t) = Z(t − x) is the unique solution to
the boundary value problem rx(x, t) = −g(r(x, t), 2h(r(x, t)) + ω(x, t)),
r(0, t) = Z(t) [which follows from (62)] using, (10) and the fact that the
solution to (35) is ω(x, t) = G(t − x) for some function G.
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Fig. 4. Target system (63)–(67) used in the stability analysis of Theorem 2, where Z, g are defined in (15), (16), and µ∗ in (19).

Following the calculations in the proof of Lemma 4, we
arrive at V (t) ≤ β̂1(V (0), t) for a class K∞ function β̂1,
and hence, using the fact that (1/2)(∥w(t)∥∞ + ∥z(t)∥∞) ≤
∥v(t)∥c,∞ ≤e2c(∥w(t)∥∞ + ∥z(t)∥∞), we get for some class
K∞ function β̂2 that

Λ(t) ≤ β̂2 (Λ(0), t) (71)

Λ(t) = |Z(t)| + ∥w(t)∥∞ + ∥z(t)∥∞ . (72)

For proving stability in the original variables one has to relate
the L∞ norm of z and w with the norms of ζ and ω, i.e., one
has to show that there exist class K∞ functions θ1, θ̂1 such that

Λ(t) ≤ θ1 (|Z(t)| + ∥ζ(t)∥∞ + ∥ω(t)∥∞) (73)

θ̂1 (Λ(t)) ≥ |Z(t)| + ∥ζ(t)∥∞ + ∥ω(t)∥∞ . (74)

For proving bounds (73), (74) it is sufficient to prove that w
and z are upper bounded by a class K∞ function of Z, ω and
by a class K∞ function of Z, ζ respectively, and vice versa. For
the case of z this is achieved with Lemmas 1, 5 and for ζ with
Lemmas 2, 6. To relate the norm of w with the norm of ω and
vice versa, one has to guarantee the boundness and invertibility
of the backstepping transformation (61). For achieving this, we
impose the following assumptions.

Assumption 3: The system Ż = g(Z, 2h(Z) + v) is strongly
backward complete, that is, there exist a smooth positive defi-
nite function Rb and class K∞ functions αb,1 . . .αb,3 such that

αb,1 (|Z|) ≤Rb(Z) ≤ αb,2 (|Z|) (75)

−∂Rb(Z)

∂Z
g (Z, 2h(Z)+v) ≤Rb(Z)+αb,3 (|v|) , (76)

for all Z ∈ Rn+1 and for all v ∈ R.
Assumption 4: The system Ż = g(Z, µ∗(Z) + v) is strongly

backward complete with respect to v, that is, there exist a
smooth positive definite function Rb,cl and class K∞ functions
α4,cl, α5,cl, α6,cl such that

α4,cl (|Z|) ≤Rb,cl(Z) ≤ α5,cl (|Z|) (77)

−∂Rb,cl(Z)

∂Z
g (Z, µ∗(Z)+v) ≤Rb,cl(Z)+α6,cl (|v|) , (78)

for all Z ∈ Rn+1 and for all v ∈ R.
The reader should notice that backward completeness im-

plies that for every initial condition and every locally bounded
input signal the corresponding solution is defined for all t ≤ 0.

Theorem 2: Consider the closed-loop system consisting of
the plant (1)–(4) and the control law (21), (22), (23). Under
Assumptions 1–4, for any initial condition u(·, 0) ∈ C1[0, 1],
ut(·, 0) ∈ C[0, 1] which is compatible with the feedback law
(21) and is such that ux(0, 0) = h(X(0), u(0, 0)), the closed-
loop system has a unique solution

X(t) ∈C1 ([0,∞), Rn) (79)
(u(·, t), ut(·, t)) ∈C

(
[0,∞), C1[0, 1] × C[0, 1]

)
, (80)

and there exist a class KL function β̂ such that

Ω̂(t) ≤ β̂
(
Ω̂(0), t

)
(81)

Ω̂(t) = |X(t)| + ∥u(t)∥∞ + ∥ut(t)∥∞ + ∥ux(t)∥∞ , (82)

for all t ≥ 0.
Proof: See Appendix B. !

B. Stability Analysis Without a Lyapunov Functional

Theorem 3: Consider the closed-loop system consisting of
the plant (1)–(4) and the control law (21), (22), (23). Under As-
sumptions 1 and 2, for all initial conditions as in the statement
of Theorem 2, there exist a unique solution (79), (80) and a
class KL function η̂3 such that

Ω̂(t) ≤ η̂3

(
Ω̂(0), t

)
, (83)

for all t ≥ 0, where Ω̂ is defined in (82).
Proof: Using Lemma 3.5 from [9] and using the fact that

g(0, 0) = 0 which allows us to set R = 0, we get from (10) and
the fact that ζ(x, t) = ζ(x + t, 0) for all t + x ≤ 1,

|Z(t)| ≤ ψ (|Z(0)| + ∥ζ(0)∥∞) , for all t ≤ 1, (84)

for some class K∞ function ψ. With relations (19), (20), (21),
the fact that p(1, t) = Z(t + 1), the fact that for all t ≥ 1,
ζ(0, t) = ut(1, t − 1) + U(t − 1) and since Ż = g(Z, µ∗(Z))
is globally asymptotically stable we get for some class KL
function σ that

|Z(t)| ≤ σ (|Z(1)|, t − 1) , for all t ≥ 1. (85)

Combining (84), (85) and assuming (with no generality loss)
that σ(s, 0) ≥ s we arrive at

|Z(t)| ≤ σ̂ (|Z(0)| + ∥ζ(0)∥∞, t) , for all t ≥ 0, (86)

where σ̂(s, t) = σ(ψ(|Z(0)| + ∥ζ(0)∥∞), max{0, t − 1}). We
estimate now ∥ζ(t)∥∞. Using (14), (21) it follows that ζ(1, t) =
µ∗(Z(t + 1)) (see also Fig. 5), and hence, since for all t ≥ 1
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Fig. 5. The target system (10)–(14) used in the stability analysis of Theorem 3, where Z, g are defined in (15), (16), and µ∗ in (19). Note that using the controller
(21) the boundary condition for ζ is ζ(1, t) = µ∗(p(1, t)), where p(1, t) is the 1-time unit ahead predictor of Z.

it holds that ζ(x, t) = ζ(1, t + x − 1) = µ∗(Z(t + x)), for all
x ∈ [0, 1], we get from (84), (85) that for all t ≥ 1

∥ζ(t)∥∞ ≤ ψ̂ (σ (ψ (|Z(0)| + ∥ζ(0)∥∞) , t − 1)) , (87)

where we also used the fact that |µ∗(Z)| ≤ ψ̂(|Z|) for a class
K∞ function ψ̂. Using the fact that for all t ≤ 1, ∥ζ(t)∥∞ ≤
supx∈[0,1−t] |ζ(x + t, 0)|+ supx∈[1−t,1] |ζ(1, t + x − 1)| and
estimates (84), (85) we arrive after some class K∞ function
majorizations at

∥ζ(t)∥∞ ≤ ξ̂ (|Z(0)| + ∥ζ(0)∥∞) , for all t ≤ 1, (88)

for some class K∞ function ξ̂. Combining (86), (87), (88) we
conclude that there exist a class KL function η̂ such that for all
t ≥ 0

|Z(t)| + ∥ζ(t)∥∞ ≤ η̂ (|Z(0)| + ∥ζ(0)∥∞, t) . (89)

From relations (11), (12) it follows that for all t ≥ 1, ω(x, t) =
ζ(0, t − x) − 2h(Z(t − x)), and hence, with the Lipschitzness
of h we get that

∥ω(t)∥∞ ≤ sup
x∈[0,1]

∥ζ(t − x)∥∞

+ψ̂1

(
sup

x∈[0,1]
|Z(t − x)|

)
, for all t ≥ 1 (90)

where the class K∞ function ψ̂1 is such that 2|h(Z)| ≤ ψ̂1(|Z|).
Therefore, with (89) we get for all t ≥ 1

∥ω(t)∥∞ ≤ β̂∗
1 (|Z(0)| + ∥ζ(0)∥∞, t − 1) , (91)

where the class KL function is defined as β̂∗
1 = η̂(s, t) +

ψ̂1(η̂(s), t). Moreover, for all t ≤ 1 we have ∥ω(t)∥∞ ≤
supx∈[t,1] |ω(x − t, 0)|+supx∈[0,t] |ω(0, t − x)|, and hence,

∥ω(t)∥∞ ≤ ξ̂1 (N(0)) , for all t ≤ 1, (92)
N(t) = |Z(t)| + ∥ζ(t)∥∞ + ∥ω(t)∥∞ , (93)

where the class K∞ function ξ̂1 is defined as ξ̂(s) = s +
η̂(s, 0) + ψ̂1(η̂(s), 0). Similarly to the proof of (89) by com-
bining (91), (92) we arrive at

∥ω(t)∥∞ ≤ η̂1 (N(0), t) , for all t ≥ 0, (94)

for some class KL function η̂1. Combining (89), (94) we get for
all t ≥ 0 that

N(t) ≤ η̂2 (N(0), t) , (95)

where η̂2(s, t) = η̂(s, t) + η̂1(s, t). Using the fact that Z(t) =[ X(t)
u(0,t)

]
, definitions (5)–(8) and the triangle inequality we

get bound (83) with η̂3(s, t) = 2
√

2η̂2(2s, t). Existence and
uniqueness of a solution (79), (80) is proved by adapting the
corresponding part in the proof of Theorem 1 to the case of the
initial conditions in Theorem 3 (see also Appendix B). !

Since the proof of Theorem 3 relies only on the fact that
Ż = g(Z, µ∗(Z)) is globally asymptotically stable one can
relax Assumption 2 to only global asymptotic stabilizability of
Ż = g(Z, v). Yet, in this case one has to appropriately modify
the control law (21) as U(t) = −ut(1, t) + µ̂∗(p(1, t)), where
µ̂∗ renders Ż = g(Z, µ̂∗) globally asymptotically stable and can
be explicitly constructed when a feedback law and a Lyapunov
function are known for the system Ẋ = f(X,κ(X)) (see, for
example, [18], [29]).

V. APPLICATION TO LINEAR SYSTEMS

In this section we specialize our results to the case of linear
systems

Ẋ(t) = AX(t) + Bu(0, t) (96)

utt(x, t) = uxx(x, t) (97)

ux(0, t) =σu(0, t) + CX(t) (98)

ux(1, t) = U(t), (99)

where A, B, CT are matrices of dimension n × n, n × 1, n × 1
respectively, and σ is a scalar.

Theorem 4: Consider the closed-loop system consisting of
(96)–(99) together with the control law

U(t) = K∗

⎛

⎝eF

[
X(t)

u(0, t)

]
+ F

1∫

0

eF (1−x)Gu(x, t)dx

+

1∫

0

eF (1−x)Gut(x, t)dx

⎞

⎠

+ K∗ (−eF Gu(0, t) + Gu(1, t)
)
− ut(1, t), (100)

where

F =

[
A B
−C −σ

]
(101)

G =

[
On×1

1

]
, (102)

K∗ = [ Kc1 + KA + C −c1 + KB + σ ], (103)
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and K renders the matrix A+BK Hurwitz and c1 >0 is arbi-
trary. For all initial conditions u(·, 0) ∈ H1(0, 1) and ut(·, 0)∈
L2(0, 1) the closed-loop systems has a unique solution (X(t),
u(·, t), ut(·, t))∈C([0,∞), Rn×H1(0, 1)×L2(0, 1)), and there
exist positive constants λ and ρ such that

Ω(t) ≤ µΩL(0)e−λt, (104)

for all t ≥ 0, where

Ω(t) = |X(t)|2 +

1∫

0

u(x, t)2dx

+

1∫

0

ux(x, t)2 +

1∫

0

ut(x, t)2dx. (105)

Moreover, if the initial conditions are as in the statement of
Theorem 1, then (28), (29) is the classical solution to the closed-
loop system.

The proof of Theorem 4 is based on the target system
(63)–(67) (see Fig. 4), since for linear systems both the open-
loop and closed-loop systems are complete. Yet, we conduct
a stability analysis directly for the linear plant, rather than
just specializing the nonlinear results to the linear case. Such
an analysis is important because it allows one to derive more
explicit stability estimates. In addition, it leads to stability
estimates that incorporate the H1 × L2 rather than the C1 ×
C0 norm of the actuator state. The lower order norm is less
restrictive on the set of initial conditions and thus preferrable.
Also, with such an analysis one gets exponential stability of the
closed-loop system.

Proof: See Appendix C. !
The stabilization problem for a wave PDE/linear ODE cas-

cade, in the case of a homogenous boundary condition, i.e.,
when (98) holds with σ = 0 and C = 0, is also solved in
[15]. Yet, the two approaches are different. The design in this
article is based on backstepping transformations for the two
transport PDE states, whereas [15] is based on backstepping
transformations on the wave PDE state. Startlingly, the two
approaches lead to the same control design as stated in the
following proposition which we prove below.

Proposition 5.1: For the wave PDE/linear ODE cascade
(96)–(99) with σ = 0 and C = 0, the control law (100) is
identical to the control law (47) from [15] with the constants
c1 and c0 replaced by 1 and c1 respectively.

Proof: See Appendix D. !

VI. SPECIALIZATION TO WAVE PDE WITH

ANTI-COLLOCATED NONLINEAR STIFFNESS

Our results are new even for the case of a lone wave PDE
(i.e., not coupled with an ODE) with anti-collocated nonlinear
stiffness, i.e., the system

utt(x, t) = uxx(x, t) (106)

ux(0, t) = h (u(0, t)) (107)

ux(1, t) = U(t). (108)

The control law for (106)–(108) is derived from the original
control law (21), (22), (23) as

U(t) = −ut(1, t) − c1p2(1, t) + h (p2(1, t)) , (109)

where for all x ∈ [0, 1]

p2(x, t)=u(x, t)+

x∫

0

ut(y, t)dy−
x∫

0

h (p2(y, t)) dy. (110)

Under a forward completeness assumption for the system ξ̇ =
−h(ξ) + v with respect to input v, the stability analysis of
the closed-loop system (106)–(108), (109), (110) is performed
using the target system (34)–(38) with g(ξ(t)) = −c1ξ(t) +
z(0, t) and µ(ξ(t)) = −c1ξ(t).

VII. EXTENSION TO WAVE EQUATIONS

WITH ANTI-DAMPING

The approach in this paper can be also applied to the case
where the boundary term (3) is replaced by

ux(0, t) = qut(0, t) + h (X(t), u(0, t)) (111)

where q ̸= ±1. To see this note that, with the preliminary
transformations

ζ(x, t) =
1

q + 1
(ut(x, t) + ux(x, t)) (112)

ω(x, t) =
1

1 − q
(ut(x, t) − ux(x, t)) (113)

we transform (1), (2), (111), (4) to

Ẋ(t) = f (X(t), ξ(t)) (114)

ξ̇(t) = ζ(0, t) − 1

q + 1
h (X(t), u(0, t)) (115)

ωt(x, t) = − ωx(x, t) (116)

ω(0, t) = ζ(0, t) −
(

1

1 + q
+

1

1 − q

)

× h (X(t), u(0, t)) (117)

ζt(x, t) = ζx(x, t) (118)

ζ(1, t) =
1

q + 1
(U(t) + ut(1, t)) . (119)

Then the backstepping transformation

z(x, t) = ζ(x, t) − µ (p(x, t)) − 1

1 + q
h (p(x, t)) (120)

where for all x ∈ [0, 1]

p(x, t) = Z(t) +

x∫

0

g (p(y, t), ζ(y, t)) dy (121)

and g =
[ f(X,ξ)
−(1/(1+q))h(X,ξ)+v

]
, and the control law

U(t) = −ut(1, t) + (1 + q)µ (p(1, t)) + h (p(1, t)) (122)
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transform system (114)–(119) to the target system

Ẋ(t) = f (X(t), ξ(t)) (123)
ξ̇(t) = µ (X(t), ξ(t)) + z(0, t) (124)

ωt(x, t) = − ωx(x, t) (125)

ω(0, t) = z(0, t) + µ (Z(t)) − 1

1 − q
h (Z(t)) (126)

zt(x, t) = zx(x, t) (127)
z(1, t) = 0. (128)

The same analysis as in Theorem 1 can be then used to prove
the stability of the closed-loop system.

When q<0, even the stabilization problem of the wave equa-
tion alone is of interest, since in this case, all eigenvalues of the
wave equation are located on the right-hand side of the complex
plane (the open-loop system is anti-stable). When there is no
ODE and h = 0, by choosing µ(s) = −c0s, c0 > 0 (which sta-
bilizes ξ̇ = µ), controller (122) becomes U(t) = −ut(1, t) −
c0(1 + q)p(1, t), where p(1, t)=u(0, t)+

∫ 1
0 ζ(x, t)dx. Using

(112) we get p(1, t) = (1/(1 + q))
∫ 1
0 ut(x, t)dx+(1/(1 + q))

u(1, t) + (q/(1 + q))u(0, t). Therefore, the control law is

U(t) = −qc0u(0, t) − c0u(1, t) − ut(1, t) − c0

1∫

0

ut(x, t)dx.

(129)

This is the same control law that was derived using a back-
stepping transformation of the state u in [28] [relation (29) for
c = 1].

VIII. EXAMPLES

Example 1: We consider the following system:

Ẋ1(t) = X2(t) − X2(t)
2u(0, t) (130)

Ẋ2(t) = u(0, t) (131)
utt(x, t) = uxx(x, t) (132)
ux(0, t) = 0 (133)
ux(1, t) = U(t). (134)

System (130), (131) is in the strict-feedforward form, and
hence, is forward complete with respect to the input u(0, t). The
nominal control law (i.e., in the case where u(0, t) ≡ U(t))

U(t) = −X1(t) − 2X2(t) −
1

3
X2(t)

3 (135)

renders the closed-loop system input-to-state stable.3 The con-
trol design that compensates the wave dynamics is

U(t) = − ut(1, t) − 2 (p3(1, t) + p1(1, t) + 2p2(1, t))

− 2

3
p2(1, t)3 − p2(1, t) + p2(1, t)2p3(1, t)

−
(
2 + p2(1, t)2

)
p3(1, t) (136)

3This fact follows from the fact that the control law (135) can be written
as U = −φ1 − φ2, where φ is the linearizing diffeomorphic transforma-
tion φ1 = X1 + X2 + (1/3)X3

2 , φ2 = X2, which transforms system (130),
(131) to φ̇1 = φ2 + U , φ̇2 = U (see [14]).

Fig. 6. Response of the states of the plant (130), (131) with the control law
(136)–(139) (solid line) and with the nominal control law (135) (dashed line)
for initial conditions as X1(0) = 1, X2(0) = 0 and u(x, 0) = ut(x, 0) = 1,
for all x ∈ [0, 1].

where

p1(1, t) = X1(t) + X2(t) +

1∫

0

(1 − x)u(x, t)dx

+

1∫

0

(1 − x)2ut(x, t)dx −
1∫

0

×

⎛

⎝X2(t)+

x∫

0

u(y, t)dy+

x∫

0

(1 − y)ut(y, t)dy

⎞

⎠
2

×

⎛

⎝u(x, t) +

x∫

0

ut(y, t)dy

⎞

⎠ dx (137)

p2(1, t) = X2(t) +

1∫

0

u(x, t)dx

+

1∫

0

(1 − x)ut(x, t)dx (138)

p3(1, t) = u(1, t) +

1∫

0

ut(x, t)dx. (139)

We choose the initial conditions for the plant as X1(0) = 1,
X2(0) = 0 and for the actuator state as u(x, 0) = ut(x, 0) = 1,
for all x ∈ [0, 1]. In Fig. 6, we show the response of the states of
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Fig. 7. Response of the actuator state (left) and the control effort (right) of
the plant (130)–(134) with the control law (136)–(139) for initial conditions as
X1(0) = 1, X2(0) = 0 and u(x, 0) = ut(x, 0) = 1, for all x ∈ [0, 1].

the plant (130), (131) for the case of the uncompensated nomi-
nal control law (135) and the case of the proposed control law
(136)–(139). As one can observe, in the latter case stabilization
is achieved, whereas the states grow unbounded in the former
case, in which a control law that does not take into account the
wave dynamics is employed. In Fig. 7, we show the response
of the actuator state and the control effort in the case of the
proposed design (136)–(139). As one can observe, both the
actuator state and control effort converge.

Example 2: In this example, we apply our developments for
the stabilization of a wave PDE with anti-collocated nonlinear
stiffness. We consider system (106)–(108) with h(u(0, t)) =
u(0, t)3 − u(0, t). Hence, system ξ̇(t) = −ξ(t)3 + ξ(t) + U(t)
is forward complete. The predictor-based feedback law (109) is

U(t) = −ut(1, t) − 2p2(1, t) + p2(1, t)3 (140)

where

p2(1, t)=u(1, t)+

1∫

0

ut(x, t)dx−
1∫

0

(
p2(x, t)3−p2(x, t)

)
dx.

(141)

In Fig. 8, we show the response of the closed-loop system
consisting of (106)–(108) with h(u(0, t)) = u(0, t)3 − u(0, t)
and the control law (140), (141), and the control effort for initial
conditions as u(x, 0) = ut(x, 0) = 1 for all x ∈ [0, 1]. As one
can observe the proposed control law achieves stabilization.

Fig. 8. Response of the state of the plant (106)–(108) with h(u(0, t)) =
u(0, t)3 − u(0, t) (left), under the control law (140), (141) (right) for initial
conditions u(x, 0) = ut(x, 0) = 1, for all x ∈ [0, 1].

IX. CONCLUSIONS

We present a methodology for the compensation of wave
dynamics in the actuation path of nonlinear systems by employ-
ing a predictor inspired design. The stability of the closed-loop
system is established in two different norms of the actuator state
and is based on Lyapunov functionals that we construct with
the aid of novel backstepping transformations of the actuator
state. This work raises the question of stabilization of other
PDE/nonlinear ODE cascades, such as when the PDE is of
diffusive type, in which case a conversion to a delay-like
problem does not seem possible.

APPENDIX A

Proof of Lemma 1

Using the fact that p(0, t) = Z(t), we get (34), (36) by setting
x = 0 into (32) and using the definition (19). With (21)–(23),
definitions (15), (16), and relation (14), we get (38). We prove
next (37). From (33), we have that p satisfies the following
boundary value problem in x:

px(x, t) = g (p(x, t), ζ(x, t)) (A.1)

p(0, t) = Z(t). (A.2)

We now show that the unique solution to (A.1), (A.2) is

p(x, t) = Z(t + x) (A.3)
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and hence, pt(x, t) = px(x, t), which in turn implies, with the
help of (13) and (32), that (37) holds. Using (13), we get that
ζ is a function of t + x, i.e., ζ(x, t) = F (t + x), for some
function F . Therefore, setting t → t + x in (10) and noting that
ζ(0, t) = F (t), we get that

Z ′(t + x) = g (Z(t + x), F (t + x)) . (A.4)

Using (A.1), we conclude that p(x, t) = Z(t + x) is a solution
to the boundary value problem (A.1), (A.2). Since g is locally
Lipschitz we get that p(x, t) = Z(t + x) is the unique solution
to (A.1), (A.2).

Proof of Lemma 2

We first observe that π(0, t) = Z(t) = p(0, t), and hence, π
satisfies the following initial value problem:

πx(x, t) = g (π(x, t), µ (π(x, t)) + h (π(x, t))

+z(x, t)) (A.5)

π(0, t) = Z(t). (A.6)

Using (32) and (A.1) we conclude that p and π satisfy the same
initial value problem. From the uniqueness of solutions we
conclude that p ≡ π, and hence, πt(x, t) = πx(x, t). Therefore,
ζ in (39) satisfies (13).

Proof of Lemma 3

Defining the change of variables y(t) = ξ(t) − κ(X(t)) and
rewriting the Z system in (X, y), we get with (19), (20) Ẋ(t) =
f(X(t),κ(X(t)) + y(t)), ẏ(t) = −c1y(t) + v(t). Under As-
sumption 2 (the properties of κ) the function µ is continuously
differentiable with µ(0, 0) = 0. Since h is also continuously
differentiable and h(0, 0) = 0, using (19) we conclude that µ∗ is
continuously differentiable as well with µ∗(0, 0) = 0. Lemma
C.4 in [18] guarantees that (X, y) is input-to-state stable with
respect to v, i.e., there exists a class KL function β̄ and a
class K function γ̄ such that |X(t)| + |y(t)| ≤ β̄(|X(0)| +
|y(0)|, t)+γ̄(sup0≤τ≤t |v(τ)|). Since κ is continuously differ-
entiable with κ(0) = 0 there exist a class K∞ function α̂
such that

|κ(X)| ≤ α̂ (|X|) , for all X ∈ Rn (A.7)

and hence, |X(t)| + |ξ(t)| = |X(t)| + |ξ(t) − κ(X(t)) +
κ(X(t))| ≤ᾱ(|X(t)| + |y(t)|), where the class K∞
function ᾱ is given by ᾱ(s) = s + α̂(s). With the fact
that |y(t)| ≤ |ξ(t)| + α̂(|X(t)|), we conclude that the Z
system is input-to-state stable with respect to v with

βZ(s, t) = ᾱ
(
2β̄

(√
2s +

√
2α̂(s), t

))
(A.8)

γZ(s) = ᾱ (2γ̄(s)) . (A.9)

Proof of Lemma 4

From Lemma 3 and [31], there exist a smooth function
S(Z) : Rn+1 → R+ and class K∞ functions α4, α5, α6 and
α7 such that

α4 (|Z|) ≤S(Z) ≤ α5 (|Z|) (A.10)

∂S(Z)

∂Z
g (Z, µ∗(Z)+d)≤−α6 (|Z|)+α7 (|d|) (A.11)

for all Z ∈ Rn+1 and for all d ∈ R. Moreover, using (35)–(38),
we also get that

ωxt(x, t) = − ωxx(x, t) (A.12)

ωx(0, t) = − zx(0, t) −
(
∂µ (Z(t))

∂Z
− ∂h (Z(t))

∂Z

)

× g (Z(t), µ∗ (Z(t)) + z(0, t)) (A.13)

zxt(x, t) = zxx(x, t) (A.14)

zx(1, t) = 0. (A.15)

We choose first a Lyapunov functional for the subsystem (34),
(37), and (38) as

V2(t) = S (Z(t)) +
2

c

∥z(t)∥c,H1∫

0

α7

(√
2r
)

r
dr (A.16)

where c > 0 is arbitrary. Using (37), (38), (A.14), (A.15) and
integration by parts, it follows that

d ∥z(t)∥c,H1

dt
≤ −c ∥z(t)∥c,H1

. (A.17)

Using the fact that |z(0, t)| ≤ |z(x, t)| +
∫ 1
0 |zx(x, t)|dx to-

gether with Young’s and Cauchy-Scharwz inequalities, we get
for all x ∈ [0, 1]

z(0, t)2 ≤ 2z(x, t)2 + 2

1∫

0

zx(x, t)2dx (A.18)

and hence, by integrating over [0,1] we get

|z(0, t)| ≤
√

2 ∥z(t)∥c,H1
. (A.19)

Therefore, using (A.10), (A.11), (A.19), (A.17) we get along
the solutions of the target system (34)–(38)

V̇2(t) ≤ −α6 (|Z(t)|) − α7

(√
2 ∥z(t)∥c,H1

)
. (A.20)

Using (A.10) and (A.16), we conclude that there exists a class
K∞ function α8 such that

V̇2(t) ≤ −α8 (V2(t)) . (A.21)
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Take now another Lyapunov functional as

V1(t) =

1∫

0

ec(1−x)ω(x, t)2dx +

1∫

0

ec(1−x)ωx(x, t)2dx

+2

1∫

0

ec(1+x)zx(x, t)2dx. (A.22)

Taking the derivative of V1 and using (35)–(38) together with
(A.12)–(A.15), integration by parts, we get

V̇1(t) ≤ −cV1(t) + ec
(
ω(0, t)2 + ωx(0, t)2

)
− 2eczx(0, t)2

(A.23)

and hence, using (36), (A.16) together with Young’s inequality
we arrive at

V̇1(t) ≤ −cV1(t) + G (Z(t), z(0, t)) (A.24)

where

G (Z(t), z(0, t)) = 4ecµ (Z(t))2 + 4h (Z(t))2 + 2ecz(0, t)2

+ 2ec

((
∂µ (Z(t))

∂Z
+

∂h (Z(t))

∂Z

)

×f (Z(t), µ∗ (Z(t)) + z(0, t)))2 .

(A.25)

Using the fact that µ and h are continuously differentiable with
µ(0) = h(0) = 0 and f is locally Lipschitz with f(0, 0) = 0
we get that there exists a class K∞ function α9 such that
|G(Z(t), z(0, t))| ≤ α9(|Z(t)| + |z(0, t)|), and hence, using
(A.19) and relations (A.10), (A.16) that there exists a class
K∞ function α10 such that |G(Z(t), z(0, t))| ≤ α10(V2(t)).
Therefore,

V̇1(t) ≤ −cV1(t) + α10 (V2(t)) . (A.26)

From [30] there exist smooth, K∞ functions ρ̃1, ρ̃2 such that
W1 = ρ̃1(V1) and W2 = ρ̃2(V2) satisfy

Ẇ1(t) ≤ − α̃1 (V1(t)) +
1

2
α̃2 (V2(t)) (A.27)

Ẇ2(t) ≤ − α̃2 (V2(t)) (A.28)

for some class K∞ functions α̃1 and α̃2. Therefore

Ẇ1(t) + Ẇ2(t) ≤ −α̃3 (W1(t) + W2(t)) (A.29)

for some class K∞ function α̃3. With the comparison principle
and Lemma 4.4 in [13], there exists a class KL function β̃1 such
that W (t) ≤ β̃1(W (0), t), where W (t) = W1(t) + W2(t), and
hence,

V (t) ≤ β1 (V (0), t) (A.30)

for some class KL function β1, where

V (t) = V1(t) + V2(t). (A.31)

Using (A.10) the definition of V2(t) in (A.16), together with the
definition of V1(t) in (A.22) one can conclude that there exist
class K∞ functions α11, α12 such that

V (t) ≤α11

(
∥ω(t)∥H1

+∥z(t)∥H1
+|Z(t)|

)
(A.32)

α12 (V (t)) ≥ ∥ω(t)∥H1
+∥z(t)∥H1

+|Z(t)| . (A.33)

Bound (41) then follows with β3(s, t) = α12(β1(α11(s), t)).

Proof of Lemma 5

We prove bound (43) using relations (26), (27) of
Assumption 1 and the fact that p satisfies the initial value
problem in x (A.1), (A.2). Using (27) we get

∂Rf (p(x, t))

∂p
g (p(x, t), ζ(x, t))≤Rf (p(x, t)) + α3 (|ζ(x, t)|) .

(A.34)

With (A.1), we get

dRf (p(x, t))

dx
≤ Rf (p(x, t)) + α3 (|ζ(x, t)|) . (A.35)

With the comparison principle and (A.2), we arrive at

Rf (p(x, t))≤exRf (Z(t))+

x∫

0

ex−yα3 (|ζ(y, t)|) dy. (A.36)

Using (26), we get for all x ∈ [0, 1]

|p(x, t)| ≤ α−1
1 (e (α2 (|Z(t)|) + α3 (∥ζ(t)∥∞))) . (A.37)

Hence, we get (43) with ρ2(s) = α−1
1 (e(α2(s) + α3(s))).

Proof of Lemma 6

For proving bound (44). we use Lemma 3. Since π satisfies
(A.5), (A.6) using (A.8), (A.9) we get

|π(x, t)| ≤ βZ (|Z(t)| , x) + γZ

(
sup

0≤y≤x
|z(y, t)|

)
, (A.38)

and hence, bound (44) holds with ρ̂1(s) = βZ(s, 0) + γZ(s).

Proof of Lemma 7

Since µ, h are continuously differentiable with µ(0, 0) =
h(0, 0) = 0 it holds that

|µ(Z)| + |h(Z)| ≤ α∗ (|Z|) . (A.39)

for some class K∞ function α∗. Therefore, using (32) we
get that ∥z(t)∥∞ ≤ ∥ζ(t)∥∞ + α∗(∥p(t)∥∞), and hence, with
Lemma 5 that

|Z(t)| + ∥z(t)∥∞ ≤ ρ2 (|Z(t)| + ∥ζ(t)∥∞) (A.40)

with ρ2(s) = s + α∗(ρ1(s)). Moreover, from (32) we get

zx(x, t) = ζx(x, t) − ∂µ∗ (p(x, t))

∂p
g (p(x, t), ζ(x, t)) (A.41)
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and hence, using the fact that µ∗ is continuously differentiable
and g locally Lipschitz with g(0, 0) = 0 there exists a class K∞
function α∗

1 such that

|zx(x, t)| ≤ |ζx(x, t)| + α∗
1 (∥p(t)∥∞ + ∥ζ(t)∥∞) . (A.42)

Therefore

1∫

0

zx(x, t)2dx ≤ 2

1∫

0

ζx(x, t)2dx + 2α∗
2 (|Z(t)| + ∥ζ(t)∥∞)

(A.43)

where α∗
2(s)=α∗

1
2(s+ρ1(s)), and hence, ∥z(t)∥∞ + (

∫ 1
0 zx(x,

t)2dx)(1/2) ≤ ρ∗3(|Z(t)| + ∥ζ(t)∥∞+
∫ 1
0 ζx(x, t)2dx), where

ρ∗3(s) = ρ2(s) +
√

2s +
√

2α∗
2(s). For any v ∈ H1(0, 1) it

holds that |v(0, t)| ≤ |v(x, t)| +
∫ 1
0 |vx(x, t)|dx, and hence,

with Young’s and Cauchy-Schwartz’s inequalities, and by
integrating over [0,1] we get that |v(0, t)| ≤

√
2∥v(t)∥H1 .

Since also |v(x, t)| ≤ |v(0, t)| +
∫ 1
0 |vx(x, t)|dx, we arrive at

∥v(t)∥∞ ≤
(√

2 + 1
)
∥v(t)∥H1

. (A.44)

Using the fact that for any function v ∈ H1(0, 1), (
∫ 1
0 v(x,

t)2dx)(1/2) ≤ ∥v(t)∥∞ bound (45) is proved with ρ3(s) =
ρ∗3(

√
2s + 2s). Analogously, bound (46) is proved using (39),

(A.39) and Lemma 6, with ρ̂3(s) = ρ̂∗3((
√

2 + 2)s), where
ρ̂∗3(s) = ρ̂2(s) +

√
2s +

√
2α∗

3(s) and ρ̂2(s) = s + α∗(ρ̂1(s)),
α∗

3(s) = α∗
1(s + ρ̂1(s) + α∗(ρ̂1(s))).

APPENDIX B

Proof of Theorem 2

We start the proof of Theorem 2 by defining the inverse
backstepping transformation of (61), for all x ∈ [0, 1] as

ω(x, t) = w(x, t) + µ (ρ(x, t)) − h (ρ(x, t)) (B1)

where for all x ∈ [0, 1]

ρ(x, t) = Z(t) −
x∫

0

g (ρ(y, t), µ (ρ(y, t)) + h (ρ(y, t))

+ w(y, t)) dy. (B.2)

To see this, we first note that r in (62) satisfies the following
boundary value problem:

rx(x, t) = − g (r(x, t), 2h (r(x, t)) + ω(x, t)) (B.3)

r(0, t) = Z(t) (B.4)

and hence, by combining (B.2) and (B.1), it follows that ρ and r
satisfy the same boundary value problem. With the uniqueness
of solutions it follows that r ≡ ρ, and hence, ρt = −ρx, which
in turn implies that ω defined in (B.1) satisfies (11). The fact
that ω satisfies (12) follows by combining (32) with (B.1) and
the fact that p(0, t) = ρ(0, t) = Z(t). Similarly to the proof of

Lemma 7, using (61) and (B.1) we conclude that in order to
prove that w and ω are upper bounded by a class K∞ function
of Z, ω and of Z, w respectively, it is sufficient to show that the
following holds for some class K∞ functions ρr,1, ρ̂r,1

∥r(t)∥∞ ≤ ρr,1 (|Z(t)| + ∥ω(t)∥∞) (B.5)

∥ρ(t)∥∞ ≤ ρ̂r,1 (|Z(t)| + ∥w(t)∥∞) (B.6)

We prove first bound (B.6). Using (19), we get from (B.2) that

ρx(x, t) = − g (ρ(x, t), µ∗ (ρ(x, t)) + w(x, t)) (B.7)

ρ(0, t) = Z(t). (B.8)

Under Assumption 4, we get −(∂Rb,cl(ρ(x, t))/∂ρ)g(ρ(x, t),
µ∗(ρ(x, t)) + w(x, t)) ≤Rb,cl(ρ(x, t)) + α6,cl(|w(x, t)|).
Using (B.7), we get

dRb,cl (ρ(x, t))

dx
≤ Rb,cl (ρ(x, t)) + α6,cl (|w(x, t)|) (B.9)

and hence, with the comparison principle and (B.8)

Rb,cl (ρ(x, t)) ≤ exRb,cl (Z(t)) +

x∫

0

ex−yα6,cl (|w(y, t)|) dy.

(B.10)

Hence, using (77) we get bound (B.6) with some class K∞
function ρ̂r,1. Under Assumption 3 and using similar arguments
we get bound (B.5) using (B.3), (B.4). Bound (73) then follows
by combining (32), (61), the fact that µ, h are locally Lipschitz
with µ(0) = h(0) = 0 and (43), (B.5). Similarly, bound (74)
follows by combining (39), (B.1) and (6), (B.6). Combining
estimate (71) with (73), (74), we get

Π(t) ≤ β̂3 (Π(0), t) (B.11)

Π(t) = |Z(t)| + ∥ζ(t)∥∞ + ∥ω(t)∥∞ (B.12)

for some class KL function β̂3. Using the facts that Z(t) =[ X(t)
u(0,t)

]
and ∥ζ(t)∥∞ + ∥ω(t)∥∞ ≤ 2(∥ut(t)∥∞ + ∥ux(t)∥∞),

∥ut(t)∥∞ + ∥ux(t)∥∞ ≤ ∥ζ(t)∥∞ + ∥ω(t)∥∞ [which follow
from the triangle inequality and definitions (5)–(8)], we get
|X(t)| + |u(0, t)|+∥ut(t)∥∞+ ∥ux(t)∥∞ ≤

√
2β̂3(2(|X(0)| +

|u(0, 0)| + ∥ut(0)∥∞ + ∥ux(0)∥∞), t). Using the fact that
∥u(t)∥∞ ≤ |u(0, t)| + ∥ux(t)∥∞ we get (83) with η̂3(s, t) =

2
√

2β̂3(2s, t).
Using relations (37), (38), we get that

z(x, t) =

{
z0(t + x), 0 ≤ x + t < 1
0, x + t ≥ 1

(B.13)

where the initial condition z0(x) is given by (32) with t = 0.
Using relation (5), the fact that ut(·, 0) ∈ C[0, 1] and that
u(·, 0) ∈ C1[0, 1], we conclude that ζ(·, 0) ∈ C[0, 1], and
hence, using the fact that p satisfies the ODE in x (57), (58)
and the Lipschitzness of g we conclude the existence and
uniqueness of p(x, 0) ∈ C1[0, 1]. Therefore, with (32) and the
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compatibility condition we get that z0 ∈ C[0, 1], and hence,
with (34), (B.13) and the Lipschitzness of g and µ∗ we conclude
the existence and uniqueness of (X(t), u(0, t)) ∈ C1[0,∞).
Using the fact that z0 ∈ C[0, 1], the compatibility condition
and (B.13) guarantee the existence of z ∈ C([0, 1] × [0,∞)).
The uniqueness of this solution follows from the uniqueness
of the solution to (37), (38) (see Sections 2.1 and 2.3 in [5]).
With the same arguments and using relation (6), the ODE (B.3),
(B.4), relations (35), (36) and the fact that

w(x, t) =

{
w0(x − t), 0 ≤ t < x
z0(t − x), 0 ≤ t − x < 1
0 t − x ≥ 1

(B.14)

we get, with the compatibility condition and ux(0, 0) =
h(X(0), u(0, 0)), the existence and uniqueness of w ∈
C([0, 1] × [0,∞)). With the inverse backstepping transforma-
tions (B.1), (39) and the facts that π(x, t) = p(x, t) = Z(t +
x) ∈ C1([0,∞]), which implies that π(x, t) ∈ C1([0, 1] ×
[0,∞)), and that ρ(x, t) = r(x, t) = Z(t − x) ∈ C1([−1,∞))
(since ρ(x, 0) = Z(−x) in (B.2) satisfies for all x ∈ [0, 1]
ρx(x, 0) = −g(ρ(x, 0), µ∗(ρ(x, 0)) + w0(x))), which implies
that ρ(x, t) ∈ C1([0, 1] × [0,∞)), we get the existence and
uniqueness of ζ,ω ∈ C([0, 1] × [0,∞)). Therefore, using (7),
(8) we conclude that there exists a unique solution (ut, ux) ∈
C([0, 1] × [0,∞)), and hence, that there exists a unique solu-
tion (80).

APPENDIX C

Proof of Theorem 4

As in the case of nonlinear systems, the control law that
stabilizes system (96)–(99) is based on a predictor feedback
design that stabilizes the augmented system

Ẋ(t) = AX(t) + Bξ(t) (C.1)

ξ̇(t) = − CX(t) − σξ(t) + ζ(0, t). (C.2)

The predictor states p1 and p2 defined in (22) and in (23)
respectively satisfy the following ODE in x

∂p(x, t)

∂x
= Fp(x, t) + G (ut(x, t) + ux(x, t)) (C.3)

p(0, t) =

[
X(t)

u(0, t)

]
, (C.4)

where p =
[p1

p2

]
and where On×1 denotes an n × 1 matrix with

zero entries. The initial value problem (C.3), (C.4) can be
solved explicitly as

p(x, t) = eFxX(t) +

x∫

0

eF (x−y)G × (ut(y, t) + uy(y, t)) dy.

(C.5)

It follows from definitions (101), (102), (C.5) that the control
law (21) for the special case of linear systems can be written in

compact form as (100). The Lyapunov functional for the case
of linear systems is

V (t) = ZT(t)PZ(t) +

(
2 |PG|
λmin(Q)

+ 1

) 1∫

0

ec(1+x)

×z(x, t)2dx +

1∫

0

ec(1−x)w(x, t)2dx, (C.6)

where P = PT > 0 and Q = QT > 0 satisfy

(F + GK∗)TP + P (F + GK∗) = −Q, (C.7)

Z(t) =
[ X(t)
u(0,t)

]
and z, w satisfy (64)–(67). Taking the derivative

of (C.6) along the target system (63)–(67) and using Young’s
inequality together with integration by parts we obtain

V̇ (t) ≤ −λmin(Q)

2
|Z(t)|2 − c

1∫

0

ec(1+x)z(x, t)2dx

−c

1∫

0

ec(1−x)w(x, t)2dx. (C.8)

Therefore,

V̇ (t) ≤ −λV (t), (C.9)

with λ = min{λmin(Q), c}/(λmax(P ) + (2|PG|/λmin(Q))).
Using the linearity of the backstepping transformations we get
that

Φ1(t) ≤M1Φ2(t) (C.10)

Φ2(t) ≤M2Φ1(t), (C.11)

Φ1(t) = |Z(t)| +

1∫

0

w(x, t)2dx +

1∫

0

z(x, t)2dx (C.12)

Φ2(t) = |Z(t)| +

1∫

0

ζ(x, t)2dx +

1∫

0

ω(x, t)2dx, (C.13)

for some positive constants M1 and M2. With relations (5), (6),
and the facts that

∫ 1
0 u(x, t)2dx≤2u(0, t)2+4

∫ 1
0 ux(x, t)2dx

and that u(0, t)2 ≤ 2
∫ 1
0 u(x, t)2dx + 2

∫ 1
0 ux(x, t)2dx we get

estimate (104). The rest of the proof for the case in which
the initial conditions are as in Theorem 1 is almost identical
to Theorem 1 with the difference that we use (B.14) instead
of (59) together with the inverse transformation (B.1) and the
fact that ρ(x, t) ∈ C1([0, 1] × [0,∞)) (see also Appendix B).
For the case in which (u(·, 0), ut(·, 0)) ∈ H1(0, 1) × L2(0, 1)
without the compatibility conditions then with similar argu-
ments one can show that p(x, 0), r(x, 0) ∈ C[0, 1] and hence
with (32), (61) and (B.13), (B.14) that (w(·, t), z(·, t)) ∈
C([0,∞), L2(0, 1) × L2(0, 1)) which also implies that Z(t) =
(X(t), u(0, t)) ∈ C[0,∞). The facts π(x, t) = Z(t + x) and
ρ(x, t) = Z(t − x) and the inverse transformations (B.1),
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(39) guarantee that (ζ(·, t),ω(·, t)) ∈ C([0,∞), L2(0, 1) ×
L2(0, 1)), and hence, with (5), (6) that there exists a solution
as in the statement of Theorem 4.

APPENDIX D

Proof of Proposition 5.1

When (98) holds with σ = 0 and C = 0, the control law
(100) takes the form

U(t) = − ut(1, t) + (−c1 + KB) u(1, t) +

1∫

0

×

⎛

⎝Kc1 ×
1∫

x

eA(1−y)dyB − c1 + KeA(1−x)B

⎞

⎠

× ut(x, t)dx + K(c1 + A)

1∫

0

eA(1−x)Bu(x, t)dx

+ K(c1 + A)eAX(t). (D.1)

We recall next that the control law (47) derived in [15] is
(for D = 1)

U(t) = (−c̄0 + c̄1KB)u(1, t) − c̄1ut(1, t)

+

1∫

0

p(1 − y)u(y, t)dy

+

1∫

0

q(1 − y)ut(y, t)dy + π(1)X(t) (D.2)

where

p(s) = µ′(s) + c̄0µ(s) + c̄1 (m′′(s) + c̄0m
′(s))

(D.3)
q(s) = m′(s) + c̄0m(s)

+ c̄1

⎛

⎝µ(s) + c̄0

s∫

0

µ(ξ)dξ − c̄0

⎞

⎠ (D.4)

π(x) = γ′(x) + γ(x)(c̄0I + c̄1A)

+ c̄1c̄0

x∫

0

γ(ξ)dξA (D.5)

and

γ(x) = KM(x) (D.6)

M(x) = [ I 0 ]e

[
0 A2

I 0

]
x [

I
0

]
, (D.7)

m(s) =

s∫

0

γ(ξ)Bdξ, (D.8)

µ(s) =

s∫

0

γ(ξ)ABdξ. (D.9)

For proving that the control law (D.1) is identical to (D.2) for
c̄0 = c1 and c̄1 = 1, we have to show that

π(x) = K(c1 + A)eAx (D.10)

p(x) =π(x)B (D.11)

q(x) = K

⎛

⎝eAx + c1

x∫

0

eAydy

⎞

⎠B − c1. (D.12)

To show that (D.10) holds, we first observe that π(0) = K(c1 +
A) since from (D.6), (D.7) it follows that γ′(0) = 0. Hence, it
remains to show that π′(x) = K(c1 + A)AeAx, i.e.,

(c1+A)AeAx =M(x)A2+M ′(x)(c1+A)+c1M(x)A (D.13)

where we also used the fact that M ′′(x) = M(x)A2. By ex-
panding M in Taylor series, we get that

M ′(x) = A
∞∑

i=0

(Ax)2i+1

(2i + 1)!
(D.14)

M(x)A = A
∞∑

i=0

(Ax)2i

(2i)!
. (D.15)

Using the fact that eAx =
∑∞

i=0((Ax)i/i!), we conclude that
(D.13) holds, and hence, that (D.10) holds. We show next that
(D.11) holds. Using (D.4), (D.8), (D.9), it follows that

p(x) =

⎛

⎝γ′(x) + γ(x)(c1 + A) + c1

x∫

0

γ(y)dyA

⎞

⎠B (D.16)

and hence, with (D.5) we conclude that (D.11) holds. To show
(D.12), we first rewrite (D.4) as

q(x) =

⎛

⎝γ(x) + c1

x∫

0

γ(y)dy +

x∫

0

γ(y)dyA

+c1 +

x∫

0

y∫

0

γ(r)drdyA

⎞

⎠B − c1. (D.17)

Using (D.16), we get that

c1 + q(x) =

x∫

0

p(y)dy + γ(0)B, (D.18)

and hence with (D.10), (D.11), we arrive at

c1+q(x)=

⎛

⎝Kc1

x∫

0

eAydy+KA

x∫

0

eAydy

⎞

⎠B+γ(0)B. (D.19)

The proof is complete by noting that A
∫ x
0 eAydy = eAx − I

and γ(0) = K.
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