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a b s t r a c t

The problem of compensation of input delays for unstable linear systems was solved in the late 1970s.
Systems with simultaneous input and state delay have remained a challenge, although exponential
stabilization has been solved for systems that are not exponentially unstable, such as chains of delayed
integrators and systems in the ‘feedforward’ form. We consider a general system in strict-feedback form
with delayed integrators, which is an example of a particularly challenging class of exponentially unstable
systems with simultaneous input and state delays, and design a predictor feedback controller for this
class of systems. Exponential stability is proven with the aid of a Lyapunov–Krasovskii functional that we
construct using the PDE backstepping approach.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Stabilization of linear systems with input delays continues
to be an active area of research. Various control schemes for
systems with input delay have been developed, with the starting
point for many of them being the Smith predictor (Smith,
1959). The most important extensions of the Smith predictor
have been designs based on the finite spectrum assignment
framework (Artstein, 1982; Fiagbedzi & Pearson, 1986; Jankovic,
2009a, 2010; Kwon & Pearson, 1980; Manitius & Olbrot, 1979;
Mondie & Michiels, 2003; Olbrot, 1978; Richard, 2003; Zhong,
2006). In addition to these designs, adaptive versions of predictor-
based linear controllers are proposed in Evesque, Annaswamy,
Niculescu, and Dowling (2003a), Liu and Krstic (2001), Niculescu
and Annaswamy (2003b), Zhou, Wang, and Wen (2008), whereas
adaptive controllers for unknown delay have been developed
recently in Bekiaris-Liberis and Krstic (2010), Bresch-Pietri and
Krstic (2009a,b) and Yildiray, Annaswamy, Kolmanovsky, and
Yanakiev (2010). Moreover, various control designs for nonlinear
systems exist (Jankovic, 2001, 2003, 2009b; Karafyllis, 2006;
Krstic, 2008a, 2010; Mazenc & Bliman, 2004; Mazenc, Mondie, &
Francisco, 2004).

Despite the fact that numerous papers deal with linear systems
with input delay, the problem of controller design for systems
with simultaneous input and state delay has been tackled in only a
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few Refs. Fiagbedzi and Pearson (1986), Jankovic (2009a), Jankovic
(2010), Loiseau (2000), Manitius and Olbrot (1979) andWatanabe,
Nobuyama, Kitamori, and Ito (1992). In this work we consider
a specially chosen possibly open-loop unstable linear system,
with the special form of a strict-feedback system with delayed
integrators. Specifically, we consider the following n-dimensional
linear system
˙̄
X1(t) = ā11X̄1(t) + b1X̄2(t − D1) (1)
˙̄
X2(t) = ā21X̄1(t) + ā22X̄2(t) + b2X̄3(t − D2) (2)
...

˙̄
Xn(t) = ān1X̄1(t) + · · · + ānnX̄n(t) + bnŪ(t − Dn), (3)
where X̄i(t), āij, Ū(t) ∈ R, bi �= 0, and Di ∈ R+.

For this system we develop a predictor-based controller
(Section 2). To achieve this we use tools from the boundary
control of first order linear hyperbolic PDEs (Krstic & Smyshlyaev,
2008a), together with the classical backstepping procedure (Krstic,
Kanellakopoulos, & Kokotovic, 1995). Specifically, an infinite
dimensional backstepping transformation is used, together with
a control law, to convert the system to an exponentially
stable (in a certain sense) target system. Using the boundness
of the backstepping transformation and its inverse, we then
prove exponential stability of the closed-loop system using a
suitably weighted Lyapunov–Krasovskii functional (Section 3).
The effectiveness of the proposed controller is illustrated by a
simulation example of a second order unstable system (Section 4).

2. Controller design

We start by redefining the states of system (1)–(3) such that
the coefficients in front of the delayed terms are unity. That is, we
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define

X1(t) = X̄1(t) (4)

X2(t) = b1X̄2(t) (5)

X3(t) = b1b2X̄3(t) (6)
...

Xn(t) = b1b2 . . . bn−1X̄n(t). (7)

Moreover, for notational consistency we define

U(t) = b1b2 . . . bnŪ(t) (8)

aij =
�
āij, if i = j

bj . . . bi−1āij, if i > j

�
. (9)

In the new variables, system (1)–(3) is transformed to

Ẋ1(t) = a11X1(t) + X2(t − D1) (10)

Ẋ2(t) = a21X1(t) + a22X2(t) + X3(t − D2) (11)
...

Ẋn(t) = an1X1(t) + · · · + annXn(t) + U(t − Dn). (12)

We state here our controller and in Section 3 we analyze the
stability properties of the closed-loop system. The controller for
the system (10)–(12) is given by

U(t) = u(Dn, t)

= αn(Dn, t)

= −an1P1

�

t −
n−1�

k=1

Dk

�

− · · · − annPn(t)

− cn (Pn(t) − αn−1 (Dn−1 + Dn, t))

+ ∂αn−1 (Dn−1 + Dn, t)

∂x
, (13)

where

αi(x, t) = −ai1P1

�

t −
n�

k=1

Dk + x

�

− · · ·

− aiiPi

�

t −
n�

k=i

Dk + x

�

− ci

�

Pi

�

t −
n�

k=i

Dk + x

�

− αi−1(Di−1 + x, t)

�

+ ∂αi−1(Di−1 + x, t)

∂x
, x ∈

�

0,
n�

k=i

Dk

�

(14)

α1(x, t) = −(a11 + c1)P1

�

t + x −
n�

k=1

Dk

�

,

x ∈
�

0,
n�

k=1

Dk

�

, (15)

and the ci, i = 1, 2 . . . n are arbitrary positive constants. In the
above control schemewe use the Pi(t) signals, the

�
n

k=i
Dk seconds

ahead predictors of the Xi(t) state (this fact becomes clear later on).
That is, it holds that Pi(t) = Xi(t+

�
n

k=i
Dk). These signals are given

by

P1(t) = X1(t) +
�

t

t−
n�

k=1
Dk

(a11P1(θ) + P2(θ))dθ (16)

P2(t) = X2(t) +
�

t

t−
n�

k=2
Dk

(a21P1(θ − D1)

+ a22P2(θ) + P3(θ))dθ (17)
...

Pn(t) = Xn(t) +
�

t

t−Dn

�
an1P1

�

θ −
n−1�

k=1

Dk

�

+ an2P2

�

θ −
n−1�

k=2

Dk

�

· · · + annPn(θ) + U(θ)
�
dθ, (18)

with initial conditions

P1(θ) = X1(0) +
� θ

−
n�

k=1
Dk

(a11P1(σ ) + P2(σ ))dσ (19)

P2(θ) = X2(0) +
� θ

−
n�

k=2
Dk

(a21P1(σ − D1)

+ a22P2(σ ) + P3(σ ))dσ (20)
...

Pn(θ) = Xn(0) +
� θ

−Dn

�

an1P1

�

σ −
n−1�

k=1

Dk

�

+ an2P2

�

σ −
n−1�

k=2

Dk

�

· · · + annPn(σ ) + U(σ )

�

dσ , (21)

where θ is defined in each Pi(θ) as θ ∈ [−�
n

k=i
Dk, 0]. Note here

that the notation ∂αi−1(Di−1+x,t)

∂x
corresponds to ∂αi−1(x

�,t)
∂x� |x�=x+Di−1

which includes the timederivatives of the signals P1(t), . . . , Pi−1(t).
These derivatives are obtained from (10)–(12) and (16)–(18).

3. Stability analysis

We first state a theoremdescribing ourmain stability result and
then we prove it using a series of technical lemmas.

Theorem 1. System (10)–(12) with the controller (13) is exponen-

tially stable in the sense that there exist constants κ and λ such that

Ω(t) ≤ κΩ(0)e−λt , (22)

where

Ω(t) = 1
2

n�

i=1

X
2
i
(t) + 1

2

n�

i=2

�
t

t−Di−1

X
2
i
(θ)dθ

+ 1
2

�
t

t−Dn

U
2(θ)dθ, (23)

and

�
t

t−Di−1

X
2
i
(θ)dθ =

�
Di−1

0
ξ 2
i
(x, t)dx = �ξi(t)�2 (24)

�
t

t−Dn

U
2(θ)dθ =

�
Dn

0
u
2(x, t)dx = �u(t)�2 (25)

ξi(x, t) = Xi(t + x − Di−1), x ∈ [0,Di−1] (26)
u(x, t) = U(t + x − Dn), x ∈ [0,Dn]. (27)

We first give and prove the following lemmas.
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Lemma 1. The signals Pi(t) defined in (16)–(18) are, respectively the�
n

k=i
Dk seconds ahead predictors of the Xi(t) states. Moreover an

equivalent representation for (16)–(18) is given by

p1

�
n�

k=1

Dk, t

�

= X1(t) +
� n�

k=1
Dk

0
(a11p1(y, t)

+ p2(y − D1, t))dy (28)

p2

�
n�

k=2

Dk, t

�

= X2(t) +
� n�

k=2
Dk

0
(a21p1(y, t)

+ a22p2(y, t) + p3(y − D2, t))dy (29)
...

pn(Dn, t) = Xn(t) +
�

Dn

0
(an1p1(y, t) + · · ·

+ annpn(y, t) + u(y, t))dy, (30)

where

pi(x, t) = Pi

�

t + x −
n�

k=i

Dk

�

, x ∈
�

0,
n�

k=i

Dk

�

. (31)

Proof. Consider the equivalent representation of system (10)–(12)
using transport PDEs for the delayed states and control

Ẋ1(t) = a11X1(t) + ξ2(0, t) (32)
ξ2t (x, t) = ξ2x(x, t) (33)

ξ2(D1, t) = X2(t) (34)

Ẋ2(t) = a21X1(t) + a22X2(t) + ξ3(0, t) (35)
ξ3t (x, t) = ξ3x(x, t) (36)

ξ3(D2, t) = X3(t) (37)
...

Ẋn(t) = an1X1(t) + · · · + annXn(t) + u(0, t) (38)
ut(x, t) = ux(x, t) (39)
u(Dn, t) = U(t). (40)

Consider the following ODEs in x (to become clear that these are
ODEs in x, consider the time t to act as a parameter rather as a
running variable),

p1x(x, t) = a11p1(x, t) + p2(x − D1, t) (41)

p2x(x, t) = a21p1(x, t) + a22p2(x, t) + p3(x − D2, t) (42)
...

pnx(x, t) = an1p1(x, t) + · · · + annpn(x, t) + u(x, t), (43)

where, for each pi(x, t), x varies in [0, �n

k=i
Dk]. The initial

conditions for the above system of ODEs are given by

pi(0, t) = Xi(t), ∀i, (44)

and

pi(θi, t) = Xi(t + θi), θi ∈ [−Di−1, 0], i = 2, . . . , n. (45)

Since system (41)–(43) is driven by the input u(x, t), which
satisfies a transport PDE, the same holds for all the pi(x, t) (see for
example Krstic (2008a, 2010)). Thus,

∂pi(x, t)

∂t
= ∂pi(x, t)

∂x
, x ∈

�

0,
n�

k=i

Dk

�

, ∀i. (46)

By taking into account (44) we have that

pi(x, t) = Xi(t + x), x ∈
�

0,
n�

k=i

Dk

�

, ∀i. (47)

To see that (46) holds it is sufficient to prove that (47) is the
unique solution of the ODEs in x given by (41)–(43) with the initial
conditions (44)–(45). Since then, the pi(x, t) are functions of only
one variable, namely x + t , and consequently (46) holds. Thus, it
remains to prove that (47) is the unique solution of the initial value
problem (41)–(45). Toward this end, by taking into account (27)
we point out that (47) satisfy the initial value problem (41)–(45).
Then, assuming that Xi(t + θi), i = 2, . . . , n are continuous for all
θi ∈ [−Di−1, 0], using Theorem 2.1 from Hale and Verduyn Lunel
(1993)we can conclude that (47) is the unique solution of the ODEs
in x given by (41)–(43) with the initial conditions (44)–(45). Thus,
(46) holds.

From relation (47) becomes clear that the pi(x, t) are the x

seconds ahead predictors of the states. By defining

pi

�
n�

k=i

Dk, t

�

= Pi(t), ∀i, (48)

we get (31). By integrating from 0 to x (41)–(43) we get

p1(x, t) = X1(t) +
�

x

0
(a11p1(y, t) + p2(y − D1, t))dy (49)

p2(x, t) = X2(t) +
�

x

0
(a21p1(y, t) + a22p2(y, t)

+ p3(y − D2, t))dy (50)
...

pn(x, t) = Xn(t) +
�

x

0
(an1p1(y, t) + · · ·

+ annpn(y, t) + u(y, t))dy. (51)

By setting in each pi(x, t), x = �
n

k=i
Dk and using (31) we get

(28)–(30). �

It is important here to observe that the total delay from the input
to each state Xi(t) is

�
n

k=i
Dk. This explains the fact that our

predictor intervals are different for each state and specificallymust
be

�
n

k=i
Dk seconds for each state Xi(t). Our controller design is

based on a recursive procedure that transforms system (10)–(12)
to a target systemwhich is exponentially stablewith the controller
(13). Then, using the invertibility of this transformation, we prove
exponential stability of the original system. We now state this
transformation, along with its inverse.

Lemma 2. The state transformation defined by

Z1(t) = X1(t) (52)
Zi+1(t) = Xi+1(t) − αi(Di, t), i = 1, 2, . . . , n − 1, (53)

along with the transformation of the actuator state

w(x, t) = u(x, t) − αn(x, t), x ∈ [0,Dn], (54)

where the αi(x, t) are defined as in (14)–(15), transforms the

system (10)–(12) to the target system with the control law given

by (13). The target system is given by

Ż1(t) = −c1Z1(t) + Z2(t − D1) (55)

Ż2(t) = −c2Z2(t) + Z3(t − D2) (56)
...

Żn(t) = −cnZn(t) + W (t − Dn), (57)
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where

W (θ) = 0, θ ≥ 0. (58)

Proof. Before we start our recursive procedure we rewrite the
target system using transport PDEs as

Ż1(t) = −c1Z1(t) + ζ2(0, t) (59)
ζ2t (x, t) = ζ2x(x, t) (60)

ζ2(D1, t) = Z2(t) (61)

Ż2(t) = −c2Z2(t) + ζ3(0, t) (62)
ζ3t (x, t) = ζ3x(x, t) (63)

ζ3(D2, t) = Z3(t) (64)
...

Żn(t) = −cnZn(t) + w(0, t) (65)
wt(x, t) = wx(x, t) (66)
w(Dn, t) = 0. (67)

Note that

ζi(x, t) = Zi(t + x − Di−1), x ∈ [0,Di−1]. (68)

Step 1. Following the backstepping procedure we first stabilize
X1(t) with the virtual input α1(D1, t). We define

ζ2(x, t) = ξ2(x, t) − α1(x, t), (69)

then using (32) we get

Ẋ1(t) = a11X1(t) + ζ2(0, t) + α1(0, t). (70)

By choosing α1(x, t) = −(a11 + c1)p1(x, t) (note the equivalent
representation of α1(x, t) using (31)) and by using (44) we get

Ż1(t) = −c1Z1(t) + ζ2(0, t). (71)

From (69) with x = D1 and (61) it follows that

Z2(t) = X2(t) − α1(D1, t). (72)

By setting now

ζ3(x, t) = ξ3(x, t) − α2(x, t), (73)

and using (69), (33) and (35) we have

Ż2(t) = ζ2x(x, t)|x=D1 = a21X1(t) + a22X2(t)

+ ζ3(0, t) + α2(0, t) − ∂α1(D1, t)

∂x
, (74)

where ∂α1(D1,t)
∂x

corresponds to ∂α1(x,t)
∂x

|x=D1 andwe use the fact that
α1t (x, t) = α1x(x, t) (which is a consequence of relation (15)).
Step 2. By choosing

α2(x, t) = −a21p1(x, t) − a22p2(x, t) − c2(p2(x, t)

− α1(D1 + x, t)) + ∂α1(x + D1, t)

∂x
= −a21p1(x, t) − a22p2(x, t) − c2(p2(x, t)

+ (a11 + c1)p1(D1 + x, t))

− (a11 + c1)(a11p1(x + D1, t) + p2(x, t)), (75)

we get from (74) (with the help of (44)) that

Ż2(t) = −c2Z2(t) + ζ3(0, t). (76)

By setting now x = D2 in (73) and using (64) we get

Z3(t) = X3(t) − α2 (D2, t) . (77)

If we now define

ζ4(x, t) = ξ4(x, t) − α3(x, t), (78)

then with the help of (36) we get

Ż3(t) = a31X1(t) + a32X2(t) + a33X3(t) + ζ4(0, t)

+ α3(0, t) − ∂α2 (D2, t)

∂x
. (79)

Step i. Assume now that

Żi−1(t) = −ci−1Zi−1(t) + ζi(0, t), (80)

and define ζi+1(x, t) as

ζi+1(x, t) = ξi+1(x, t) − αi(x, t). (81)

Then from (53) with x = Di−1 we have that

Żi(t) = ai1X1(t) + · · · + aiiXi(t) + ζi+1(0, t)

+ αi(0, t) − ∂αi−1(Di−1, t)

∂x
. (82)

Hence, with

αi(x, t) = −ai1p1(x, t) − · · · − aiipi(x, t)

− ci(pi(x, t) − αi−1(Di−1 + x, t)) + ∂αi−1(Di−1 + x, t)

∂x
, (83)

we get

Żi(t) = −ciZi(t) + ζi+1(0, t). (84)

Step n. In the last step we choose the controller U(t). Since

Żn(t) = an1X1(t) + · · · + annXn(t) + u(0, t)

− ∂αn−1 (Dn−1, t)

∂x
. (85)

Then using (14) for i = nwe have that

Żn(t) = −cnZn(t) + w(0, t), (86)

and using (13)

wt(x, t) = wx(x, t) (87)
w(Dn, t) = 0. (88)

Assuming an initial condition for (87) as

w(x, 0) = w0(x), (89)

and by defining a new variableW (·) as
w0(x) = W (x − D), x ∈ [0,Dn], (90)

we get that

w(x, t) =
�
W (t + x − D), −D ≤ t + x − D ≤ 0
0, t + x − D ≥ 0

�
. (91)

Defining θ = t + x−D one gets (58). Note here that based on (54),
w0(x) is given by

w0(x) = u(x, 0) − αn(x, 0), x ∈ [0,Dn]. � (92)

We now define the inverse transformation of (52)–(54).

Lemma 3. The inverse transformation of (52)–(54) is defined as

X1(t) = Z1(t) (93)
Xi+1(t) = Zi+1(t) + βi(Di, t), i = 1, 2, . . . , n − 1. (94)
u(x, t) = w(x, t) + βn(x, t), x ∈ [0,Dn], (95)
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where the βi(x, t) are now given by

β1(x, t) = −(a11 + c1)�1(x, t), x ∈
�

0,
n�

k=1

Dk

�

(96)

βi(x, t) = −ai1�1(x, t) − ai2(�2(x, t) + β1(D1 + x, t))
− · · · − aii(�i(x, t) + βi−1(Di−1 + x, t))

− ci�i(x, t) + ∂βi−1(Di−1 + x, t)

∂x
,

x ∈
�

0,
n�

k=i

Dk

�

, ∀i = 2, . . . , n, (97)

and the �i(x, t) (the predictors of the transformed states) are given by

the following relations

�1(x, t) = Z1(t) +
�

x

0
(−c1�1(y, t) + �2(y − D1, t))dy (98)

�2(x, t) = Z2(t) +
�

x

0
(−c2�2(y, t) + �3(y − D2, t))dy (99)

...

�n(x, t) = Zn(t) +
�

x

0
(−cn�n(y, t) + w(y, t))dy, (100)

where in each �i(x, t), x varies in [0, �n

k=i
Dk].

Proof. Applying similar arguments as in Lemma 2 we prove that
the inverse transformation of (52)–(54) and (14)–(15) is given by
(93)–(97). �

We now prove the stability of the transformed system.

Lemma 4. The target system is exponentially stable in the sense that

there exist constants M1, m1 and m2 such that

Ξ(t) ≤ M1(1 + Dmax)

m2
Ξ(0)e− m1

M1
t
, (101)

where

Ξ(t) = 1
2

n�

i=1

Z
2
i
(t) + 1

2

n�

i=2

�
t

t−Di−1

Z
2
i
(θ)dθ

+ 1
2

�
t

t−Dn

W
2(θ)dθ (102)

Dmax = max {Di} , ∀i, (103)

and

�
t

t−Di−1

Z
2
i
(θ)dθ =

�
Di−1

0
ζ 2
i
(x, t)dx = �ζi(t)�2 (104)

�
t

t−Dn

W
2(θ)dθ =

�
Dn

0
w2(x, t)dx = �w(t)�2. (105)

Proof. We consider the following Lyapunov-like function

V (t) = 1
2

n�

i=1

kiZ
2
i
(t) + 1

2

n�

i=2

λi

�
Di−1

0
(1 + x)ζ 2

i
(x, t)dx

+ λn+1

2

�
Dn

0
(1 + x)w2(x, t)dx. (106)

Note that the above functional can be considered as a Control
Lyapunov Functional in the sense of Karafyllis and Jiang (in press).
This fact reinforces the strength of the present result: a Control
Lyapunov Functional is actually constructed. By taking the time

derivative of the above function along the solutions of the Z(t)
system and by exploiting the fact that ζi(x, t) and w(x, t) satisfy
transport PDEs (based on (60), (63) and (66)), it follows that

V̇ (t) = −
n�

i=1

cikiZ
2
i
(t) +

n−1�

i=1

kiZi(t)ζi+1(0, t)

+ knZn(t)w(0, t) + 1
2

n�

i=2

λi(1 + Di−1)Z
2
i
(t)

− 1
2

n�

i=2

λiζ
2
i
(0, t) − 1

2

n�

i=2

λi

�
Di−1

0
ζ 2
i
(x, t)dx

− λn+1

2
w2(0, t) − λn+1

2

�
Dn

0
w2(x, t)dx, (107)

where we used integration by parts in the above integrals. By
choosing the weights as

ki = 2
λi

ci

(1 + Di−1), i = 2, . . . , n

k1 = 2 (108)

λi = 4
λi−1(1 + Di−2)

c
2
i−1

, i = 3, . . . , n + 1

λ2 = 1
2c1

, (109)

and after some manipulations that incorporate completion of
squares we get

V̇ (t) ≤ −1
2

n�

i=1

cikiZ
2
i
(t) − 1

2

n�

i=2

λi

�
Di−1

0
ζ 2
i
(x, t)dx

− λn+1

2

�
Dn

0
w2(x, t)dx. (110)

Defining

M1 = max {ki, λi+1} , i = 1, 2, . . . , n. (111)

m1 = min
�
ciki

2
,

λi+1

2 (1 + Di)

�
, i = 1, 2, . . . , n, (112)

it follows that

V̇ (t) ≤ −m1

M1
V (t). (113)

If we now define

m2 = min
�
ki

2
,
λi+1

2

�
, i = 1, 2, . . . , n, (114)

then

Ξ(t) ≤ V (0)
m2

e− m1
M1

t ≤ M1(1 + Dmax)

m2
Ξ(0)e− m1

M1
t
. � (115)

We give now the following lemma which we prove in the
Appendix.

Lemma 5. There exist constants Gi such that

pi(x, t)
2 ≤ Gi

�

|X(t)|2 +
n�

i=2

�
Di−1

0
ξ 2
i
(y, t)dy

+
�

Dn

0
u
2(y, t)dy

�

, ∀x ∈
�

0,
n�

k=i

Dk

�

, (116)
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where

|X(t)|2 =
n�

i=1

X
2
i
(t), (117)

and the bound (116) is independent of x.

Lemma 6. There exists a constant M such that

Ξ(t) ≤ MΩ(t). (118)

Proof. From (52)–(54) it follows that

Z
2
i
(t) ≤ 2(X2

i
(t) + α2

i−1(Di, t)), i = 2, . . . , n (119)

ζ 2
i
(x, t) ≤ 2(ξ 2

i
(x, t) + α2

i−1(x, t)),
x ∈ [0,Di−1], i = 2, . . . , n (120)

w2(x, t) ≤ 2(u2(x, t) + α2
n
(x, t)), x ∈ [0,Dn]. (121)

Moreover, from relations (14)–(15) one can see that the αi(x, t)
are linear functions of the predictors p1(x, t), . . . , pi(x, t), hence
it holds that

α2
i
(x, t) ≤ bi

i�

k=1

p
2
k
(x, t), x ∈

�

0,
n�

k=i

Dk

�

(122)

for some constants bi. By employing the bound of Lemma 5, the
lemma is proven. �

Lemma 7. There exist constants Fi such that

�2
i
(x, t) ≤ Fi

�

|Z(t)|2 +
n�

i=2

�
Di−1

0
ζ 2
i
(y, t)dy

+
�

Dn

0
w2(y, t)dy

�

, x ∈
�

0,
n�

k=i

Dk

�

. (123)

Proof. Immediately note that the relation for the �i(x, t) is similar
to the relation for pi(x, t). Note here that in this case the derivation
of the explicit bound is easier due to the special form of the �i(x, t)
in (98)–(100). �

Lemma 8. There exists a constant M such that

MΩ(t) ≤ Ξ(t). (124)

Proof. Using relations (93)–(95) we get

X
2
i
(t) ≤ 2(Z2

i
(t) + β2

i−1(Di, t)), i = 2, . . . , n (125)

ξ 2
i
(x, t) ≤ 2(ζ 2

i
(x, t) + β2

i−1(x, t)),
x ∈ [0,Di−1], i = 2, . . . , n (126)

u
2(x, t) ≤ 2(w2(x, t) + β2

n
(x, t)), x ∈ [0,Dn]. (127)

By observing that βi(x, t) are linearly dependent on �1(x, t), . . . ,
�i(x, t) we conclude that there exist constants di such that

β2
i
(x, t) ≤ di

i�

k=1

�2
k
(x, t), x ∈

�

0,
n�

k=i

Dk

�

. (128)

Using Lemma 7 the lemma is proven. �

Proof of Theorem 1. Combining Lemmas 6 and 8 we have that

MΩ(t) ≤ Ξ(t) ≤ MΩ(t). (129)

3

2

1

0

–1

–2

–3
0 2 4 6

Fig. 1. System’s response for the simulation example.

Hence,

Ω(t) ≤ Ξ(t)

M
, (130)

and by Lemma 4 we get

Ω(t) ≤ MM1(1 + Dmax)

Mm2
Ω(0)e− m1

M1
t
. (131)

Thus Theorem 1 is proven with

κ = MM1(1 + Dmax)

Mm2
(132)

λ = m1

M1
. � (133)

4. Simulations

We illustrate here our controller with a second order example
with parameters a11 = a21 = a22 = 0.2, D1 = 0.4, D2 = 0.8
and c1 = c2 = 2. The initial conditions for the controller are
given by (19)–(21) and for the system are X1(0) = X2(0) = 1 and
X2(θ) = 1, θ ∈ [−D1, 0]. This system is unstable (to see this one
can use Olgac and Sipahi (2002)). In the present case the controller
will have the form

U(t) = u(D2, t)

= α2 (D2, t)

= −a21p1(D2, t) − a22p2(D2, t) − c2(p2(D2, t)

+ (a11 + c1)p1(D1 + D2, t))

− (a11 + c1)(a11p1(D2 + D1, t) + p2(D2, t))

= −a21P1(t − D1) − a22P2(t) − c2(P2(t)

+ (a11 + c1)P1(t)) − (a11 + c1)(a11P1(t) + P2(t)), (134)

where P1(t) and P2(t) are calculated using the integral representa-
tion (16)–(18). Note also that these integrals are computed using
the trapezoidal rule.

Fig. 1 shows that the predictor controller exponentially
stabilizes the system. The control signal reaches first X2(t), since
the delay from the input to X2(t) is 0.4, which is smaller than
the total delay from the input to X1(t). After 1.2 s, which is the
total delay from the input to X1(t), the controller starts stabilizing
X1(t). Then both X1(t) and X2(t) converge exponentially to zero
(see Fig. 2).
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Fig. 2. Control effort for the simulation example.

5. Conclusions

We present a backstepping design for an exponentially
unstable system with simultaneous input and state delay. Our
design is predictor-based since it uses the predicted values
of the states on given intervals. Using the boundness of the
backstepping transformation and its inverse, we prove exponential
stability of the closed-loop system using a properly weighted
Lyapunov–Krasovskii functional.

A backstepping-like design for linear systems with only state
delay is the one considered in Jankovic (2009a). The major
difference with the design in Jankovic (2009a) and the one
considered here, is that in Jankovic (2009a) delays are not allowed
in the virtual inputs (which is the difficult case considered here).
The present procedure can be modified to incorporate state delays
that are in other positions other than the virtual inputs. In the case
of a system with only input delay (irrespective of the form of the
system, i.e., either if the system is a chain of integrators with input
delay, e.g. Mazenc, Mondie, and Niculescu (2003), or a system in
feedforward form, e.g. Jankovic (2010), etc.) the resulting control
law is the predictor-based/finite spectrum assignment controller
from Artstein (1982), Fiagbedzi and Pearson (1986), Krstic and
Smyshlyaev (2008a) and Manitius and Olbrot (1979) with the gain
K being designed using the classical backstepping procedure for
linear systems fromKrstic et al. (1995). In the case of a systemwith
simultaneous input and state delays a backstepping-like design
comparable with the one considered here is the one in Jankovic
(2010) for the special case of a chain of delayed integrators and
input delay. In this special case the resulting control law from the
present work turns out to be the same with the one in Jankovic
(2010).

The present results can be also applied in the case where
there are delays in other states too, and not just in the virtual
inputs. Thus, the class of systems such that the present method
can be applied is not limited. Considering the problem where the
delays or the coefficients aij are unknown, is a completely different
and very challenging problem. Following the infinite dimensional
backstepping technique, this problem has been solved for the case
where there is only unknown input delay (Bresch-Pietri & Krstic,
2009a) and extended to the case of unknown input delay and
plant parameters in Bresch-Pietri and Krstic (2009b). In Bekiaris-
Liberis and Krstic (2010) a problem with unknown input and
state delays is solved for a class of linear feedforward systems.
Application of the design methods from Bekiaris-Liberis and Krstic
(2010), Bresch-Pietri andKrstic (2009a,b) in the present case seems
promising and can be pursued as a forthcoming research topic.

Appendix

Here we give the proof of Lemma 5.

Proof of Lemma 5. By solving (41)–(43), and by taking into
account that this ODE in x system is in strict-feedback form, we
get

p1(x, t) =
�

x−D1

−D1

v11(x − y − D1)p2(y, t)dy

+ v11(x)X1(t), x ∈
�

0,
n�

k=1

Dk

�

(135)

p2(x, t) =
2�

i=1

�
x−Di

−Di

v2i(x − y − Di)pi+1(y, t)dy

+
2�

i=1

v2i(x)Xi(t), x ∈
�

0,
n�

k=2

Dk

�

(136)

...

pn(x, t) =
n−1�

i=1

�
x−Di

−Di

vni(x − y − Di)pi+1(y, t)dy

+
n�

i=1

vni(x)Xi(t) +
�

x

0
vnn(x − y)u(y, t)dy,

x ∈ [0,Dn] , (137)

where

eA0x =





v11(x) 0 0 . . . 0
v21(x) v22(x) 0 . . . 0

...
...

...
...

...
vn1(x) vn2(x) . . . . . . vnn(x)



 (138)

A0 =





a11 0 0 . . . 0
a21 a22 0 . . . 0
...

...
...

...
...

an1 an2 . . . . . . ann



 . (139)

By applying Young’s and Cauchy–Schwarz’s inequalities to Eqs.
(135)–(137) we get

p
2
1(x, t) ≤ A1

�
X

2
1 (t) +

�
x−D1

−D1

p
2
2(y, t)dy

�
(140)

p
2
2(x, t) ≤ A2

�

X
2
1 (t) + X

2
2 (t) +

2�

i=1

�
x−Di

−Di

p
2
i+1(y, t)dy

�

(141)

...

p
2
n
(x, t) ≤ An

�
n�

i=1

X
2
i
(t) +

n−1�

i=1

�
x−Di

−Di

p
2
i+1(y, t)dy

+
�

x

0
u
2(y, t)dy

�

, (142)

where, in each of the above bounds, x ∈ [0, �n

k=i
Dk], respectively.

Also

Ai = 2imax




sup

x∈
�

0,
n�

k=i

Dk

� v2
i1(x), . . . , sup

x∈
�

0,
n�

k=i

Dk

� v2
ii
(x),
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sup

x∈
�

0,
n�

k=i

Dk

�

�
x−D1

−D1

vi1(x − y − D1)
2dy, . . . ,

sup

x∈
�

0,
n�

k=i

Dk

�

�
x−Di

−Di

vii(x − y − Di)
2dy




. (143)

If we take now into account that pi(x−Di−1, t) = Xi(t+x−Di−1) =
ξi(x, t) we can rewrite (140)–(142) as

p
2
1(x, t) ≤ A1

�
X

2
1 (t) + �ξ2(t)�2 +

�
x−D1

0
p
2
2(y, t)dy

�
(144)

p
2
2(x, t) ≤ A2

�
2�

k=1

X
2
i
(t) +

2�

i=1

�ξi+1(t)�2

+
2�

i=1

�
x−Di

0
p
2
i+1(y, t)dy

�

(145)

...

p
2
n
(x, t) ≤ An

�
n�

k=1

X
2
i
(t) +

n−1�

i=1

�ξi+1(t)�2

+
n−1�

i=1

�
x−Di

0
p
2
i+1(y, t)dy +

�
x

0
u
2(y, t)dy

�

, (146)

where in each of the above relations, x ∈ [0, �n

k=i
Dk],

respectively. From the above equations, recursively, we can take
the upper bound of the lemma. To see this, we start from relation
(144) and observe that the boundness of p

2
1(x, t) depends only

on the boundness of X1(t) and ξ2(x, t) (thats is, p21(x, t) remains
bounded for all x ∈ [0, �n

k=1 Dk]), if for all x ∈ [0, �n

k=2 Dk],
p
2
2(x, t) is upper bounded. We proceed now by proving that the

boundness of p
2
2(x, t) depends only on the boundness of X1(t),

X2(t), ξ2(x, t) and ξ3(x, t) (thats is, p
2
2(x, t) remains bounded

for all x ∈ [0, �n

k=2 Dk]), if for all x ∈ [0, �n

k=3 Dk],
p
2
3(x, t) is upper bounded. From relation (145) (and by noting

that
�

x−D1
0 p

2
2(y, t)dy ≤

�
x

0 p
2
2(y, t)dy for all x for which this

equation holds, i.e., ∀x ∈ [0, �n

k=2 Dk]) by using the comparison
principle and by exploiting the fact that eA2x ≤ e|A2|

�
n

k=2 Dk , ∀x ∈
[0, �n

k=2 Dk], we get that

�
x

0
p
2
2(y, t)dy ≤ A2e

|A2|
n�

k=2
Dk
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2
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(t)

+
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i=1

�ξi+1(t)�2

� �
x

0

�
y−D2

0
p
2
3(r, t)drdy

�

. (147)

Plugging the above bound in to relation (145) we get a bound of
p
2
2(x, t) that depends on p

2
3(x, t). Moreover, using the relation

p
2
3(x, t) ≤ A3

�
3�

k=1

X
2
i
(t) +

3�

i=1

�ξi+1(t)�2

+
3�
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�
x−Di

0
p
2
i+1(y, t)dy

�

, (148)

and the previous bound, we get

p
2
3(x, t) ≤ A3

�
3�

k=1

X
2
i
(t) +

2�

i=1

�ξi+1(t)�2

�

+ A3
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0
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y

0
p
2
3(r, t)drdy + A3

�
x

0
p
2
3(x, t)dy

+ A3

�
x−D3

0
p
2
4(x, t), x ∈

�

0,
n�

k=3

Dk

�

. (149)

Note that the delayed terms in the integral for p
2
3(x, t) can be

removed since now x ∈ [0, �n

k=3 Dk] which is the domain of
definition for p3(x, t) (and of course this integral is larger than the
delayed one). By changing the order of integration in the double
integral of the previous relation, we can rewrite
�

x

0

�
y

0
p
2
3(r, t)drdy =

�
x

0
(x − y)p23(y, t)dy. (150)

By observing that
�

x

0 (x − y)p23(y, t)dy ≤ �
n

k=3 Dk

�
x

0 p
2
3(y, t)dy,

∀x ∈ �
n

k=3 Dk, and applying again the comparison principle for�
x

0 p
2
3(y, t)dywe can bound p

2
3(x, t) from p

2
4(x, t) and consequently

also p
2
2(x, t). Repeating this process until p

2
n
(x, t) (the boundness of

which depends only on the boundness of �u(x, t)�2), we derive the
bound of the lemma. �
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