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Control of Transport PDE/Nonlinear ODE
Cascades With State-Dependent

Propagation Speed
Mamadou Diagne , Nikolaos Bekiaris-Liberis , Andreas Otto , and Miroslav Krstic , Fellow, IEEE

Abstract—In this paper, we deal with the control of a
transport partial differential equation/ nonlinear ordinary
differential equation (PDE/nonlinear ODE) cascade system
in which the transport coefficient depends on the ODE
state. We develop a PDE-based predictor-feedback bound-
ary control law, which compensates the transport dynamics
of the actuator and guarantees global asymptotic stability
of the closed-loop system. The stability proof is based on
an infinite-dimensional backstepping transformation and a
Lyapunov-like argument. The relation of the PDE–ODE cas-
cade with a state-dependent propagation speed to an ODE
system with a state-dependent input delay, which is de-
fined implicitly via an integral of past values of the ODE
state, is also highlighted and the corresponding equiva-
lent predictor-feedback design is presented together with an
alternative proof of global asymptotic stability of the closed-
loop system based on the construction of a Lyapunov func-
tional. The practical relevance of our control framework is
illustrated in an example that is concerned with the control
of a metal rolling process.

Index Terms—Boundary control, metal rolling, nonlinear
control, PDE-ODE cascade systems, predictor-feedback,
state-dependent delay.

I. INTRODUCTION

THE problem of stabilization of coupled transport par-
tial differential equation/ordinary differential equation

(PDE/ODE) systems in which the transport coefficient or the
boundary of the PDE domain varies with time is currently at-
tracting considerable attention. This is attributed to the fact
that such systems occur in a large number of challenging
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engineering problems, typically when sensors and actuators are
not co-located and, particularly, in systems involving transport
of materials. Among several other applications, such systems
are utilized to describe the dynamics of screw extrusion pro-
cesses for additive manufacturing [1], metal cutting processes
[2], moisture in convective flows [3], populations [4], transport
phenomena in gasoline engines [5]–[9], crushing-mills [10],
production of commercial fuels by blending [11], and of stick-
slip instabilities during oil drilling [12]–[15].

In this paper, we consider a particular class of implicitly
defined state-dependent delays, which appear in numerous ap-
plications and which are expressed as transport, with a variable
velocity (that may depend on the state of the ODE system), over
a constant distance [16]. In engineering, such delays are some-
times called variable transport delays [17] and can be found, for
example, in material flows in reactors [18], whereas the same
type of delays can be even found in biology, typically known as
threshold delays [4], [19].

Predictor-feedback control laws are often employed for com-
pensation of constant input delays, which appear in numerous
linear [20], [21] and nonlinear [22], [23] physical systems. In
recent years, the extension of the predictor-feedback concept
to the case of nonlinear systems with input delays that vary
with time has been developed in [24]–[26] (see also [27], [28]
for other prediction-based approaches for linear systems). Such
predictor feedbacks are employed for stabilization of PDE–ODE
cascades in which the PDE part describes the actuator dynamics
of the ODE system, exploiting an alternative representation of
the PDE–ODE system via a nonlinear system with input de-
lay. In particular, the control of the nozzle flow rate of screw
extruders in additive manufacturing is dealt in [1] utilizing a
transport PDE/ODE cascade model in which the length of the
PDE domain depends on the ODE state, and the stabilization of
nonlinear systems is dealt in [12], [13] with actuator dynamics
governed by a wave PDE with moving boundary that depends
on the ODE state as well. Predictor-based control designs are
also developed for stabilization of transport PDE–ODE cascades
with input-dependent transport coefficient [9].

In this paper, we develop a PDE-based predictor-feedback law
for stabilization of a transport PDE/nonlinear ODE cascade with
state-dependent propagation speed. We prove global asymptotic
stability of the closed-loop system with the aid of a Lyapunov
functional that is constructed by introducing a novel infinite-
dimensional backstepping transformation. An alternative repre-
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sentation of the PDE/ODE cascade as a nonlinear system with
state-dependent input delay defined implicitly through an inte-
gral of the ODE state, is derived, computing the PDE solution
with the method of characteristics. The equivalent predictor-
feedback design for the delay system is also presented. We
prove global asymptotic stability of the closed-loop system in
the new representation providing an alternative proof.

The problem in this paper differs than a problem with a past-
state-dependent delay [29], in that the different (in comparison
to [29]) definition of the delay in the current case gives rise
to a different prediction horizon, which is defined implicitly
through an integral equation that incorporates the future values
of the state over the entire prediction window (and not just
as an explicit function of the current state as in the case of a
past-state-dependent delay). This results in a different definition
of the predictor in comparison to [29]. In addition, unlike the
contributions [25], [29], this work offers a global stability result.
This is due to the fact that the feasibility condition that the delay
rate is less than one is satisfied a priori (irrespective of the values
of the state and input). This is guaranteed by the assumption of
the uniform (with respect to the state) strict positiveness of the
transport speed made here, which imposes a single direction of
propagation of the control signal along the actuation path (i.e.,
the control signal never propagates in the opposite direction).

The effectiveness of the proposed control approach is illus-
trated in a simulation of a model for the control of a metal
rolling process [30]–[32], where a state-dependent delay due to
a state-dependent transport velocity occurs [33], [34].

This paper is organized as follows: In Section II, the
PDE/nonlinear ODE cascade system and the controller de-
sign are presented. The statement of the main result and the
stability proof via PDE representation are introduced in Sec-
tion III. Section IV discusses the alternative representation of
the PDE/nonlinear ODE cascade system as an implicit state-
dependent input delay system. The design of an equivalent con-
troller for the delay system is established in Section V. The
stability analysis via delay system representation is presented
in Section VI. The paper ends with simulation results, which
illustrate the practical relevance of the proposed framework via
an application to metal rolling processes in Section VII. Final
remarks and future directions are provided in Section VIII.

Notation: We use the common definition of class K, K∞, and
KL∞ from [35]. For an n-vector, the norm |.| denotes the usual
Euclidean norm. We denote by Cj (A) the space of functions
that have continuous derivatives of order j on A.

II. PROBLEM STATEMENT AND CONTROLLER DESIGN

We consider the transport PDE/nonlinear ODE cascade sys-
tem with state-dependent propagation speed defined as

Ẋ(t) = f (X(t), u(0, t)) (1)

where X ∈ Rn and f : Rn × R → Rn is continuously differ-
entiable with f(0, 0) = 0. The plant is located at the boundary
x = 0 of a transport device (e.g., a pipe, which represents the ac-
tuation path) and controlled through a transport equation given

Fig. 1. Schematic of the closed-loop system.

by

∂tu(x, t) − v (X(t)) ∂xu(x, t) = 0 (2)

where v : Rn → R+ is continuously differentiable with respect
to X . The actuation U(t) at the boundary x = D of the PDE is
written as

u(D, t) = U(t). (3)

The initial condition along the actuation path is defined as

u(x, 0) = u0(x). (4)

Assumption 1: The state-dependent propagation speed v :
Rn → R+ is continuously differentiable and there exists a pos-
itive constant v� , such that

v(X) ≥ v� , for all X ∈ Rn . (5)

Assumption 2: There exist a smooth positive definite func-
tion C and class K∞ functions μ1 , μ2 , and μ3 , such that for the
plant Ẋ = f(X,w), the following holds:

μ1(|X|) ≤ C(X) ≤ μ2(|X|) (6)

∂C(X)
∂X

f(X,ω) ≤ C(X) + μ3(|ω|) (7)

for all (X, ω)T ∈ Rn+1 .
Assumption 2 guarantees that system Ẋ = f(X,ω) is

strongly forward complete with respect to ω.
Assumption 3: System Ẋ = f(X,κ(X) + ω) is input-to-

state stable with respect to ω. Moreover, the feedback law
κ : Rn → R is continuously differentiable with κ(0) = 0.

The definitions of strong forward completeness and input-to-
state stability are those from [36] and [37], respectively.

The predictor-feedback controller for systems (1)–(3) is given
by

u(D, t) = κ(p(D, t)) (8)

p(x, t) = X(t) +
∫ x

0

1
v(p(y, t))

f(p(y, t), u(y, t))dy (9)

for all x ∈ [0,D]. We emphasize that for implementing control
law (8), (9), one needs to measure the ODE state X(t) and the
PDE state u(x, t), x ∈ [0,D].
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III. MAIN RESULT AND ITS PROOF VIA PDE
REPRESENTATION

Theorem 1: Consider the closed-loop system consisting of
the plant (1)–(3) and the control law (8), (9) under Assump-
tions 1–3. For all initial conditions for which u0(x) is locally
Lipschitz on [0,D] and which satisfy the compatibility condi-
tion u0(D) = κ (p(D, 0)), there exists a unique solution to the
closed-loop system with X(t) ∈ C1 [0,∞) and u(x, t) locally
Lipschitz on [0,D] × [0,∞). Moreover, there exists a class KL
function Γ such that the following holds for all t ≥ 0

|X(t)| + sup
x∈[0,D ]

|u(x, t)| ≤ Γ

(
|X(0)| + sup

x∈[0,D ]
|u0(x)|, t

)
.

(10)

The Lipschitzness of the initial condition u0(x) and the com-
patibility condition guarantee that the closed-loop system is well
posed.

The proof of Theorem 1 is based on the following lemmas
whose proof can be found in Appendix (Section A).

Using the predictor state defined in (9), we introduce in the
first two lemmas a novel backstepping transformation (and its
inverse) that allows one to convert the original system to a
suitable “target system,” whose stability is easier to establish
compared to the original closed-loop system (1)–(3), (8), (9).

Lemma 1: The control law defined in (8) and (9), together
with the infinite-dimensional backstepping transformation

w(x, t) = u(x, t) − κ (p(x, t)) (11)

where p(x, t) is defined in (9), maps the system (1), (2) with the
boundary condition (3) into the following target system:

Ẋ(t) = f (X(t), κ (X(t)) + w(0, t)) , (12)

∂tw(x, t) = v(X(t))∂xw(x, t), x ∈ [0,D] (13)

w(D, t) = 0. (14)

Lemma 2: The inverse of the infinite-dimensional backstep-
ping transformation (11) is given by

u(x, t) = w(x, t) + κ (π(x, t)) (15)

where π is defined as

π(x, t) = X(t) +
∫ x

0

[
1

v(π(y, t))

× f

(
π(y, t), κ (π(y, t)) + w(y, t)

)]
dy. (16)

In the next lemma we show that the target system (12)–(14)
is globally asymptotically stable employing a Lyapunov-like
argument.

Lemma 3: There exists a function ν ∈ KL, such that

|X(t)| + ‖w(t)‖∞ ≤ ν

(
|X(0)| + ‖w(0)‖∞, t

)
(17)

for all t ≥ 0.

Lemmas 4 and 5 show the equivalence between the norm
of the original system and the norm of the transformed system
based on Assumptions 1–3.

Lemma 4: There exists a class K∞ function ω̄, such that

sup
x∈[0,D ]

|p(x, t)| ≤ ω̄

(
|X(t)| + sup

x∈[0,D ]
|u(x, t)|

)
t ≥ 0.

(18)
Lemma 5: There exists a class K∞ function ω, such that

sup
x∈[0,D ]

|π(x, t)| ≤ ω

(
|X(t)| + sup

x∈[0,D ]
|w(x, t)|

)
, t ≥ 0.

(19)
Proof of Theorem 1: Assumption 3 implies the existence of

a class K∞ function Ω, such that

κ(|ξ|) ≤ Ω(|ξ|). (20)

From the backstepping transformation (11) defined in Lemma
1 we deduce the following inequalities:

sup
x∈[0,D ]

|w(x, t)| ≤ sup
x∈[0,D ]

(
|u(x, t)| + Ω(|p(x, t)|)

)
, (21)

sup
x∈[0,D ]

|u(x, t)| ≤ sup
x∈[0,D ]

(
|w(x, t)| + Ω(|π(x, t)|)

)
. (22)

Then, from (18) and (19), we obtain

sup
x∈[0,D ]

|w(x, t)| ≤ sup
x∈[0,D ]

|u(x, t)|

+ Ω ◦ ω̄
(
|X(t)| + sup

x∈[0,D ]
|u(x, t)|

)
,

(23)

sup
x∈[0,D ]

|u(x, t)| ≤ sup
x∈[0,D ]

|w(x, t)|

+ Ω ◦ ω
(
|X(t)| + sup

x∈[0,D ]
|w(x, t)|

)
.

(24)

From (23) and (24), there exist some class K∞ functions λ̄ and
λ, such that

|X(t)| + sup
x∈[0,D ]

|w(x, t)| ≤ λ̄

(
|X(t)| + sup

x∈[0,D ]
|u(x, t)|

)
,

(25)

|X(t)| + sup
x∈[0,D ]

|u(x, t)| ≤ λ

(
|X(t)| + sup

x∈[0,D ]
|w(x, t)|

)
.

(26)

Combining (17) and (26), we conclude that

|X(t)| + sup
x∈[0,D ]

|u(x, t)|

≤ λ

(
ν

(
|X(0)| + sup

x∈[0,D ]
|w0(x)|, t

))
. (27)

Using (25) we recover (10) with Γ(s) = λ
(
ν
(
λ̄(s)

))
.
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In order to prove the well-posedness of the closed-loop system
consisting of (1)–(3) with the controller (8), (9), we first compute
the solution to (13) and (14) with respect to a given initial condi-
tion (X(0), w0(x)). We denote by w(x(s), t(s)) the character-
istic curve passing through the point (x, t) ∈ [0,D] × [0,∞),
that is

dt(s)
ds

= 1, (28)

dx(s)
ds

= −v(X(t(s))), (29)

dw(s)
ds

= 0 (30)

with the initial conditions t(0) = 0, x(0) = x0 , and
w(0) = w0(x0), respectively. Integrating (28)–(30) along the
characteristic lines, one deduces the solution of (13) and (14) as

w(x, t) = w0
(
x+ Φ(t)

)
, for all 0 ≤ x+ Φ(t) ≤ D (31)

w(x, t) = 0, for all x+ Φ(t) ≥ D, (32)

Φ(t) =
∫ t

0
v(X(λ))dλ. (33)

Thus, for t < Φ−1(D), system (12) is written as

Ẋ(t) = f
(
X(t), κ (X(t)) + w0

(
Φ(t)

))
, (34)

Φ̇(t) = v(X(t)), (35)

Φ(0) = 0. (36)

From the backstepping transformation (11), we obtain

w0(x) = u0(x) − κ (p0(x)) (37)

where p0(x) is given by

p0(x) = X(0) +
∫ x

0

1
v(p0(y))

f(p0(y), u0(y))dy. (38)

Since κ, f , U , and v are continuously differentiable, we deduce
the local Lipschitzness ofw0(x) from the Lipschitzness ofu0(x)
stated in Theorem 1 and (38). Then, relations (34)–(36) imply
the local Lipschitzness of the right-hand side of the (X,Φ)
system, which in turn ensures the existence and uniqueness of
(X(t),Φ(t)) ∈ C1 [0,Φ−1(D)), where Φ−1(D) satisfies

D =
∫ Φ−1 (D )

0
v(X(τ))dτ. (39)

For t > Φ−1(D), w(0, t) = 0 and the dynamics of X in
(34) are reduced to Ẋ = f(X,κ(X)). The Lipschitzness of
f and κ guarantee the existence and uniqueness of X(t) ∈
C1(Φ−1(D),∞) and the compatibility condition guarantees
thatX is differentiable at Φ−1(D), and thus,X(t) ∈ C1 [0,∞).

From (31), (32) and (13), (14) the well-posedness of X to-
gether with the continuous differentiability and the strict pos-
itiveness of the transport speed v(X) imply the existence and
uniqueness of w(x, t) which is locally Lipschitz on (x, t), for
all (x, t) ∈ [0,D] × [0,∞). Using the equivalence between the
signals p(x, t) and π(x, t) stated in (104), it can be deduced

from (100) that the π-system satisfies the following PDE

∂tπ(x, t) = v(X(t))∂xπ(x, t), (40)

π(0, t) = X(t). (41)

Defining the characteristic curves parameterized by some vari-
able τ and expressing the total derivative of π(x(τ), t(τ)) in
order to derive the equivalent set of ODE for the system (40)
along the characteristic lines, the solution of the transport PDE
(40), compatible with the boundary condition (41) is written as1

π(x, t) = X
(
Φ−1 (x+ Φ(t))

)
. (42)

The existence and uniqueness of (X(t),Φ(t)) ∈ C1 [0,∞) en-
sures that π(x, t) is continuously differentiable on [0,D] ×
[0,∞), and thus, from the inverse backstepping transforma-
tion (15) and the local Lipschitzness of w(x, t) we get the local
Lipschitzness of u(x, t) on [0,D] × [0,∞).

IV. LINKING THE PDE–ODE CASCADE TO AN IMPLICIT

STATE-DEPENDENT INPUT DELAY SYSTEM

In this section, we present an alternative state-dependent de-
lay system representation of the transport PDE/nonlinear ODE
cascade system (1)–(3). The method of characteristics is used
first in order to solve the transport PDE equation (2). Defining
the characteristic curves parameterized by some variable τ , the
state of the PDE can be described by u(x(τ), t(τ)), whose total
derivative is written as

du(x(τ), t(τ))
dτ

=
∂u

∂t

dt

dτ
+
∂u

∂τ

dx

dτ
. (43)

By comparing the total derivative and the transport equation (2),
we deduce the following ODEs system:

dt(τ)
dτ

= 1, (44)

dx(τ)
dτ

= −v (X(t(τ))) , (45)

du(τ)
dτ

= 0. (46)

Integration of the ODEs (44) and (45) yields the characteristic
curves of the PDE (2) given as

t(τ) = t0 + τ, t(0) = t0 (47)

x(τ) =
∫ τ

0

dx(λ)
dλ

dλ + x(0) (48)

= −
∫ τ

0
v (X(t0 + λ)) dλ +D, x(0) = D. (49)

Now, we define the primitive function of the variable transport
velocity as

ΦX (t) =
∫ t

0
v (X(λ)) dλ. (50)

Since the transport velocity v is assumed to be strictly positive,
the function ΦX (t) is a monotonically increasing function and

1The explicit derivation of such solutions is given in detail later on in Section
IV and is similar to the procedure employed for the derivation of (31)–(33).
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Fig. 2. Equivalence between the PDE/ODE cascade system and the
delay system.

defines a bijective mapping between time and space. The sub-
script X denotes the state-dependence of the function ΦX (t).
By combining (49) and (50), we derive the following relation:

x(τ) = ΦX (t0) − ΦX (t0 + τ) +D. (51)

We next reduce the PDE–ODE system to a state-dependent
delay system (see Fig. 2). We consider the characteristic curves
with x(τ) = 0 at time t = t0 + τ as illustrated in Fig. 2 and
define the time delay RX (t) = t− t0 . According to (51), the
state-dependent input delay is implicitly given as

D = ΦX (t) − ΦX (t−RX (t)). (52)

Since the function ΦX (t) depends on the state X of the plant,
the delay RX (t) is also state-dependent. From (46), we know
that the solution of the transport PDE (2) is constant along the
characteristic curves. Thus

u(0, t) = u(D, t−RX (t)) = U(t−RX (t)). (53)

Consequently, using (52) and (53), the original cascade system
(1)–(3) is reduced to a nonlinear system with an implicit state-
dependent input delay, which is written as

Ẋ(t) = f (X(t), U(φ(t))) (54)

φ(t) = t−RX (t) (55)

D =
∫ t

φ(t)
v(X(λ))dλ. (56)

We are not aware of a result dealing with the delay com-
pensation of general nonlinear systems (54) with input delay of
the form (55) and (56). A relevant result can be found in [9].
However, the results in [9] are dealing with linear ODE systems
and the delay is defined implicitly through an integral of past
input values rather than past state values [as in (56)]. In addition
the result in [9] does not aim at completely compensating the
input delay. A possible next step would be to consider the prob-
lem of delay compensation for general nonlinear ODE systems
with input-dependent input delay of an integral type as the one
considered in [9].

In the following, we design the predictor-feedback control law
for the delay system (54)–(56) and present a stability analysis
for the closed-loop system in delay system representation.

V. PREDICTOR FEEDBACK CONTROL DESIGN FOR THE

EQUIVALENT DELAY SYSTEM

Let us define κ(X) to be the nominal stabilizing feedback
control law for the delay free plant Ẋ(t) = f (X(t), U(t)) .
The predictor feedback control law for system (54) is

U(t) = κ(P (t)) (57)

where

P (t) = X(t) +
∫ t

φ(t)

v(X(θ))
v(P (θ))

f (P (θ), U(θ)) dθ (58)

with the initial condition

P (θ) = X(0) +
∫ θ

φ(0)

v(X(s))
v(P (s))

f (P (s), U(s)) ds (59)

for all φ(0) ≤ θ ≤ 0. The fact that the predictor is given by (58)
with the delay being defined by (56) can be seen as follows.
Defining the prediction time

σ(t) = φ−1(t) (60)

we derive the following implicit relation with respect to σ

D =
∫ σ (t)

t

v(X(λ))dλ. (61)

Taking the time derivative of (61), we obtain

σ̇(t)v (X(σ(t))) − v (X(t)) = 0 (62)

that is

σ̇(t) =
v(X(t))

v (X (σ(t)))
. (63)

Substitution of t = σ(θ), θ ∈ [φ(t), t], in (54) leads to

Ẋ(σ(θ)) = σ̇(θ)f(X (σ(θ)) , U(θ)). (64)

Hence

Ẋ(σ(θ)) =
v(X(θ))

v (X (σ(θ)))
f (X (σ(θ)) , U(θ)) . (65)

Integrating (65) over [φ(t), t] and using definition

P (t) = X (σ(t)) (66)

we derive the predictor (58) with initial condition (59).
To implement numerically the predictor feedback control law

(57)–(59), one needs to compute at each time step φ(t) using
(56) and employing the history of the state X . An example of
computing numerically φ(t) is presented in the next section.
Relevant numerical schemes for computation of a delay defined
implicitly via an integral equation of the control input are pre-
sented in [9], [38]. Moreover, one then needs to numerically
compute the predictor P (t) using (58) employing, in addition,
the history of the input U . We emphasize that in the recent
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papers [39], [40], the implementation issue of predictor feed-
back is discussed in detail and various numerical schemes are
developed for computation of predictor feedback laws.

VI. STABILITY ANALYSIS VIA DELAY SYSTEM

REPRESENTATION

Theorem 2: Consider the closed-loop system consisting of
the plant (54)–(56) and the control law (57), (58) under As-
sumptions 1–3. For all initial conditions for which U and X are
locally Lipschitz on the interval [φ(0), 0] and which satisfy the
compatibility condition U(0) = κ(P (0)), there exists a unique
solution to the closed-loop system with X(t) ∈ C1 [0,∞) and
U(t) ∈ C1(0,∞). Moreover, there exists a class KL function
Λ, such that the following holds:

Ω(t) ≤ Λ (Ω(0), t) , t ≥ 0 (67)

where

Ω(t) = sup
φ(t)≤θ≤t

|X(t)| + sup
φ(t)≤θ≤t

|U(θ)|. (68)

In order to prove Theorem 2 we state the following lemmas
whose proofs are provided in Appendix (Section B).

Lemma 6: The infinite-dimensional backstepping transfor-
mation of the actuator state given by

W (θ) = U(θ) − κ(P (θ)) (69)

for allφ(t) ≤ θ ≤ t, together with the controller (57), (58) trans-
form system (54)–(56) into the following target system:

Ẋ(t) = f (X(t), κ(X(t)) +W (φ(t))) (70)

W (t) = 0. (71)

Lemma 7: The inverse of the infinite-dimensional backstep-
ping transformation (69) is defined for all φ(t) ≤ θ ≤ t by

U(θ) = W (θ) + κ(Π(θ)) (72)

with

Π(θ) = X(t) +
∫ θ

t−RX (t)

(
v(X(λ))
v(Π(λ)

× f (Π(λ), κ(Π(λ)) +W (λ))
)
dλ. (73)

In the next lemma, we show that the target system (70), (71)
is globally asymptotically stable constructing a Lyapunov func-
tional. Note that the presented proof argument is different from
the one used in the proof of Lemma 3.

Lemma 8: There exists a class KL function β, such that the
following holds:

Ξ(t) ≤ β (Ξ(0), t) , t ≥ 0 (74)

Ξ(t) = sup
φ(t)≤θ≤t

|X(θ)| + sup
φ(t)≤θ≤t

|W (θ)|. (75)

Lemma 9: There exists a class K∞ function ρ such that the
following holds for all φ(t) ≤ θ ≤ t

|P (θ)| ≤ ρ

(
|X(t)| + sup

t−RX (t)≤s≤t
|U(s)|

)
. (76)

Lemma 10: There exists a class K function ψ, such that the
following holds:

|Π(θ)| ≤ ψ

(
|X(t)| + sup

t−RX (t)≤s≤t
|W (s)|

)
(77)

for all t−RX (t) ≤ θ ≤ t.
Lemma 11: There exist class K∞ functions ρ1 and μ4 , such

that the following holds:

Ω(t) ≤ μ4(Ξ(t)), (78)

Ξ(t) ≤ ρ1(Ω(t)) (79)

where Ω and Ξ are defined in (67) and (75), respectively.
Proof of Theorem 2: Combining (78) and (79) with (74), we

deduce that inequality (67) is satisfied with

Λ(s) = μ−1
4

(
β (ρ1(s)) , t

)
. (80)

We prove next, existence and uniqueness of solutions. We con-
sider the system (X,φ) defined as

Ẋ(t) = f (X(t), U(φ(t))) , (81)

φ̇(t) =
v(X(t))
v(X(φ(t))

(82)

where the initial condition φ(0) satisfies the following relation:

D =
∫ 0

φ(0)
v(X(λ))dλ. (83)

For all 0 ≤ t < σ(0), it holds that φ(0) ≤ φ(t) < 0, and thus,
since the initial conditions X(s) and U(s), φ(0) ≤ s < 0, are
Lipschitz the right-hand side of the (X,φ) system (81), (82) is
Lipschitz with respect to (X,φ) . Thus, existence and unique-
ness of (X(t), φ(t)) ∈ C1 [0, σ(0)) follows.

Then, for t > σ(0), from the target system Ẋ = f(X,κ(X))
and the continuous differentiability of f and κ, we get existence
and uniqueness ofX(t) ∈ C1(σ(0),∞). With the compatibility
condition, we get that X is differentiable also at σ(0), and thus,
X(t) ∈ C1 [0,∞).

Differentiating (73) with respect to t, we have

Π̇(t) =
v(X(t))
v (Π(t))

f (Π(t)), κ(Π(t))) , for all t ≥ 0. (84)

Introducing the change of variables τ = ΦX (t) we rewrite sys-
tem (84) as

˙̄Π(τ) =
1

v
(
Π̄(τ)

)f (Π̄(τ)), κ(Π̄(τ))
)
, for all τ ≥ 0 (85)

where Π̄(τ) = Π
(
Φ−1
X (τ)

)
. Since κ, v, and f are continuously

differentiable, it follows that there exists a unique solution
Π̄(τ) ∈ C1 [0,∞). Thus, Π̄(ΦX (t)) is continuously differen-
tiable with respect to t for all ΦX (t) ≥ 0, i.e., t ≥ Φ−1

X (0) = 0,
since X(t) ∈ C1 [0,∞) and Φ̇X (t) = v(X(t)). Hence, since
Π(t) = Π̄(ΦX (t)), we deduce that Π(t) ∈ C1 [0,∞), and thus,
we get that U(t) ∈ C1(0,∞), which concludes the proof.
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Fig. 3. Metal rolling schematic.

VII. APPLICATION TO METAL ROLLING PROCESSES

The metal rolling process is a common industrial process,
where, in essence, a deformation of a workpiece takes place
between two rolls with parallel axes revolving in opposite direc-
tions as shown in Fig. 3 [41]. In industry, the initial breakdown
of ingots is generally performed using hot rolling, while the cold
rolling is crucial for the production of sheet or strip with good
surface finishes and increased mechanical strength. However, in
practice, often undesired self-excited vibrations occur, which are
known as chatter [32] and are closely related to the machine tool
vibrations in metal cutting [2]. In general, the reason for chatter
vibrations are the interaction between the structural dynamics
of the mill stand and the rolling process, where for unstable
situations, energy from the machine drives is captured by the
process and transformed into vibration energy of the structure.
In these systems, time delays occur due to the material transport
between two passes or between two stands of the mill [32], [42].
These delays are state-dependent due to their dependency on the
state-dependent velocity of the metal strip [33], [43], but these
are often approximated by constant delays [44]. There are sev-
eral strategies to control the strip thickness in metal rolling [30],
[31], [41], [45], but the effect of state-dependent delays on the
dynamics of metal rolling is only rarely studied in the literature
[34]. In this section, the compensation of the state-dependent
delay in metal rolling via the predictor feedback control design
from Section V is illustrated. In an industrial application of cold
rolling the control task is very complex, including, for example,
the control of interstand tension and interstand strip thickness
between multiple mill stands as well as eccentricity control of
the rolls. In the present contribution, we consider only strip
thickness control at a single mill stand to focus on the compen-
sation of the state-dependent delays, which are generic for these
type of processes.

A. Modeling of Metal Rolling

The physical layout of the mill stand is illustrated in Fig. 3. It
is closely related to the rolling model from [30], [31], and [41].
The bottom roll is assumed to be rigid, whereas the position
of the upper roll is adjustable. The flexible roll with lumped

mass m2 is connected via a spring with stiffness k to a roll gap
adjusting mechanism with lumped mass m1 . Both ends of the
spring are movable and the equation of motion can be given by

m1 ÿ(t) + d
(
ẏ(t) − ḣo(t)

)
+ k
(
y(t) − ho(t)

)
= Fc

m2 ḧo(t) + d
(
ḣo(t) − ẏ(t)

)
+ k
(
ho(t) − y(t)

)
= Fr (86)

where y(t) and ho(t) specify the positions of the upper and
the lower end of the spring, respectively. In particular, ho(t) is
equivalent to the roll gap and the upper position y(t) is defined in
such a way that it is equivalent to the roll gap if the spring is not
compressed. In contrast to [30], [31], and [41], we do not neglect
the inertial force of the roll (m2 > 0) and we consider a damping
term with damping coefficient d. We assume that damping is
proportional to the derivative of the relative displacement of the
spring. The variables Fc(t) and Fr (t) denote the control and
the process forces that act on the upper and the lower end of
the spring, respectively. The process force Fr in metal rolling
depends in a nonlinear way on the difference between the input
thickness hi and the output thickness ho(t) of the metal

Fr = F (ho(t)) = kf
√
hi − ho(t) (87)

where the input thickness hi is assumed to be constant and kf
specifies the force coefficient. Details on the derivation of the
force law and the determination of the force coefficient kf in
metal rolling can be found in [32], [42], [45], and [46].

A feedback controller is used to keep the output thickness
ho(t) at a desired reference value hr by controlling the force Fc
on the upper end of the spring. A PD controller is considered
for the stabilization of the output thickness. In particular, the
nominal controller is given by

Fc(t) = U(t) = Kp

(
hr − ho(t)

)−Kdḣo(t) − F0 (88)

where Kp and Kd are the gains for the proportional and
the derivative terms, respectively. The constant part F0 =
kf

√
hi − hr is necessary to provide the constant rolling force

for keeping the output thickness at the desired reference value
hr . In practice, the measurement point for the output strip thick-
ness is located a constant distanceD away from the rolling mill.
In an industrial mill stand, realistic values for D range from 1
to 2 m, which implies that the delay cannot be neglected and
significant delay variations are possible for lower speeds [44].
Hence, we assume that only a delayed version U(φ(t)) of the
feedback control input (88) can affect the plant. The delayed
time φ(t) is given by (56), where v(X(t)) specifies the velocity
of the metal strip over the constant distance D [33], [34], [43].
Due to mass conservation, the velocity v(X(t)) can be specified
by [32], [43], [45]

v(ho(t)) =
hivi
ho(t)

(89)

where the input velocity vi of the metal is constant and where
it is assumed that the width of the strip does not change during
the process [43]. Thus, a state-dependent delay RX (t) appears
[33], [34], [43]. We only consider the case ho > 0 because (89)
is not adequate to model a collapse with ho = 0.
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We now introduce the state variables of the system as follows:

X1(t) = h0(t),X2(t) = ḣ0(t),X3(t) = y(t),X4(t) = ẏ(t).
(90)

The rolling example (86) with the force (87) and the state-
dependent transport velocity (89) can be written as a system of
delay differential equations (DDEs) with state-dependent delay,
in the form (54)–(56), as

Ẋ1(t) = X2(t),

Ẋ2(t) =
kf
m2

√
hi −X1(t) +

d

m2

(
X4(t) −X2(t)

)

+
k

m2

(
X3(t) −X1(t)

)
,

Ẋ3(t) = X4(t),

Ẋ4(t) =
d

m1

(
X2(t) −X4(t)

)
+

k

m1

(
X1(t) −X3(t)

)

+
1
m1

U(φ(t)),

D =
∫ t

φ(t)

hivi
X1(θ)

dθ (91)

where we have dropped all trivial time dependences t. Under
the proposed control law (88) and realistic parameter values
(namely, hi − hr > 0), the closed-loop system (91) has one
equilibrium X∗ = (hr , 0, y∗, 0), where U = −F0 and

y∗ = hr − kf
k

√
hi − hr . (92)

The objective is to stabilize the equilibrium X∗.

B. Delay-Free Closed-Loop System

The predictor feedback control compensates the state-
dependent delay RX (t) = t− φ(t). Thus, ideally, the perfor-
mance of the closed-loop system with delay under the predictor
feedback control law would be equivalent to the performance
of the closed-loop system without delay, and under the nominal
delay-free feedback law, after a finite transient period (i.e., af-
ter the control signal reaches the plant). We briefly discuss the
stability of the linearized delay-free closed-loop system. The
characteristic equation of system (91) (linearized around the
equilibrium X∗) without delay under the nominal control law
(88) is given by

m1m2s
4 + d(m1 +m2)s3

+ (krm1 + km1 + km2 + dKd)s2

+ (Kpd+Kdk + krd)s+ k(Kp + kr ) = 0 (93)

where kr = kf /(2
√
hi − hr ) is the stiffness of the rolling pro-

cess at the equilibrium. For the open-loop system, that is,
Kp = 0 andKd = 0, it can be derived from the Routh–Hurwitz
criterion that the equilibrium is always stable in the case of a
physically meaningful choice of the parameters (all parameter
values larger than zero and hi > hr ). However, numerical sim-
ulations have shown that the open-loop system is only weakly

TABLE I
PHYSICAL DEFINITION OF THE PARAMETERS

Symbol and value Units (S.I) Definition

m 1 = 50 kg Mass of adjusting mechanism
m 2 = 100 kg Mass of flexible roll
d = 3000 N sm−1 Damping coefficient
k = 10 × 106 N·m−1 Stiffness
KF = 50000 N·m−0 . 5 Force constant
hi = 0.005 m Input thickness
hr = 0.003 m Desired output thickness
vi = 5 m.s−1 Input velocity
D = 0.1 m Distance between

rolls and sensor
Kp = 1 × 106 N·m−1 Proportional gain

of PD-Controller
Kd = 6500 N sm−1 Derivative gain of PD-Controller

Fig. 4. Performance of the nominal control law for the system without
delay.

stable, which means that potential transient oscillations decay
very slowly. The maximum real part of the characteristic roots
is calculated numerically from (93) for the plant parameter val-
ues from Table I and varying control parameters Kp and Kd .
The result is presented in the contour plot in Fig. 4. In partic-
ular, for the open-loop system, the real part of the dominant
characteristic root is given by −0.0035 s−1 , which means that a
controller should be applied to suppress undesired long-lasting
transient oscillations. The choice Kp = 106 N&middot;m−1 ,
Kd = 6500 N s m−1 (labeled by “x” in Fig. 4) leads to good
nominal transient performance in the sense that the real part of
the characteristic root is given by −22.33 s−1 .

C. Simulation Results for System With Delay

Simulations of the rolling process were performed by integrat-
ing the equations of motion (91) with the MATLAB solver ddesd
for DDEs with state-dependent delay. The MATLAB solver re-
quires an explicit expression for the delayed time φ(t), which
can be obtained by numerical integration of the time derivative
of (56)

φ̇(t) =
v(X(t))

v (X (φ(t)))
(94)

with initial condition φ(0) obtained by numerically integrat-
ing (56) in the interval of the initial function. The predictor
state P (t) is obtained by a numerical integration of (58). We
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Fig. 5. Delay compensation: Upper position and implicit state-
dependent delay evolution in time.

Fig. 6. Delay compensation: Strip thickness and input evolution in time.

have used constant upper position y(θ) = hi and constant output
thickness ho(θ) = hi with φ(0) ≤ θ ≤ 0 as initial conditions,
which means that for t < 0 the rolling force and the control
force are zero. At t = 0 the first input, which is given by the
constant initial condition U(θ) = −F0 , φ(0) ≤ θ ≤ 0, arrives
at the plant and the deformation of material starts. The initial
condition of the predictor is obtained by numerical integration

of (59).
Three different cases were studied. On one hand, the un-

compensated PD controller (88) with the nominal feedback law
κ(X(t)) from (88) and the open-loop control law were em-
ployed. On the other hand, the predictor feedback law (57)
for the nominal feedback law (88) was employed. The simu-
lation reveals the necessity to compensate the delay in order
to avoid collapse phenomena as it is shown in Figs. 5 and 6.
More precisely, the uncompensated control action leads to a
negative thickness, which is not admissible physically for the
metal rolling dynamics. The simulation results also exhibit the
limitation of the open-loop control with Fc = −F0 , which is
not able to drive the system to the reference thickness value hr
fast enough as illustrated in Figs. 5 and 6. In addition, we have
employed the nominal PD controller (88) in system (91) without
delay (D = 0) to verify the equivalence between the response
of the closed-loop system with delay (D > 0) under the pre-
dictor feedback control law and the response of the delay-free
system with the nominal control law D = 0. Fig. 7 shows that,
in fact, practically no deviations occur between the response of

Fig. 7. Delay compensation: Delay-free and compensated plants evo-
lution in time.

the nominal controller of the delay-free system and the response
of the predictor feedback control in the delayed system. Note
that for the delay-free system, we have used U(t) = −F0 for
the time interval 0 ≤ θ ≤ σ(0) similar to the initial condition
U(t), φ(0) ≤ t ≤ 0, for the input of the system with delay.

VIII. CONCLUSION

In this paper, we present the predictor feedback control de-
sign for transport PDE/nonlinear ODE cascades in which the
transport coefficient depends on the ODE state. The proof of
stability of the closed-loop system is established by using a
backstepping transformation which maps the original system
into a suitable target system whose stability is proven using a
Lyapunov-like argument. The equivalence between the stabil-
ity of the target and the original systems is stated using the
invertibility of the backstepping transformation. An alternative
representation of the coupled PDE–ODE system with a nonlin-
ear system with state-dependent input delay is presented. The
equivalent predictor-feedback control design for the delay sys-
tem is introduced and an alternative proof of global asymptotic
stability of the closed-loop system is provided constructing a
Lyapunov functional. Consistent simulation results are provided
applying the proposed algorithm to a model of a metal rolling
process in which the control of the output thickness is a critical
issue.

APPENDIX A
PDE REPRESENTATION LEMMAS’ PROOFS

A. Proof of Lemma 1

The proof of Lemma 1 is established in the following steps.
1) Differentiating (9) with respect to t, the following relation

is deduced:

∂tp(x, t) = −
∫ x

0

1
v(p(y, t))

× ∇v(p(y, t))
v(p(y, t))

[f(p(y, t), u(y, t))∂tp(y, t)

− ∂pf(p(y, t), u(y, t))∂tp(y, t)] dy
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+
∫ x

0

1
v(p(y, t))

× ∂uf(p(y, t), u(y, t))∂tu(y, t)dy

+ f(p(0, t), u(0, t)). (95)

Next, differentiating (9) with respect to x, we arrive at

v(X(t))∂xp(x, t) = −
∫ x

0

(
v(X(t))

∇v(p(y, t))
v2(p(y, t))

× f(p(y, t), u(y, t))∂yp(y, t)
)
dy

+
∫ x

0

v(X(t))
v(p(y, t))

× ∂pf(p(y, t), u(y, t))∂y p(y, t)dy

+
∫ x

0

v(X(t))
v(p(y, t))

× ∂uf(p(y, t), u(y, t))∂yu(y, t)dy

+
v(X(t))
v(p(0, t))

f(p(0, t), u(0, t)).

(96)

Combining (95) and (96), the following equality holds:

∂tp(x, t) − v(X(t))∂xp(x, t) = −
∫ x

0

1
v(p(y, t))

×
[
f(p(y, t), u(y, t))

∇v(p(y, t))
v(p(y, t))

×
(
∂tp(y, t) − v(X(t))∂yp(y, t)

)]
dy

+
∫ x

0

1
v(p(y, t))

∂pf(p(y, t), u(y, t))

×
(
∂tp(y, t) − v(X(t))∂yp(y, t)

)
dy. (97)

Now, we define the function G(x, t) = ∂tp(x, t) −
v(X(t))∂xp(x, t), which satisfies

dG(x, t)
dx

= − 1
v(p(x, t))

×
[
f(p(x, t), u(x, t))

∇v(p(x, t))
v(p(x, t))

− ∂pf(p(x, t), u(x, t))]G(x, t) (98)

G(0, t) = 0. (99)

Hence,G(x, t) = 0 for all x ∈ [0,D], which implies that

∂tp(x, t) − v(X(t))∂xp(x, t) = 0. (100)

2) Taking the time and the spatial derivative of the backstep-
ping transformation (11), we obtain

∂tw(x, t) = ∂tu(x, t) − ∂pκ (p(x, t)) ∂tp(x, t) (101)

and

∂xw(x, t) = ∂xu(x, t)

− ∂pκ (p(x, t)) ∂xp(x, t) (102)

respectively, which leads to

∂tw(x, t) − v(X(t))∂xw(x, t) = −∂pκ (p(x, t))

×
[
∂tp(x, t) − v(X(t))∂xp(x, t)

]

+ ∂tu(x, t) − v(X(t))∂xu(x, t). (103)

Using (2) and (100), we derive (13) from (103). The ODE
dynamics (12) and the boundary condition (14) are obtained by
direct verification from (11) for x = 0 and (8), respectively.

B. Proof of Lemma 2

The inverse transformation (15) maps w �→ u and is associ-
ated to the target system predictor, namely, (16) whereas the
direct transformation (11), which maps u �→ w, is associated to
the plant predictor, namely, (9). Thus, even if the two predictor
representations are driven by different input signals, it holds that

p(x, t) = π(x, t), ∀x ∈ [0,D]. (104)

C. Proof of Lemma 3

Consider the following family of parameterized Lyapunov
functions candidates for the target system’s transport PDE (14)

Lc,n (t) =
∫ D

0
e2ncxw2n (x, t)dx (105)

for any c > 0 and positive integer n. The time derivative of
Lc,n (t) along (13) and (14) is written as

L̇c,n (t) =
∫ D

0
e2ncx∂tw(x, t)2ndx,

= 2nv (X(t))
∫ D

0
e2ncxw(x, t)2n−1∂xw(x, t)dx

= − v(X(t))
[
w(0, t)2n+ 2nc

∫ D

0
e2ncxw(x, t)2ndx

]
.

(106)

From Assumption 1, it holds that v(X(t)) ≥ v� , for allX ∈ R,
and thus, we obtain from (105) and (106) that

L̇c,n (t) ≤ − 2ncv�Lc,n (t). (107)

Moreover, from (105) it follows that
∫ D

0
|w(z, t)|2ndz ≤ Lc,n (t) ≤ e2ncD

∫ D

0
|w(z, t)|2ndz

(108)
for all t ≥ 0, c > 0, and n ∈ N+ . Integrating (107) and using

(108), we obtain
∫ D

0
|w(z, t)|2ndz ≤ e−2ncv� (t−s)e2ncD

∫ D

0
|w(z, s)|2ndz

(109)
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for all t ≥ 0, s ≥ 0. From (109), we obtain

(∫ D

0
|w(z, t)|2ndz

) 1
2 n

≤ e−cv� (t−s)ecD

×
(∫ D

0
|w(z, s)|2ndz

) 1
2 n

.

(110)

Taking the limit as n→ ∞ and using the fact that

lim
n→∞

(∫ D

0
|w(z, t)|2ndz

) 1
2 n

= sup
x∈[0,D ]

|w(x, t)| ≡ ‖w(t)‖∞
(111)

from (110) the following holds:

sup
x∈[0,D ]

|w(x, t)| ≤ e−cv� (t−s)ecD
(

sup
x∈[0,D ]

|w(x, s)|
)

(112)

for all t ≥ s ≥ 0. Based on Assumption 3, there exist some
ν̄ ∈ KL and ᾱ ∈ K∞, such that the solutions of (12) satisfy

|X(t)| ≤ ν̄
(|X(s)|, t− s

)
+ ᾱ

(
sup
τ ∈[s,t]

|w(0, τ)|
)

(113)

for all t ≥ s ≥ 0. We perform the change of variables s = t
2

and rewrite (113) as

|X(t)| ≤ ν̄

( ∣∣∣∣X
(
t

2

)∣∣∣∣ , t2
)

+ ᾱ

⎛
⎝ sup
τ ∈[ t2 ,t]

|w(0, τ)|
⎞
⎠ . (114)

The estimate of
∣∣X ( t2

)∣∣ follows by setting s = 0 and substi-
tuting t by t

2 into (113). Hence, the following holds:

∣∣∣∣X
(
t

2

)∣∣∣∣ ≤ ν̄

(
|X(0)|, t

2

)
+ ᾱ

(
sup

τ ∈[0, t2 ]
|w(0, τ)|

)
. (115)

From (112), we derive the estimates

sup
τ ∈[0, t2 ]

‖w(τ)‖∞ ≤ ecD sup
x∈[0,D ]

|w0(x)|, (116)

sup
τ ∈[ t2 ,t]

‖w(τ)‖∞ ≤ e−
c v �

2 tecD sup
x∈[0,D ]

|w0(x)|. (117)

Substituting (115)–(117) into (114) and using the fact that

|w(0, τ)| ≤ sup
x∈[0,D ]

|w(x, τ)| (118)

leads to (17) with

ν(r, s) = ν̄
(
ν̄
(
r,
s

2

)
+ ᾱ

(
recD

)
,
s

2

)

+ ᾱ
(
e−

c v �
2 srecD

)
+ e−cv� srecD . (119)

D. Proof of Lemma 4

Taking the derivative of (9) with respect to x, we obtain

∂xp(x, t) =
1

v(p(x, t))
f(p(x, t), u(x, t)) (120)

with the boundary condition

p(0, t) = X(t). (121)

Now, considering that 1
v (p(x,t)) > 0, we obtain the following

relation with the help of (7):

∂C(p(x, t))
∂p

1
v(p(x, t))

f(p(x, t), u(x, t))

≤ 1
v(p(x, t))

(
C(p(x, t)) + μ3(|u(x, t)|)

)
. (122)

Using (120), we arrive at

∂C(p(x, t))
∂x

≤ 1
v(p(x, t))

C(p(x, t)) +
1

v(p(x, t))
μ3(|u(x, t)|). (123)

With the help of (5), inequality (123) yields

∂C(p(x, t))
∂x

≤ 1
v�
C(p(x, t)) +

1
v�
μ3(|u(x, t)|). (124)

By the comparison principle and relation (121), we obtain

C(p(x, t)) ≤ e
x
v � C(X(t)) +

1
v�

∫ x

0
e
x−y
v � μ3(|u(y, t)|) dy

(125)
which leads to

C(p(x, t)) ≤ e
D
v � C(X(t)) +

(
e

D
v � − 1

)
μ3

(
sup

x∈[0,D ]
|u(x, t)|

)
.

(126)
Using (6), the following inequality holds:

|p(x, t)| ≤ μ−1
1

(
e

D
v � μ2(|X(t)|) +

(
e

D
v � − 1

)

× μ3

(
sup

x∈[0,D ]
|u(x, t)|

))
, for allx ∈ [0,D]. (127)

Defining

ω̄(s) = μ−1
1

(
e

D
v � μ2(s) +

(
e

D
v � − 1

)
μ3(s)

)
(128)

the proof is complete.

E. Proof of Lemma 5

Differentiating (16), with respect to x, the following ODE is
derived for all x ∈ [0,D]:

∂xπ(x, t) =
1

v(π(x, t))
f

(
π(x, t), κ (π(x, t)) + w(x, t)

)
,

(129)

π(0, t) = X(t). (130)

We introduce next the following change of variables:

y(x, t) = t+
∫ x

0

dr

v(π(r, t))
, x ∈ [0,D] (131)
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where t acts as a parameter. Since the transport velocity v is
assumed to be strictly positive, the function y is monotonically
increasing with respect to x, for each t. Thus, it admits an
inverse defined for each t as x = χ(y, t). Next, we rewrite the
ODE (129), (130) as

1
v(π(χ(y, t), t))

∂yπ(χ(y, t), t) =
1

v(π(χ(y, t), t))

f

(
π(χ(y, t), t), κ (π(χ(y, t), t)) + w(χ(y, t), t)

)
,

(132)

π(0, t) = X(t) (133)

for all y ∈ [t, t+
∫ D

0
dr

v (π (r,t)) ]. Defining the change of variables

ψ(y, t) = π

(
χ(y, t), t

)
, (134)

ω(y, t) = w

(
χ(y, t), t

)
(135)

we rewrite (129) and (130) in the new coordinates as

∂yψ(y, t) = f

(
ψ(y, t), κ (ψ(y, t)) + ω(y, t)

)
, (136)

ψ(t, t) = X(t) (137)

for all y ∈ [t, t+
∫ D

0
dr

v (π (r,t)) ]. Under Assumption 3, from
(136), we deduce the existence of a class K∞ function ν3 and a
class K function μ6 , such that

|ψ(y, t)| ≤ ν3

(
|X(t)|,

∫ D

0

dr

v(π(r, t))

)

+ μ6

(
sup

y∈
[
t,t+

∫ D
0

d r
v (π ( r , t ) )

] |ω(y, t)|
)
,

for ally ∈
[
t, t+

∫ D

0

dr

v(π(r, t))

]
. (138)

Then, with the help of (131)–(135), the following inequality
holds:

|π(x, t)| ≤ ν3

(
|X(t)|,

∫ D

0

dr

v(π(r, t))

)

+ μ6

(
sup

x∈[0,D ]
|ω(x, t)|

)
(139)

for all x ∈ [0,D]. Knowing that ν3 decreases with respect
to its second argument, using the fact that y(D, t) − t =∫ D

0
dr

v (π (r,t)) ≥ 0, the following holds:

sup
x∈[0,D ]

|π(x, t)| ≤ ν3

(
|X(t)|, 0

)

+ μ6

(
sup

x∈[0,D ]
|ω(x, t)|

)
. (140)

Finally, using the properties of class K∞ and KL functions, we
obtain the inequality (19).

APPENDIX B
DELAY SYSTEM REPRESENTATION LEMMAS’ PROOFS

A. Proof of Lemma 6

The proof of Lemma 6 is based on a direct verification con-
sidering that P (φ(t)) = X(t).

B. Proof of Lemma 7

By direct verification considering that P (θ) ≡ Π(θ) for all
φ(t) ≤ θ ≤ t.

C. Proof of Lemma 8

Based on the input-to-state stability of Ẋ = f (X,κ(X) + ω)
with respect to ω, namely, Assumption 3, from [47], there exist
a smooth function S(X) : Rn → R+ and class K∞ functions
α1 , α2 , α3 , such that for any μ > 0

α1(|X|) ≤ S(X) ≤ α2(|X|), (141)

∂S(X)
∂X

f (X,κ(X) + ω)) ≤ −μS(X) + α3(|ω|). (142)

Define next for any c > 0 and any positive integer n the func-
tional

L̄c,n (t) =
1
v�

∫ t

φ(t)
e2nc(ΦX (θ)+D−ΦX (t))W (θ)2ndθ (143)

where ΦX is defined in (50).
Taking the derivative of (143) and using (71), we obtain

˙̄Lc,n (t) = − 1
v�

dφ(t)
dt

e2nc(ΦX (φ(t))+D−ΦX (t))W (φ(t))2n

− 2nc
v�

Φ′
X (t)

∫ t

φ(t)
e2nc(ΦX (θ)+D−ΦX (t))W (θ)2ndθ.

(144)

From the implicit definition of the delay in (56), we deduce the
following equality:

φ̇(t) = 1 − dRX (t)
dt

=
v(X(t))
v(X(φ(t))

(145)

and thus, from Assumption 1, we get that φ̇(t) > 0, for all t ≥ 0.
Moreover, from (50), we obtain the following equality:

Φ′
X (t) = v (X(t)) . (146)

Therefore, Assumption 1 enables one to state the following
inequality:

˙̄Lc,n (t) ≤ −2ncv�L̄c,n (t). (147)
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Let us now define for any c > 0 the functional

L̄(t) =
1
v�

∫ t

φ(t)
ec(ΦX (θ)+D−ΦX (t))γ(|W (θ)|)v(X(θ))dθ

(148)

for any class K∞ function γ. The derivative of L̄ with respect
to time is written as

˙̄L(t) = − 1
v�

dφ(t)
dt

× ec(ΦX (φ(t))+D−ΦX (t))γ (|W (φ(t)|) v(X(φ(t)))

− c

v�
Φ′
X (φ(t))

×
∫ t

φ(t)
ec(ΦX (θ)+D−ΦX (t))γ (|W (θ)|) v(X(θ))dθ

(149)

where we use (71). Inserting (146) into (149) and using (145),
we arrive at

˙̄L(t) = −v(X(t))
v�

ec(ΦX (φ(t))+D−ΦX (t))γ (|W (φ(t)|)

− c

v�
v(X(t))

∫ t

φ(t)

{
ec(ΦX (θ)+D−ΦX (t))

× γ (|W (θ)|) v(X(θ))
}
dθ. (150)

From (5), (52), and (55), we obtain

˙̄L(t) ≤ −γ (|W (φ(t)|) − cv�L̄(t). (151)

Moreover, defining the functional

V1(t) = S(X(t)) + L̄(t) (152)

whose time derivative along (70) is written as

V̇1(t) =
∂S(X(t))
∂X

f (X(t), κ(X(t)) +W (φ(t))) + ˙̄L(t)
(153)

and combining (142) with (143), from (151), we obtain the
following inequality:

V̇1(t) ≤ −μS(X(t)) − cv�L̄(t) + α3(|W (φ(t))|)
− γ (|W (φ(t))|) . (154)

Choosing γ such that γ(s) ≥ α3(s), for all s ≥ 0, we obtain

V̇1(t) ≤ −λV1(t) (155)

where

λ = min{μ, cv�}. (156)

Let us define the Lyapunov function for the target system (70)
and (71) as

Vn (t) = V1(t)2n + L̄c,n (t). (157)

Taking the derivative of Vn with the help of (149) and (155),
we obtain

V̇n (t) ≤ −2nλVn (t). (158)

Therefore

Vn (t)
1

2 n ≤ e−λtVn (0)
1

2 n . (159)

It then follows that

V1(t) + L̄c,n (t)
1

2 n ≤ 2e−λt
(
V1(0) + L̄c,n (0)

1
2 n

)
. (160)

From (143), the following holds:

L̄c,n (t)
1

2 n =
1

v
1

2 n
�

(∫ t

φ(t)
e2nc(ΦX (θ)+D−ΦX (t))W (θ)2ndθ

) 1
2 n

.

(161)
Thus, taking the limit as n→ ∞ of (161) and using the fact

that

lim
n→∞ L̄c,n (t)

1
2 n = sup

φ(t)≤θ≤t

∣∣∣ec(ΦX (θ)+D−ΦX (t))W (θ)
∣∣∣

≡ ‖W (t)‖c,∞ (162)

we conclude that the following holds:

V1(t) + ‖W (t)‖c,∞ ≤ 2e−λt

(
V1(0) + ‖W (0)‖c,∞

)
. (163)

From Assumption 1 and (148), it follows that

L̄(t) ≤ 1
v�

sup
φ(t)≤θ≤t

∣∣∣∣ec(ΦX (θ)+D−ΦX (t))γ(|W (θ)|)
∣∣∣∣

×
∫ t

φ(t)
v(X(θ))dθ. (164)

Using relation (56) and the definition of the supremum norm

‖W (t)‖∞ = sup
φ(t)≤θ≤t

∣∣∣W (θ)
∣∣∣ (165)

with the fact that ΦX is an increasing function [that follows
from (50)], we deduce the following estimate:

L̄(t) ≤ D

v�
ecDγ (‖W (t)‖∞) . (166)

From the definition of V1 in (152), using the facts that

‖W (t)‖∞ ≤ ‖W (t)‖c,∞ ≤ ecD‖W (t)‖∞ (167)

and that S(X(t)) ≤ V1(t), together with (141) and (166), we
obtain

α1(|X(t)|) + ‖W (t)‖∞ ≤ 2e−λt (α2(|X(0)|)

+
D

v�
ecDγ

(
sup

φ(0)≤θ≤0

∣∣W (θ)
∣∣
)

+ ecD sup
φ(0)≤θ≤0

∣∣W (θ)
∣∣
)
. (168)

With the properties of comparison functions and the fact that
|X(0)| ≤ supφ(0)≤s≤0 |X(s)|, we conclude that there exists a
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class KL function β2 , such that

|X(t)| + sup
φ(t)≤s≤t

|W (s)| ≤ β2

(
sup

φ(0)≤s≤0
|X(s)|

+ sup
φ(0)≤s≤0

|W (s)|, t
)
. (169)

Next, we upper bound supφ(t)≤s≤t |X(s)|. From (5), we deduce

σ̇(θ) ≤ v(X(θ))
v�

. (170)

Integrating (170) on [φ(t) , θ] with σ (φ(t)) = t, we derive the
inequality

σ(θ) − t ≤ 1
v�

∫ θ

φ(t)
v(X(λ))dλ (171)

for all φ(t) ≤ θ ≤ t. Since v(X(t)) is a positive function, it
follows that

∫ θ
φ(t) v(X(λ))dλ is an increasing function of θ.

Using the implicit definition of the delay in (56), we obtain

σ(θ) − t ≤ D

v�
, ∀ φ(t) ≤ θ ≤ t. (172)

From inequality (172), the following holds:

σ(0) ≤ D
v�
. (173)

Dividing the time domain into three different intervals the
following estimates are then obtained.

1) For 0 ≤ t ≤ σ(0), we have thatφ(0) ≤ φ(t) ≤ 0. There-
fore

sup
φ(t)≤s≤t

|X(s)| ≤ sup
φ(0)≤s≤0

|X(s)| + sup
0≤s≤t

|X(s)|

≤ sup
φ(0)≤s≤0

|X(s)|

+ β2

(
sup

φ(0)≤s≤0
|X(s)| + sup

φ(0)≤s≤0
|W (s)|, 0

)
.

(174)

Thus, there exists a class K∞ function μ5 , such that

sup
φ(t)≤s≤t

|X(s)| ≤ μ5

(
sup

φ(0)≤s≤0
|X(s)|

+ sup
φ(0)≤s≤0

|W (s)|
)
. (175)

2) For σ(0) ≤ t ≤ D
v�

, we have 0 ≤ φ(t) ≤ φ
(
D
v�

)
. Thus

sup
φ(t)≤s≤t

|X(s)| ≤ sup
0≤s≤t

|X(s)| (176)

≤ β2

(
sup

φ(0)≤s≤0
|X(s)|

+ sup
φ(0)≤s≤0

|W (s)|, 0
)
. (177)

(3) For t ≥ D
v�

, we have from (173) that φ(t) ≥ φ( Dv� ) ≥ 0.
Thus, using (169), we arrive at

sup
φ(t)≤s≤t

|X(s)| ≤ β2

(
sup

φ(0)≤s≤0
|X(s)|

+ sup
φ(0)≤s≤0

|W (s)|, φ(t)
)

(178)

and integrating (145) over [t, σ(t)] with the help of (5)
and (61), we get the following inequality:

RX (t) ≤ D

v�
, ∀t ≥ 0 (179)

we deduce that t−RX (t) ≥ t− D
v�

, which leads to the
existence of a class KL function β̄2 , such that

sup
φ(t)≤s≤t

|X(s)| ≤ β̄2

(
sup

φ(0)≤s≤0
|X(s)|

+ sup
φ(0)≤s≤0

|W (s)|, t− D

v�

)
. (180)

Combining estimates (175), (177), and (180), we deduce the
existence of a class KL function β̄, such that for all t ≥ 0

sup
φ(t)≤s≤t

|X(s)| ≤ β̄

(
sup

φ(0)≤s≤0
|X(s)|

+ sup
φ(0)≤s≤0

|W (s)|, t
)
. (181)

D. Proof of Lemma 9

Differentiating (58), we deduce the following relation for all
φ(t) ≤ θ ≤ t:

dP (θ)
dθ

=
v(X(θ))
v(P (θ))

f (P (θ), U(θ)) dθ. (182)

Introducing the change of variables y = σ(θ), (182) may be
rewritten as

dP (φ(y))
dy

= f

(
P (φ(y)), U (φ(y))

)
, (183)

t ≤ y ≤ σ(t).

From Assumption 2, the following holds:

∂C(P (φ(y)))
∂y

≤ C(P (φ(y))) + μ3

(
|U (φ(y)) |

)
. (184)

Using the comparison principle and the facts that P (φ(t)) =
X(t) and y = σ(θ), we derive the following inequality:

C(P (θ)) ≤ e(σ (θ)−t)
(
C(X(t)) + sup

t≤s≤σ (t)
μ3(|U(φ(s))|)

)

(185)
for all φ(t) ≤ θ ≤ t. Imposing θ = t in (171), we obtain

σ(t) − t ≤ 1
v�

∫ t

φ(t)
v(X(λ))dλ. (186)
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Combining (186) with the implicit definition of the delay in (56)
and using the fact that σ is increasing, we get from (185) that

C(P (θ)) ≤ e
D
v �

(
C(X(t)) + sup

φ(t)≤θ≤t
μ3(|U(s)|)

)
, (187)

φ(t) ≤ θ ≤ t.

With standard properties of class K functions and using (6), we
get (76), where the class K∞ function ρ is written as

ρ(s) = μ−1
1

((
μ2(s) + s

)
e

D
v �

)
. (188)

E. Proof of Lemma 10

Consider the change of variables y = σ(θ) and write the pre-
dictor of the target system (73) as

dΠ(φ(y))
dy

= f (Π(φ(y)), κ(Π(φ(y))) +W (φ(y))) ,

t ≤ y ≤ σ(t). (189)

Under Assumption 3, there exist a class KL function β3 and a
class K function ψ1 , such that

Π(φ(y)) ≤ β3 (|X(t)|, y − t) + ψ1

(
sup
t≤s≤y

|W (φ(s))|
)
,

t ≤ y ≤ σ(t). (190)

Using the fact that y = σ(θ), we obtain

|Π(θ)| ≤ ψ2(|X(t)|) + ψ1

(
sup

t−RX (t)≤s≤t
|W (s)|

)
(191)

for all t−RX (t) ≤ θ ≤ t with ψ2(s) = β3(s, 0). Using the
properties of class K functions, (77) is deduced with ψ(s) =
ψ1(s) + ψ2(s).

F. Proof of Lemma 11

Due to the continuity of κ(.) and the fact that κ(0) = 0, there
exists ρ̂ ∈ K∞, such that

|κ(ξ)| ≤ ρ̂(|ξ|). (192)

Using (192), the inverse transformation (72), and the bound
(77), we derive (78) with

μ4(s) = s+ ρ̂(ψ(s)). (193)

From the direct transformation (69) and the bound (76), we
deduce (79), where ρ1 is defined as

ρ1(s) = s+ ρ̂(ρ(s)). (194)
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