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Predictor-Feedback Stabilization of
Multi-Input Nonlinear Systems

Nikolaos Bekiaris-Liberis and Miroslav Krstic

Abstract—We develop a predictor-feedback control de-
sign for multi-input nonlinear systems with distinct input
delays, of arbitrary length, in each individual input channel.
Due to the fact that different input signals reach the plant
at different time instants, the key design challenge, which
we resolve, is the construction of the predictors of the
plant’s state over distinct prediction horizons such that the
corresponding input delays are compensated. Global as-
ymptotic stability of the closed-loop system is established
by utilizing arguments based on Lyapunov functionals or
estimates on solutions. We specialize our methodology
to linear systems for which the predictor-feedback control
laws are available explicitly and for which global exponen-
tial stability is achievable. A detailed example is provided
dealing with the stabilization of the nonholonomic unicycle,
subject to two different input delays affecting the speed and
turning rate, for the illustration of our methodology.

Index Terms—Delay systems, distributed parameter sys-
tems, nonlinear systems, predictor feedback.

I. INTRODUCTION

A. Background and Motivation

Despite the recent outburst in the development of predictor-
based control laws for nonlinear systems with input delays
[5]–[11], [13]–[17], [26]–[32], [35]–[37], [43]–[47], the problem
of the systematic predictor-feedback stabilization of multi-input
nonlinear systems with, potentially different, in each individual
input channel, long input delays, has remained, heretofore,
untackled, although the problem was solved in the linear case
in the late 1970s [42] (see also [4], [38], and [57]). In this
paper, we address the problem of stabilization of multi-input
nonlinear systems with distinct input delays of arbitrary length
and develop a nonlinear version of the prediction-based control
laws developed in [42] and recently in [55] and [56] for the
compensation of input delays in multi-input linear systems.

Besides the unavailability of a systematic predictor-feedback
design methodology for multi-input nonlinear systems with
long input delays, the real motivation for this article comes from
applications. Such systems serve as models for the dynamics
of traffic [22], [49], teleoperators [24] and robotic manipulators
[2], [20], motors [34], [52], multiagent systems [1], [18], [41],
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autonomous ground vehicles [40], unmanned aerial vehicles
[23] and planar vertical take-off and landing aircrafts [21],
[50], and the human musculoskeletal system in applications
such as neuromuscular electrical stimulation [32], [39], [53],
to name only a few. Motivated by the negative effects of input
delays on the stability and performance of such control systems,
in this article we present control designs that achieve delay
compensation.

B. Contributions

We introduce a predictor-feedback control design for the
compensation of long input delays in multi-input nonlinear
systems. Since each individual input channel might induce a
different delay the predictors of the plant’s state are constructed
recursively starting from the predictor that corresponds to the
smallest input delay all the way through to the predictor that
corresponds to the largest input delay. Specifically, at each step,
the predictor, over the prediction horizon that corresponds to the
current’s step input delay, is constructed by actually predicting,
over the appropriate prediction window, the future values of the
predictor constructed at the previous step.

We conduct the stability analysis of the closed-loop system,
under the developed predictor-feedback control law, utilizing
two different techniques—one based on the construction of
a Lyapunov functional and one based on estimates on the
solutions of the closed-loop system. In the former case, the
construction of a Lyapunov functional is enabled by the intro-
duction of novel backstepping transformations of the actuator
states, which are based on an equivalent, PDE representation of
the constructed predictor states. In the latter approach, we ex-
ploit the fact that each delay is compensated after a finite time.

We present a detailed example, including numerical simula-
tions, dealing with the stabilization of a nonholonomic robot
subject to different input delays, in order to highlight the intri-
cacies of our design and analysis methodologies. We specialize
our results to the case of linear systems for which the predictor-
feedback control laws are obtained explicitly and for which
global exponential stability is achievable.

C. Organization

We start in Section II with the introduction to the prob-
lem of predictor-feedback stabilization of multi-input nonlin-
ear systems and develop the predictor-feedback control laws.
In Section III, we prove global asymptotic stability of the
closed-loop system under predictor-feedback by constructing a
Lyapunov functional and in Section IV we prove global asymp-
totic stability using estimates on solutions. Section V is devoted
to a detailed example of stabilization of the nonholonomic uni-
cycle subject to input delays. We specialize our methodology
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Fig. 1. Multi-input nonlinear system with distinct input delays.

to the case of linear systems in Section VI. For the example
worked out in detail in Section V we present simulation results
in Section VII. In Appendix A and B, we provide proofs of
technical lemmas and results.

Notation: We use the common definition of class K,
K∞ and KL functions from [33]. For an n-vector, the norm
| · | denotes the usual Euclidean norm. For a function u :
[0, D]× R+ → R we denote by ‖u(·, t)‖∞ its spatial supre-
mum norm, i.e., ‖u(·, t)‖∞ = supx∈[0,D] |u(x, t)|. For any c >
0, we denote the spatially weighted supremum norm of u
by ‖u(·, t)‖c,∞ = supx∈[0,D] |ecxu(x, t)|. For a vector valued
function p : [0, D]× R+ → R

n we use a spatial supremum
norm ‖p(·, t)‖∞ = supx∈[0,D]

√
p1(x, t)2 + . . . pn(x, t)2. We

denote by Cj(A;E) the space of functions that take values in
E and have continuous derivatives of order j on A.

II. MULTI-INPUT NONLINEAR SYSTEMS WITH DISTINCT

DELAYS AND PREDICTOR-FEEDBACK CONTROL DESIGN

We consider the following system (see Fig. 1):

Ẋ(t) = f (X(t), U1(t−D1), . . . , Um(t−Dm)) (1)

where X ∈ R
n is state, t ≥ 0 is time, U1, . . . , Um ∈ R with

initial conditions Ui0 ∈ C[−Di, 0], i = 1, . . . ,m, are control
inputs, D1, . . . , Dm are (potentially distinct) input delays sat-
isfying (without loss of generality) 0 < D1 ≤ · · · ≤ Dm, and
f : Rn × R

m → R
n is a locally Lipschitz vector field that

satisfies f(0, 0, . . . , 0) = 0. The predictor feedback controllers
are defined by

Ui(t) = κi (Pi(t)) , i = 1, . . . ,m (2)

where κi : R
n → R, i = 1, . . . ,m, are continuously differen-

tiable feedback laws with κi(0) = 0, i = 1, . . . ,m, and, Pi are
the Di-time units ahead predictors of X , for all i = 1, . . . ,m.
Defining Dj,i = Dj −Di, for all i ≤ j ≤ m, the predictors are
given by

P1(t) =X(t) +

∫ t

t−D1

f (P1(θ), U1(θ), U2(θ −D2,1)

. . . , Um(θ −Dm,1)) dθ (3)

P2(t) =P1(t) +

∫ t

t−D2,1

f (P2(θ), κ1 (P2(θ)) , U2(θ)

U3(θ −D3,2), . . . , Um(θ −Dm,2)) dθ (4)

...

Pm(t) =Pm−1(t) +

∫ t

t−Dm,m−1

f (Pm(θ), κ1 (Pm(θ))

κ2 (Pm(θ)) , . . . , κm−1 (Pm(θ)) , Um(θ)) dθ (5)

with initial conditions for the integral (3)–(5)

P1(θ) =X(0) +

∫ θ

−D1

f (P1(s), U1(s), U2(s−D2,1)

. . . , Um(s−Dm,1)) ds, −D1 ≤ θ ≤ 0 (6)

P2(θ) =P1(0) +

∫ θ

−D2,1

f (P2(s), κ1 (P2(s)) , U2(s)

U3(s−D3,2), . . . , Um(s−Dm,2)) ds

−D2,1 ≤ θ ≤ 0 (7)

...

Pm(θ) =Pm−1(0) +

∫ θ

−Dm,m−1

f (Pm(s), κ1 (Pm(s))

κ2 (Pm(s)) , . . . , κm−1 (Pm(s)) , Um(s)) ds

−Dm,m−1 ≤ θ ≤ 0. (8)

We show that Pi, for all i = 1, . . . ,m, are the Di-time
units ahead predictors of X by induction. In order to better
understand the general induction step, we provide two initial
steps. We show first that P1 and P2 are the D1- and D2-time
units ahead predictors of X , respectively.

Step 1: We perform the change of variables t = θ +D1, for
all θ ≥ −D1, in (1) and define P1(θ) = X(θ +D1), θ ≥ −D1,
to arrive at

dP1(θ)

dθ
=f (P1(θ), U1(θ), U2(θ−D2,1), . . . , Um(θ−Dm,1))

for all θ ≥ −D1. (9)

Integrating (9) from θ = t−D1 to θ = t and using definition
P1(θ) = X(θ +D1) we get (3). Integrating (9) from θ = −D1

to any θ ≤ 0 and using definition P1(−D1) = X(0) we get (6).
Step 2: Performing the change of variables θ = s+D2,1,

for all s ≥ −D2,1, in (9) and defining P2(s) = P1(s+D2,1) =
X(s+D2), for all s ≥ −D2,1, we get that

dP2(s)

ds
= f (P2(s), κ1 (P2(s)) , U2(s), U3(s−D3,2)

. . . , Um(s−Dm,2)) , for all s ≥ −D2,1 (10)

where we also used the fact that U1(s+D2,1) = κ1(P1(s+
D2,1)), for all s+D2,1 ≥ 0, and definition P2(s) = P1(s+
D2,1). Integrating (10) from s = t−D2,1 to s = t and using
definition P2(s) = P1(s+D2,1), for all s ≥ −D2,1, we arrive
at (4). Integrating (10) from θ = −D2,1 to any θ ≤ 0 and using
definition P2(−D2,1) = P1(0) we get (7).

Step j: Assume now that the Dj-time units ahead predictor
of X , namely Pj , satisfies the following ODE in r:

dPj(r)

dr
= f (Pj(s), κ1 (Pj(r)) , . . . , κj−1 (Pj(r)) , Uj(r)

Uj+1(r −Dj+1,j), . . . , Um(r −Dm,j))

for all r ≥ −Dj,j−1. (11)
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Performing the change of variables r = h+Dj+1,j , for all h ≥
−Dj+1,j , in (11) and defining Pj+1(h) = Pj(h+Dj+1,j) =
X(h+Dj+1), for all h ≥ −Dj+1,j , we get that

dPj+1(h)

dh
= f (Pj+1(h), κ1 (Pj+1(h)) , κj (Pj+1(h))

Uj+1(h), . . . , Um(h−Dm,j+1))

for all h ≥ −Dj+1,j (12)

where we also used the fact that Uj(h+Dj+1j,) = κj(Pj(h+
Dj+1,j)), for all h+Dj+1,j ≥ 0, and definition Pj+1(h) =
Pj(h+Dj+1,j). Integrating (12) from h = t−Dj+1,j to h =
t and from h = −Dj+1j to any h ≤ 0, and using definition
Pj+1(h) = Pj(h+Dj+1,j), for all h ≥ −Dj+1,j (which im-
plies that Pj+1(−Dj+1,j) = Pj(0)), we conclude that indeed
the Di-time units ahead predictors of X , for all i = 1, . . . ,m,
are given by (3)–(5) with initial conditions (6)–(8).

Although implementation and approximation issues are be-
yond the scope of this paper, which focuses on fundamental
continuous-time designs, there is a large body of recent research
that is concentrated almost exclusively on implementation and
approximation issues for nonlinear predictor feedback laws,
which includes [26], [27], [30] (see also, for instance, [48] and
[58] for linear predictor feedback laws). In particular, it can be
shown that both an appropriate approximation and an appropri-
ate dynamic implementation (among different implementation
possibilities) of the nonlinear predictor feedback law can be em-
ployed for the stabilization of the nonlinear delay system. Thus,
one can in principle try to adapt the techniques developed in [26],
[27], and [30] to systems with multiple, distinct input delays.

III. LYAPUNOV-BASED STABILITY ANALYSIS

UNDER PREDICTOR FEEDBACK

Assumption 1: The system Ẋ = f(X,ω1, . . . , ωm) is
strongly forward complete with respect to ω = (ω1, . . . , ωm)T .

Assumption 2: The system Ẋ = f(X,ω1 + κ1(X), . . . ,
ωm + κm(X)) is input-to-state stable with respect to ω=
(ω1, . . . , ωm)T .

Assumption 3: The systems Ẋ = gj(X,ωj+1, . . . , ωm),
for all j = 1, . . . ,m− 1, with gj(X,ωj+1, . . . , ωm) =
f(X,κ1(X), . . . , κj(X), ωj+1, . . . , ωm), are strongly forward
complete with respect to ω = (ωj+1, . . . , ωm)T .

The definitions of strong forward completeness and input-
to-state stability are those from [37] (see also [3] for the
definition of standard forward completeness which differs from
strong forward completeness in that f(0, 0, . . . , 0) = 0) and
[54], respectively.

Assumption 1 guarantees that for every initial condition and
every locally bounded input signal the corresponding solution
is defined for all t ≥ 0. In particular, the plant does not exhibit
finite escape before the first feedback control reaches it. This
is a natural requirement for achieving global stabilization in
the presence of arbitrary large delays affecting the inputs of a
system. Assumption 2 can be relaxed to only global asymptotic
stability of system Ẋ = f(X,κ1(X), . . . , κm(X)). Yet, at the
expense of not having a Lyapunov functional available.
Assumption 3 guarantees that after the j-th controller “kicks
in” and the Dj-th delay is compensated, and hence, the plant
behaves according to Ẋ = f(X,κ1(X), . . . , κj(X), Uj+1(t−
Dj+1), . . . , Um (t−Dm)), the solutions are also well-defined.

In particular, the plant does not exhibit finite escape before the
j + 1-th feedback control reaches it and after the jth feedback
control has already reached the plant. Note that Assumption 3
can be relaxed to strong forward completeness of systems Ẋ =
gj(X,ωj+1, . . . , ωm) with respect to ω = (ωj+1, . . . , ωm)T ,
for all j∈{r1, r1 + r2, . . . , r1 + · · ·+ rν}, where gj(X,ωj+1,
. . . , ωm)=f(X,κ1(X), . . . , κj(X), ωj+1, . . . , ωm), r1 denotes
the number of delays that are equal to D1, rσ , σ = 2, . . . , ν,
denotes the number of delays that are equal to Dr1+···+rσ−1

,
and ν is the number of distinct delays. In particular, when all
delays are identical, Assumption 3 can be completely removed.

The stability proof is based on an equivalent representation
of plant (1), using transport PDEs for the actuator states, and
on an equivalent PDE representation of the predictor states
(3)–(5). We present the alternative representations for the plant
and the predictor states before stating and proving the main
result of this section, since the reader might find the alternative
formalisms helpful in better digesting the design and analysis
ideas of our methodology.

A. Equivalent Representation of the Plant Using
Transport PDEs for the Actuator States

System (1) can be written equivalently as

Ẋ(t) = f (X(t), u1(0, t), . . . , um(0, t)) (13)

∂tui(x, t) = ∂xui(x, t), x ∈ (0, Di), i = 1, . . . ,m (14)

ui(Di, t) =Ui(t), i = 1, . . . ,m. (15)

To see this note that the solutions to (14) and (15) are given by

ui(x, t)=Ui(t+x−Di), x∈ [0, Di], i=1, . . . ,m. (16)

B. Transport PDE Representation of the Predictor States

The predictor states P1(θ), for all θ ≥ −D1, and Pj(θ), for
all θ ≥ −Dj,j−1 and j = 2, . . . ,m, can be written equivalently
as (see Fig. 2)

p1(x, t) =X(t) +

∫ x

0

f (p1(y, t), u1(y, t)

. . . , um(y, t)) dy, x ∈ [0, D1] (17)

p2(x, t) = p1(D1, t) +

∫ x

D1

f (p2(y, t), κ1 (p2(y, t)) , u2(y, t)

. . . , um(y, t)) dy, x ∈ [D1, D2] (18)
...

pm(x, t) = pm−1(Dm−1, t) +

∫ x

Dm−1

f (pm(y, t)

κ1 (pm(y, t)) , . . . , κm−1 (pm(y, t))

um(y, t)) dy, x ∈ [Dm−1, Dm]. (19)

We show this by induction. In order to make the presentation of
the procedure clearer, we present two steps before the general
step. We first observe that (see Section II) P1(θ) = X(θ +D1),
for all θ ≥ −D1, andPj(θ) = X(θ +Dj), for all θ ≥ −Dj,j−1
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Fig. 2. The Dj -time units ahead predictors of the state X, namely Pj ,
given in (3)–(5), and their equivalent representation by the PDE states
pj , given in (17)–(19), based on the transport-PDE equivalent of the
actuator states defined in (14) and (15). The control laws Uj are defined
in (2) in terms of Pj and can be written equivalently as in (42) in terms
of pj .

and j = 2, . . . ,m. The functions pi, i = 1, . . . ,m, satisfy the
following ODEs in x:

∂xp1(x, t) = f (p1(x, t), u1(x, t), . . . , um(x, t))

x ∈ [0, D1] (20)
∂xp2(x, t) = f (p2(x, t), κ1 (p2(x, t)) , u2(x, t)

. . . , um(x, t)) , x ∈ [D1, D2] (21)
...

∂xpm(x, t) = f (pm(x, t), κ1 (pm(x, t)) , . . .

κm−1 (pm(x, t)) , um(x, t))

x ∈ [Dm−1, Dm] (22)

with initial conditions

p1(0, t) =X(t) (23)
p2(D1, t) = p1(D1, t) (24)

...
pm(Dm−1, t) = pm−1(Dm−1, t). (25)

Step 1: The solution to (20) and (23) is

p1(x, t) = X(t+ x), x ∈ [0, D1]. (26)

In order to show this, first note that (26) satisfies the boundary
condition (23). The function X(t+ x) also satisfies the ODE in
x (20) which follows from the fact that by (1) one can conclude
that for all t ≥ 0 and 0 ≤ x ≤ D1:

X ′(t+ x) = f (X(t+ x), U1(t+ x−D1),

. . . , Um(t+ x−Dm)) . (27)

The result follows from the uniqueness of solutions to the ODE
(1). Therefore, by defining

p1(D1, t) = P1(t) (28)

and using the fact that p1 is a function of one variable, namely
x+ t [which follows from (26)], one can conclude that:

P1(t+ x−D1) = p1(x, t), x ∈ [0, D1]. (29)

Performing the change of variables x = θ +D1 − t, for all t−
D1 ≤ θ ≤ t, in (17) and using (16), (23), and (29) we arrive at

P1(θ)=X(t)+

∫ θ

t−D1

f (P1(s), U1(s), . . . , Um(s−Dm,1)) ds

t−D1 ≤ θ ≤ t. (30)

Step 2: Similarly, it can be shown that

p2(x, t) = X(t+ x), x ∈ [D1, D2] (31)

is the solution to (21) and (24) since it satisfies (24) and since it
satisfies the ODE in x (21) which follows from the fact that the
function X(t+ x) satisfies:

X ′(t+ x) = f (X(t+ x), κ1 (X(t+ x))

U2(t+ x−D2), . . . , Um(t+ x−Dm))

for all t ≥ 0 and D1 ≤ x ≤ D2 (32)

where we also used the fact that U1(t+ x−D1) = κ1(P1(t+
x−D1)) = κ1(X(t+ x)), for all x ≥ D1. Defining

p2(D2, t) = P2(t) (33)

and using the fact that p2 is a function of one variable, namely
x+ t [which follows from (31)], one can conclude that:

P2(t+ x−D2) = p2(x, t), x ∈ [D1, D2]. (34)

Performing the change of variables x = θ +D2 − t, for all t−
D21 ≤ θ ≤ t, in (18) and using (16), (28), and (34) we arrive at

P2(θ) =P1(t) +

∫ θ

t−D2,1

f (P2(s), κ1 (P2(s)) , U2(s)

U3(s−D3,2), . . . , Um(s−Dm,2)) ds

for all t−D2,1 ≤ θ ≤ t. (35)

Step j: In general, assume that for some j

pj(x, t) =Pj(t+ x−Dj)

=X(t+ x), x ∈ [Dj−1, Dj ]. (36)

We show next that pj+1(x, t)=X(t+x), for all x∈ [Dj , Dj+1].
We first observe that pj+1(Dj , t) = X(t+Dj) = pj(Dj , t).
Moreover, the function pj+1(x, t) = X(t+ x), for all x ∈ [Dj ,
Dj+1], satisfies the following ODE in x:

∂xpj+1(x, t) = f (pj+1(x, t), κ1 (pj+1(x, t)) , . . .

κj (pj+1(x, t)) , uj+1(x, t)

. . . , um(x, t)) , x ∈ [Dj , Dj+1] (37)

since the following holds for all t ≥ 0:

X ′(t+ x) = f (X(t+ x), κ1 (X(t+ x)) , . . .

κj (X(t+ x)) , Uj+1(t+ x−Dj+1), . . .

Um(t+ x−Dm)) , Dj ≤ x ≤ Dj+1 (38)

where we also used the fact that Ui(t+ x−Di) = Pi(t+ x−
Di) = X(t+ x), for all x ≥ Dj and i ≤ j. By defining

pj+1(Dj+1, t) = Pj+1(t) (39)

once can conclude that

Pj+1(t+ x−Dj+1) = pj+1(x, t), x ∈ [Dj , Dj+1]. (40)
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Performing the change of variables x = θ +Dj+1 − t, for all
t−Dj+1 ≤ θ ≤ t, we arrive at

Pj+1(θ) =Pj(t) +

∫ θ

t−Dj+1,j

f (Pj+1(s), κ1 (Pj+1(s))

. . . , κj (Pj(s)) , Uj+1(s), Uj+2(s−Dj+2,j+1)

. . . , Um(s−Dm,j+1)) ds (41)

for all t−Dj,j+1 ≤ θ ≤ t which completes the proof.
Note that with this representation we have that

Ui(t) = κi (pi(Di, t)) , i = 1, . . . ,m. (42)

C. Main Result and Its Proof

Theorem 1: Consider the closed-loop system consisting of
the plant (13)–(15) and the control laws (42), (17)–(19). Under
Assumptions 1, 2, and 3, there exists a class KL function β such
that for all initial conditions X0 ∈ R

n and ui0 ∈ C[0, Di], i =
1, . . . ,m, which are compatible with the feedback laws, that is,
they satisfy ui0(Di) = κi(pi(Di, 0)), i = 1, . . . ,m, the closed-
loop system has a unique solutionX(t)∈C1[0,∞) and ui(x, t)∈
C([0, Di]× [0,∞)), i = 1, . . . ,m, and the following holds:

Ξ(t) ≤ β (Ξ(0), t) , for all t ≥ 0 (43)

where

Ξ(t) = |X(t)|+
m∑
i=1

‖ui(·, t)‖∞ . (44)

Corollary 1 (Theorem 1 in Standard Delay Notation):
Consider the closed-loop system consisting of the plant (1) and
the control laws (2)–(8). Under Assumptions 1, 2, and 3, the
following holds:

Ω(t) ≤ β (Ω(0), t) , for all t ≥ 0 (45)

where

Ω(t) = |X(t)|+
m∑
i=1

sup
t−Di≤θ≤t

|Ui(θ)| . (46)

The proof of Theorem 1 is based on a series of technical lem-
mas which are presented next and whose proofs are provided in
Appendix A. Corollary 1 follows immediately from Theorem 1
by using (16).

Lemma 1: The backstepping transformations of ui, i = 1,
. . . ,m, defined by

w1(x, t) =u1(x, t)− κ1 (p1(x, t)) , x ∈ [0, D1] (47)

w2(x, t) =u2(x, t)−
{
κ2 (p1(x, t)) , x ∈ [0, D1]

κ2 (p2(x, t)) , x ∈ [D1, D2]
(48)

...

wm(x, t) =um(x, t)−

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

κm (p1(x, t)) , x ∈ [0, D1]

κm (p2(x, t)) , x ∈ [D1, D2]
...

κm (pm(x, t)) , x ∈ [Dm−1, Dm]

(49)

where pi, i = 1, . . . ,m, are defined in (17)–(19), together with
the control laws (42), (17)–(19), transform system (13)–(15) to
the following “target system”:

Ẋ(t) = f (X(t), w1(0, t) + κ1 (X(t)) , . . . , wm(0, t)

+ κm (X(t))) (50)

∂twi(x, t) = ∂xwi(x, t), x∈(0, Di), i = 1, . . . ,m (51)

wi(Di, t) = 0, i = 1, . . . ,m. (52)

Lemma 2: The inverse backstepping transformations of
(47)–(49) are defined by

u1(x, t) =w1(x, t) + κ1 (π1(x, t)) , x ∈ [0, D1] (53)

u2(x, t) =w2(x, t) +

{
κ2 (π1(x, t)) , x ∈ [0, D1]

κ2 (π2(x, t)) , x ∈ [D1, D2]
(54)

...

um(x, t) =wm(x, t)+

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

κm (π1(x, t)) , x ∈ [0, D1]

κm (π2(x, t)) , x ∈ [D1, D2]
...

κm (πm(x, t)) , x ∈ [Dm−1, Dm]

(55)

where

π1(x, t) =X(t) +

∫ x

0

f (π1(y, t), w1(y, t) + κ1 (π1(y, t))

. . . , wm(y, t) + κm (π1(y, t))) dy

x ∈ [0, D1] (56)

π2(x, t) =π1(D1, t) +

∫ x

D1

f (π2(y, t), κ1 (π2(y, t))

w2(y, t) + κ2 (π2(y, t)) , . . . , wm(y, t)

+ κm (π1(y, t))) dy, x ∈ [D1, D2] (57)

...

πm(x, t) =πm−1(Dm−1, t) +

∫ x

Dm−1

f (πm(y, t)

κ1 (πm(y, t)) , . . . , κm−1 (πm(y, t))

wm(y, t) + κm (πm(y, t))) dy

x ∈ [Dm−1, Dm]. (58)

Lemma 3: There exists a class KL function β1 such that the
following holds:

Ξ̄(t) ≤ β1

(
Ξ̄(0), t

)
, for all t ≥ 0 (59)

where

Ξ̄(t) = |X(t)|+
m∑
i=1

‖wi(·, t)‖∞ . (60)
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Lemma 4: There exist class K∞ functions ρ1, . . . , ρm such
that

‖p1(·, t)‖∞ ≤ ρ1 (Ξ(t)) (61)
‖p2(·, t)‖∞ ≤ ρ2 (Ξ(t)) (62)

...
‖pm(·, t)‖∞ ≤ ρm (Ξ(t)) (63)

where Ξ is defined in (44).
Lemma 5: There exist class K∞ functions ρ̄1, . . . , ρ̄m

such that

‖π1(·, t)‖∞ ≤ ρ̄1
(
Ξ̄(t)

)
(64)

‖π2(·, t)‖∞ ≤ ρ̄2
(
Ξ̄(t)

)
(65)

...

‖πm(·, t)‖∞ ≤ ρ̄m
(
Ξ̄(t)

)
(66)

where Ξ̄ is defined in (60).
Lemma 6: There exist class K∞ functions ρ, ρ̄ such that

Ξ̄(t) ≤ ρ (Ξ(t)) (67)
Ξ(t) ≤ ρ̄

(
Ξ̄(t)

)
. (68)

Proof of Theorem 1: Combining (68) with (59) we get
that Ξ(t) ≤ ρ̄(β1(Ξ̄(0), t)), for all t ≥ 0, and hence, with (67)
we arrive at (43) with β(s, t) = ρ̄(β1(ρ(s), t)). The proof of
existence and uniqueness of a solution X(t) ∈ C1[0,∞) and
ui(x, t) ∈ C([0, Di]× [0,∞)), i = 1, . . . ,m, is shown as fol-
lows. Using relations (20)–(22) for t = 0, the compatibility of
the initial conditions ui0 , i = 1, . . . ,m, with the feedback laws
(42) guarantee that pi(x, 0) ∈ C1[Di−1, Di], where D0 = 0.
Hence, using relations (17)–(19), (23)–(25), and the fact that
ui0 ∈ C[0, Di], i = 1, . . . ,m, it also follows from (47)–(49)
that wi0 ∈ C[0, Di], i = 1, . . . ,m. The solutions to (51) and
(52) are given for all i = 1, . . . ,m by

wi(x, t) =

{
wi0 (t+ x), 0 ≤ x+ t < Di

0, x+ t ≥ Di.
(69)

The uniqueness of this solution follows from the uniqueness of
the solution to (51) and (52) (see Sections 2.1 and 2.3 in [19]).
Hence, the compatibility of the initial conditions ui0 , i = 1,
. . . ,m, with the feedback laws (42) guarantee that there exist a
unique solution wi(x, t) ∈ C([0, Di]× [0,∞)), i = 1, . . . ,m.
From the target system (50) it follows that X(t) ∈ C1[0,∞).
The fact thatπi(x, t)=X(t+x), for all t≥0 andx∈ [Di−1, Di],
and the inverse backstepping transformations (53)–(55) guar-
antee that ui(x, t) ∈ C([0, Di]× [0,∞)), i = 1, . . . ,m. The
proof is completed.

IV. STABILITY ANALYSIS UNDER PREDICTOR

FEEDBACK USING ESTIMATES ON SOLUTIONS

Theorem 2: Consider the closed-loop system consisting of
the plant (1) and the control laws (2)–(4). Let Assumptions 1
and 3 hold and assume that the system Ẋ = f(X,κ1(X),
. . . , κm(X)) is globally asymptotically stable. There exists a
class KL function β̂ such that for all initial conditionsX0 ∈ R

n

and Ui0 ∈ C[−Di, 0], i = 1, . . . ,m, which are compatible with
the feedback laws, that is, they satisfy Ui0(0) = κi(Pi(0)),
i = 1, . . . ,m, there exists a unique solution to the closed-loop
system with X(t) ∈ C1[0,∞) and Ui(t), i = 1, . . . ,m, locally
Lipschitz on (0,∞), and the following holds:

Ω(t) ≤ β̂ (Ω(0), t) , for all t ≥ 0 (70)

where Ω is defined in (46).
Proof: We estimate first |X(t)|, for all t ≥ 0. Since

the system Ẋ = f(X,ω1, . . . , ωm) is forward complete using
Lemma 3.5 from [25] and the fact that f(0, 0, . . . , 0) = 0
(which allows us to set R = 0), we get that

|X(t)| ≤ ψ1 (Ω(0)) , for all 0 ≤ t ≤ D1 (71)

for some class K∞ function ψ1. Using the fact that U1(t) =
κ1(P1(t)), for all t ≥ 0, with P1(t) = X(t+D1) and the fact
that system Ẋ = f(X,κ1(X), ω2, . . . , ωm) is forward com-
plete with respect to ω2 we get by applying Lemma 3.5 from
[25] that |X(t)| ≤ ψ̄2(|X(D1)|+

∑m
i=2 supD1−Di≤θ≤D2−Di

|Ui(θ)|), for all D1 ≤ t ≤ D2, for some class K∞ function ψ̄2.
Hence, since Dj ≤ Di, ∀ j ≤ i, with (71) we get

|X(t)| ≤ ψ2 (Ω(0)) , for all D1 ≤ t ≤ D2 (72)

where the class K∞ function ψ2(s) is defined as ψ2(s) =
ψ̄2(ψ1(s) + s). By repeatedly applying Lemma 3.5 from [25]
we get under Assumption 3 that there exist class K∞ func-
tions ψ̄j , j = 3, . . . ,m such that |X(t)| ≤ ψ̄j(|X(Dj−1)|+∑m

i=j supDj−1−Di≤θ≤Dj−Di
|Ui(θ)|), for all Dj−1 ≤ t ≤ Dj ,

and hence

|X(t)| ≤ ψj (Ω(0)) , for all Dj−1 ≤ t ≤ Dj (73)

where the class K∞ functions ψj , j = 3, . . . ,m are defined as
ψj(s)= ψ̄j(ψj−1(s)+s), j=3, . . . ,m, and where we also used
the fact thatDj≤Di, ∀ j≤ i. Combining (71)–(73) we arrive at

|X(t)| ≤ ψ (Ω(0)) , for all 0 ≤ t ≤ Dm (74)

where ψ(s) =
∑m

i=1 ψi(s). Using the fact that Um(t) =
κm(Pm(t)), for all t ≥ 0, with Pm(t) = X(t+Dm) and the
fact that system Ẋ = f(X,κ1(X), . . . , κm(X)) is globally
asymptotically stable we get that |X(t)| ≤ β̂1(|X(Dm)|, t−
Dm), for all t ≥ Dm, for some class KL function β̂1. Hence,
using (74) we get that

|X(t)| ≤ β̂2 (Ω(0), t) , for all t ≥ 0 (75)

where the class KL function β̂2 is given by β̂2(s, t) =

β̂1(ψ(s),max{0, t−Dm}) + ψ(s)e−max{0,t−Dm}.
We estimate next supt−D1≤θ≤t |U1(θ)|. Since κ1 is locally

Lipschitz and κ1(0) = 0, there exists a class K∞ function α̂1

such that |κ1(X)| ≤ α̂1(|X |), for all X ∈ R
n. Since for all

t ≥ 0 it holds that U1(t) = κ1(X(t+D1)) using (75) one can
conclude that

sup
t−D1≤θ≤t

|U1(θ)| ≤ sup
−D1≤θ≤0

|U1(θ)|+ α̂1

(
β̂2 (Ω(0), 0)

)
0 ≤ t ≤ D1 (76)
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and hence

sup
t−D1≤θ≤t

|U1(θ)| ≤ α̂2 (Ω(0)) , 0 ≤ t ≤ D1 (77)

where the function α̂2(s) = α̂1(β̂2(s, 0)) + s belongs to class
K∞. Using identical arguments we also get that

sup
t−D1≤θ≤t

|U1(θ)| ≤ α̂1

(
β̂2 (Ω(0), t)

)
, t ≥ D1. (78)

Combining (77) with (78) we arrive at

sup
t−D1≤θ≤t

|U1(θ)| ≤ β̂3 (Ω(0), t) , for all t ≥ 0 (79)

where the class KL function β̂3 is defined by β̂3(s, t) =

α̂1(β̂2(Ω(0),max{0, t−D1})) + α̂2(s) e−max{0,t−D1}. Us-
ing the facts that κ2 is locally Lipschitz and that κ2(0) = 0,
which allows one to conclude that there exists a class K∞
function α̂3 such that |κ2(X)| ≤ α̂3(|X |), for all X ∈ R

n, with
similar arguments we get that

sup
t−D2≤θ≤t

|U2(θ)| ≤ β̂4 (Ω(0), t) , for all t ≥ 0 (80)

where the class KL function β̂4 is defined by β̂4(s, t) =

α̂3(β̂2(Ω(0),max{0, t−D2}))+α̂4(s) e
−max{0,t−D2}, where

the function α̂4(s) = α̂3(β̂2(s, 0)) + s belongs to class K∞.
With the same arguments one can conclude that there exist class
KL functions β̂j+2, j = 3, . . . ,m, such that

sup
t−Dj≤θ≤t

|Uj(θ)| ≤ β̂j+2 (Ω(0), t) , j = 3, . . . ,m,

for all t ≥ 0. (81)

Combining estimates (75), (79)–(81), we get (70) with β̂(s, t) =

β̂2(s, t) +
∑m

i=1 β̂i+2(s, t). From (1) using the fact that
Ui0 ∈ C[−Di, 0], for all i = 1, . . . ,m, the Lipschitzness of
the vector field f guarantees that X(t) ∈ C1[0, D1). The
fact that U1(t−D1) = κ1(X(t)), for all t ≥ D1, and the
Lipschitzness of κ1 guarantee that X(t)∈C1(D1, D2). Since
U10 is compatible with the first feedback law one can conclude
that X(t) ∈ C1[0, D2). Analogously, since for t ≥ D1 the state
X evolves according to Ẋ(t) = f(X(t), κ1(X(t)), U2(t−
D2), . . . , Um(t−Dm)), the fact that U20 is compatible with
the second feedback law and the fact that U2(t−D2) =
κ2(X(t)), for all t ≥ D2, where κ2 is locally Lipschitz, guar-
antee that X(t) ∈ C1[0, D3). Continuing this procedure it is
shown that X(t) ∈ C1[0,∞). Since Ui(t) = κi(X(t+Di)),
i = 1, . . . ,m, the Lipshitzness of κi, i = 1, . . . ,m, guarantees
that Ui(t), i = 1, . . . ,m, are Lipschitz on (0,∞). �

V. STABILIZATION OF THE NONHOLONOMIC UNICYCLE

SUBJECT TO DISTINCT INPUT DELAYS

We consider the following system:

Ẋ1(t) =U2(t−D2) cos (X3(t)) (82)

Ẋ2(t) =U2(t−D2) sin (X3(t)) (83)

Ẋ3(t) =U1(t−D1) (84)

which describes the dynamics of the unicycle, where (X1, X2)
is the position of the robot, X3 is heading, U2 is speed, and
U1 is the turning rate. We consider the following time-varying
nominal control law designed in [51]:

U1(t) = −M(t)2 cos(t)−M(t)Q(t)
(
1 + cos2(t)

)
−X3(t)

(85)

U2(t) = −M(t)+Q(t) (sin(t)−cos(t))+Q(t)U1(t) (86)

where

M(t) =X1(t) cos (X3(t)) +X2(t) sin (X3(t)) (87)

Q(t) =X1(t) sin (X3(t))−X2(t) cos (X3(t)) (88)

which achieves global uniform asymptotic stabilization when
D1=D2=0 [51]. We verify in Appendix B that Assumptions 1
and 3 are verified as well for system (82)–(84) under the control
laws (85)–(88), and hence, one can apply, Theorem 2.

Note that when D1 > D2, Assumption 3 may not hold.
This fact can be seen as follows. It can be shown that Ṁ(t) =

U2(t−D2)−Q(t)U1(t−D1), Q̇(t)=M(t)U1(t−D1), and
Ẋ3(t) = U1(t−D1). Therefore, when D1 > D2 in order for
Assumption 3 to hold, the system Ẏ = f(Y, U2(t, Y ), ω2) with

f(Y, U2(t, Y ), ω2) =

⎡
⎣U2(t, Y )− Y2ω2

Y1ω2

ω2

⎤
⎦, where U2(t, Y ) =

−Y1+Y2(sin(t)−cos(t))−Y 2
1 Y2 cos(t)−Y1Y

2
2 (1+cos2(t))−

Y2Y3, has to be forward complete with respect to ω2.
However, this might not be the case. Consider, for example,
the case in which D2 = 0, ω2 ≡ 0, Y2(0) = 1, Y3(0) = 0,
and hence, Y2(t) = 1, for all t ≥ 0. The state Y1 satisfies
Ẏ1=−Y1 + sin(t)− cos(t)−Y 2

1 cos(t)− Y1(1 + cos2(t)), for
all t ≥ 0. We show next that Y1 escapes to infinity before
t = π/4. Choose Y1(0) = −β < 0, where β is sufficiently
large such that Y1(t) < 0 for all t ≤ π/4. As long as
Y1(t) < 0 and t ≤ π/4 it holds that Ẏ1 ≤ −3Y1 − Y 2

1 (1/2).
Hence, using the comparison principle we get that
Y1(t) ≤ −(6e−3tβ/(6 + β(e−3t − 1))). Choosing, for
example, β = 12 we have that Y1(t) ≤ −(12/(2− e3t)).
Hence, Y1(t) < 0 for all t ≤ log(2)/3 ≈ 0.23 < π/4 ≈ 0.79.
Moreover, |Y1| → ∞ before t = log(2)/3 (which also implies
that |X | → ∞).

We employ next our predictor-feedback design when 0 <
D1 < D2. The predictor-feedback control law is given by

U1(t) = −M1(t)
2 cos(t+D1)−M1(t)Q1(t)

×
(
1 + cos2(t+D1)

)
− P1X3

(t) (89)

U2(t) = −M2(t) +Q2(t) (sin(t+D2)− cos(t+D2))

+Q2(t)
(
−M2(t)

2 cos(t+D2)−M2(t)Q2(t)

×
(
1 + cos2(t+D2)

)
− P2X3

(t)
)

(90)



BEKIARIS-LIBERIS AND KRSTIC: PREDICTOR-FEEDBACK STABILIZATION OF MULTI-INPUT NONLINEAR SYSTEMS 523

where for i = 1, 2

Mi(t) =PiX1
(t) cos

(
PiX3

(t)
)
+ PiX2

(t) sin
(
PiX3

(t)
)

(91)

Qi(t) =PiX1
(t) sin

(
PiX3

(t)
)
− PiX2

(t) cos
(
PiX3

(t)
)

(92)

and Pi =

⎡
⎣PiX1

PiX2

PiX3

⎤
⎦, i = 1, 2. The predictors are given by

P1X1
(t) =X1(t) +

∫ t

t−D1

U2(θ −D21) cos
(
P1X3

(θ)
)
dθ

(93)

P1X2
(t) =X2(t) +

∫ t

t−D1

U2(θ −D21) sin
(
P1X3

(θ)
)
dθ

(94)

P1X3
(t) =X3(t) +

∫ t

t−D1

U1(θ)dθ (95)

P2X1
(t) =P1X1

(t) +

∫ t

t−D21

U2(θ) cos
(
P2X3

(θ)
)
dθ (96)

P2X2
(t) =P1X2

(t) +

∫ t

t−D21

U2(θ) sin
(
P2X3

(θ)
)
dθ (97)

P2X3
(t) =P1X3

(t)

+

∫ t

t−D21

κ1

(
θ+D2, P2X1

(θ), P2X2
(θ), P2X3

(θ)
)
dθ

(98)

where for all t−D21 ≤ θ ≤ t, κ1(θ +D2, P2X1
(θ), P2X2

(θ),

P2X3
(θ))=−M2(θ)

2 cos(θ+D2)−M2(θ)Q2(θ)(1+cos2(θ+

D2))− P2X3
(θ). Note that the D1-time units ahead predictors,

namely P1Xi
, i = 1, 2, 3, given by (93)–(95) can be computed

explicitly in terms of the history of U1(θ) on the interval θ ∈
[t−D1, t], the history of U2(θ) on the interval θ ∈ [t−D2, t−
D2,1], and the current states Xi(t), i = 1, 2, 3, as

P1X1
(t) =X1(t) +

∫ t

t−D1

U2(θ −D2,1)

× cos

(
X3(t) +

∫ θ

t−D1

U1(s)ds

)
dθ (99)

P1X2
(t) =X2(t) +

∫ t

t−D1

U2(θ −D2,1)

× sin

(
X3(t) +

∫ θ

t−D1

U1(s)ds

)
dθ (100)

P1X3
(t) =X3(t) +

∫ t

t−D1

U1(θ)dθ. (101)

This is not possible for the D2-time units ahead predictors,
namely P2Xi

, i = 1, 2, 3, given by (96)–(98), since in this case
P2X3

defined in (98) can not be solved explicitly in terms of the
current states of the plant and the history of the actuator states.

VI. APPLICATION TO LINEAR SYSTEMS

We specialize our control design to the case of linear systems
in which case the control laws are given explicitly. We consider

the following system:

Ẋ(t) = AX(t) +

m∑
i=1

biUi(t−Di) (102)

which can be written as

Ẋ(t) =AX(t) +
m∑
i=1

biui(0, t) (103)

∂tui(x, t) = ∂xui(x, t), x ∈ (0, Di), i = 1, . . . ,m (104)

ui(Di, t) =Ui(t), i = 1, . . . ,m (105)

where A is an n× n matrix and bi, i = 1, . . . ,m are
n-dimensional vectors. System (103)–(105) is the linear ver-
sion of system (13)–(15). We assume linear nominal feedback
control laws, that is, in the delay-free case we have Ui(t) =
kTi X(t), and hence, Assumption 2 is satisfied with κi(X) =
kTi X , i = 1, . . . ,m, under the assumption that the pair
(A, [b1 . . . bm]) is stabilizable. Note that Assumptions 1 and 3
hold for the case of linear systems under linear nominal feed-
back controllers. We first rewrite the predictor states in their
PDE representation, namely (20)–(25), for the case of linear
systems given by (103)–(105) as

∂xp1(x, t) =Ap1(x, t) +

m∑
i=1

biui(x, t), x ∈ [0, D1] (106)

∂xp2(x, t) =
(
A+ b1k

T
1

)
p2(x, t) +

m∑
i=2

biui(x, t),

x ∈ [D1, D2] (107)
...

∂xpm(x, t) =

(
A+

m−1∑
i=1

bik
T
i

)
pm(x, t) + bmum(x, t),

x ∈ [Dm−1, Dm] (108)

with initial conditions given by (23)–(25). Solving explicitly
the linear ODEs in x (106)–(108) and using the boundary
conditions (23)–(25) we get that

p1(x, t) = eAxX(t) +

∫ x

0

eA(x−y)
m∑
i=1

biui(y, t)dy,

x ∈ [0, D1] (109)

p2(x, t) = eA1(x−D1)p1(D1, t) +

∫ x

D1

eA1(x−y)

×
m∑
i=2

biui(y, t)dy, x ∈ [D1, D2] (110)

...

pm(x, t) = eAm−1(x−Dm−1)pm−1(Dm−1, t)

+

∫ x

Dm−1

eAm−1(x−y)bmum(y, t)dy

x ∈ [Dm−1, Dm] (111)
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where we used the notation

A0 =A (112)

Ai =A+
i∑

j=1

bjk
T
j , i = 1, . . . ,m. (113)

The control laws are given by

Ui(t) = κT
i pi(Di, t), i = 1, . . . ,m. (114)

Theorem 3: Consider the closed-loop system consisting of
the plant (103)–(105) and the control laws (114), (109)–(111).
Let the pair (A, [b1 . . . bm]) be stabilizable. There exist positive
constants λ and μ such that for all initial conditions X0 ∈ R

n

and ui0 ∈ H1(0, Di), i = 1, . . . ,m, which are compatible with
the feedback laws, that is, they satisfy ui0(Di) = κT

i pi(Di, 0),
i = 1, . . . ,m, the closed-loop system has a unique solution
(X(t), u 1(·, t), . . . , um(·, t)) ∈ C([0,∞);Rn ×H1(0, D1)×
· · · × H1 ( 0, Dm ) ) ∩ C1 ( [0, ∞ ); Rn × L2 ( 0, D1 ) ×
· · · × L2(0, Dm)) and the following holds:

Γ(t) ≤ μΓ(0)e−λt, for all t ≥ 0 (115)

where

Γ(t) = |X(t)|+
m∑
i=1

∫ Di

0

ui(x, t)
2dx. (116)

Note that with definitions pi(x, t) = Pi(t+ x−Di), for all
x ∈ [Di−1, Di], with D0 = 0 (see Section III-B) the predictors
(109)–(111) can be written as

P1(θ)= eA(θ−t+D1)X(t) +

∫ θ

t−D1

eA(θ−s)

×
m∑
i=1

biUi(s−Di,1)ds, t−D1 ≤ θ ≤ t (117)

P2(θ)= eA1(θ−t+D2,1)P1(t) +

∫ θ

t−D2,1

eA1(θ−s)

×
m∑
i=2

biUi(s−Di,2)ds, t−D2,1 ≤ θ ≤ t (118)

...

Pm(θ)= eAm−1(θ−t+Dm,m−1)Pm−1(t)+

∫ θ

t−Dm,m−1

eAm−1(θ−s)

× bmUm(s)ds, t−Dm,m−1 ≤ θ ≤ t (119)

where the matrices Ai, i = 1, . . . ,m− 1, are given in (112) and
(113). With this notation the control laws (114) are written as

Ui(t) = κT
i Pi(t), i = 1, . . . ,m. (120)

We have the following corollary as an immediate consequence
of Theorem and relation (16).

Corollary 2 (Theorem 3 in Standard Delay Notation):
Consider the closed-loop system consisting of the plant (102)
and the control laws (120), (117)–(119). Under the assumption
that the pair (A, [b1 . . . bm]) is stabilizable the following holds:

Ψ(t) ≤ μΨ(0)e−λt, for all t ≥ 0 (121)

where

Ψ(t) = |X(t)|+
m∑
i=1

∫ t

t−Di

Ui(θ)
2dθ. (122)

Proof: We prove Theorem 3 by showing that the control
laws (114), (109)–(111) are identical to the ones introduced in
[55] and [56], and hence, Theorem 3 is proved by following
the proof of Theorem 1 in [56]. Equivalently we show that the
backstepping transformations (1) specialized to the linear case
are identical to the backstepping transformations introduced in
[56]. Toward that end define for all i = 1, . . . ,m

φi(x) =

{
x, x ≤ Di

Di, x ≥ Di

(123)

gi(x, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p1(x, t), x ∈ [0, D1]

p2(x, t), x ∈ [D1, D2]
...

pi(x, t), x ∈ [Di−1, Di].

(124)

Then, using (109)–(111) it follows that:

e−Ai−1xgi(x, t) = vi−1(x, t), x ∈ [0, Di]

i =1, . . . ,m (125)

where for all x ∈ [0, Dm]

vi(x, t) = e−Aiφi(x)eAi−1φi(x)vi−1(x, t)

+

∫ φi+1(x)

φi(x)

e−Aiy
m∑

j=i+1

bjuj(y, t)dy (126)

v0(x, t) =X(t) +

∫ φ1(x)

0

e−Ay
m∑
j=1

bjuj(y, t)dy. (127)

We show this by induction. For all x ∈ [0, D1] it holds that

e−Axg1(x, t) = e−Axp1(x, t)

=X(t) +

∫ φ1(x)

0

e−Ay
m∑
j=1

bjuj(y, t)dy

= v0(x) (128)

where we used (109) and (123). Assume now that (125) holds
for some i. It follows that:

gi+1(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p1(x, t), x ∈ [0, D1]

p2(x, t), x ∈ [D1, D2]
...

pi(x, t), x ∈ [Di−1, Di]

pi+1(x, t), x ∈ [Di, Di+1]

=

{
eAi−1xvi−1(x, t), x ∈ [0, Di]

pi+1(x, t), x ∈ [Di, Di+1]
(129)
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for all x ∈ [0, Di+1]. Using (109)–(111) and (123) we get
from (129) that

e−Aixgi+1(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e−Aiφi(x)eAi−1φi(x)vi−1(x, t),

x ∈ [0, Di]

e−AiDipi(Di, t) +
∫ x

Di
e−Aiy

×
∑m

j=i+1 bjuj(y, t)dy,

x ∈ [Di, Di+1].

(130)

Using (124) and (125) it follows that:

e−Ai−1Digi(Di, t) = e−Ai−1Dipi(Di, t)

= vi−1(Di, t) (131)

and hence

pi(Di, t) = eAi−1Divi−1(Di, t). (132)

Combining (130) with (132) we arrive at

e−Aixgi+1(x, t)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e−Aiφi(x)eAi−1φi(x)vi−1(x, t)

x∈ [0, Di]

e−AiDieAi−1Divi−1(Di, t)

+
∫ x

Di
e−Aiy

∑m
j=i+1bjuj(y, t)dy

x∈ [Di, Di+1].

(133)

We then observe from (123) that φi(x) = φi+1(x) = x, for all
x ≤ Di, and hence

∫ φi+1(x)

φi(x)

e−Aiy
m∑

j=i+1

bjuj(y, t)dy = 0, x ∈ [0, Di]. (134)

Moreover, using (123) we get that

e−AiDieAi−1Di =e−Aiφi(x)eAi−1φi(x), x∈ [Di, Di+1]. (135)

The proof is completed if we show that for all i = 1, . . . ,m

vi−1(Di, t) = vi−1(x, t), for all x ∈ [Di, Dm]. (136)

We prove this by induction and by using definitions (126),
(127). Using (123) for i = 1 we have that

v0(D1, t) =X(t) +

∫ D1

0

e−Ay
m∑
j=1

bjuj(y, t)dy

=X(t) +

∫ φ1(x)

0

e−Ay
m∑
j=1

bjuj(y, t)dy x ≥ D1

= v0(x, t), for all x ≥ D1. (137)

Assume now that (136) holds for some i. Then using
(123) and (126) we have that

vi(Di+1, t) = e−AiDieAi−1Divi−1(Di+1, t)

+

∫ Di+1

Di

e−Aiy
m∑

j=i+1

bjuj(y, t)dy

= e−Aiφi(x)eAi−1φi(x)vi−1(Di+1, t)

+

∫ φi+1(x)

φi(x)

e−Aiy
m∑

j=i+1

bjuj(y, t)dy

for all x ≥ Di+1. (138)

Therefore, using (136) we get that

vi(Di+1, t) = e−Aiφi(x)eAi−1φi(x)vi−1(x, t)

+

∫ φi+1(x)

φi(x)

e−Aiy
m∑

j=i+1

bjuj(y, t)dy

= vi(x, t), for all x ≥ Di+1 (139)

which completes the proof that (125) holds. Therefore, using
(124) the backstepping transformations (47)–(49) can be writ-
ten in the linear case as

w1(x, t) =u1(x, t)−κT
1 e

A0xv0(x, t), x ∈ [0, D1] (140)

w2(x, t) =u2(x, t)−κT
2 e

A1xv1(x, t), x ∈ [0, D2] (141)

...

wm(x, t) =um(x, t)− κT
meAm−1xvm−1(x, t),

x ∈ [0, Dm] (142)

which are identical to the backstepping transformations (67),
(68) from [56].

As a special case we provide explicitly the first two backstep-
ping transformations. Using (126) and (127), the backstepping
transformations (140) and (141) take the form

w1(x, t) = u1(x, t)− kT1

(
eAxX(t) +

∫ x

0

eA(x−y)

×
m∑
i=1

biui(y, t)dy

)
, x ∈ [0, D1] (143)

w2(x, t) = u2(x, t)− kT2

{
p1(x, t), x ∈ [0, D1]

p2(x, t), x ∈ [D1, D2]
(144)
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where

p1(x, t) = eAxX(t) +

∫ x

0

eA(x−y)
m∑
i=1

biui(y, t)dy (145)

p2(x, t) = eA1(x−D1)eAD1X(t) + eA1(x−D1)

×
∫ D1

0

eA(D1−y)
m∑
i=1

biui(y, t)dy

+

∫ x

D1

eA1(x−y)
m∑
i=2

biui(y, t)dy (146)

which are identical to relations (15), (77), and (78) from [56].
The predictor feedback control laws are

u1(D1, t) = kT1 e
AD1X(t) + kT1

∫ D1

0

eA(D1−y)

× (b1u1(y, t) + b2u2(y, t)) dy (147)

u2(D2, t) = kT2

(
eA1D2,1eAD1X(t) + eA1D2,1

∫ D1

0

eA(D1−y)

× b1u1(y, t)dy + eA1D2,1

∫ D1

0

eA(D1−y)b2u2(y, t)

×dy +

∫ D2

D1

eA1(D2−y)b2u2(y, t)dy

)
(148)

and in terms of the delayed states Ui(t+ x−Di) = ui(x, t) by

U1(t) = kT1

(
eAD1X(t) +

∫ t

t−D1

eA(t−θ)b1U1(θ)dθ

+

∫ t−D2,1

t−D2

eA(t−θ−D2,1)b2U2(θ)dθ

)
(149)

U2(t) = kT2

(
eA1D2,1eAD1X(t) + eA1D2,1

∫ t

t−D1

eA(t−θ)

× b1U1(θ)dθ + eA1D2,1

∫ t−D2,1

t−D2

eA(t−θ−D2,1)b2

×U2(θ)dθ +

∫ t

t−D2,1

eA1(t−θ)b2U2(θ)dθ

)
.

(150)

Relations (149), (150) can be written as

U1(t) = kT1 P1(t) (151)

U2(t) = kT2

(
eA1D2,1P1(t) +

∫ t

t−D2,1

eA1(t−θ)b2U2(θ)dθ

)

(152)

Fig. 3. The closed-loop response of system (82)–(84) with D1 = 0.5
and D2=1 under the predictor-feedback controller (89)–(98). The initial
conditions of the plant are X1(0)=X2(0)=X3(0)=0.5 and for the
actuator states are U1(θ) = 0, for all −0.5 ≤ θ ≤ 0, and U2(θ) = 0, for
all −1 ≤ θ ≤ 0.

which are the control laws (46), (47) from [56]. Since the
explicit expression of the general ith control law for the general
case of m inputs is identical to the one obtained in [56] [relation
(43)], for clarity of exposition we provide it again here

Ui(t)= kTi

(
Φ(Di, 0)X(t) +

i∑
j=1

∫ t

t−Dj

Φ (Di, θ − t+Dj)

× bjUj(θ)dθ+

m∑
j=i+1

∫ t−Dj,i

t−Dj

Φ (Di, θ−t+Dj)

× bjUj(θ)dθ

)
(153)

where for all Di ≤ x ≤ Di+1 and Dj ≤ y ≤ φj+1(x)

Φ(x, y) = eAi(x−Di)eAi−1(Di−Di−1) . . . eAj(Dj+1−y) (154)

for any i, j ∈ {0, 1, . . . ,m− 1} satisfying 0 ≤ i < j, and

Φ(x, y) = eAi(x−y), for all Di ≤ x ≤ y ≤ Di+1 (155)

for i ∈ {0, 1, . . . ,m− 1}, where φi is defined in (123) and we
adopt the notation D0 = 0.

VII. SIMULATIONS

We consider the stabilization problem of the nonholonomic
unicycle subject to distinct input delays from Section V whose
dynamics are described by (82)–(84). We choose D1 = 0.5
and D2 = 1. The initial conditions for the plant are chosen
as X1(0) = X2(0) = X3(0) = 0.5 and for the actuator states
as U1(θ) = 0, for all −D1 ≤ θ ≤ 0, and U2(θ) = 0, for all
−D2 ≤ θ ≤ 0. In Fig. 3 we show the response of the closed-
loop system under the predictor-feedback controller (89)–(98)
and in Fig. 4 the corresponding control efforts. The predictor-
feedback controller asymptotically stabilizes the nonholonomic
unicycle. In particular, at t = 1 both delays are compensated
and the system behaves as in the nominal, delay-free case. In
contrast, at is is shown in Fig. 5, the closed-loop system under
the nominal, uncompensated controller is unstable.
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Fig. 4. The control efforts (89) and (90) of the closed-loop response
of system (82)–(84) with D1 = 0.5 and D2 = 1 under the predictor-
feedback controller (89)–(98). The initial conditions of the plant are
X1(0) = X2(0) = X3(0) = 0.5 and for the actuator states are U1(θ) =
0, for all −0.5 ≤ θ ≤ 0, and U2(θ) = 0, for all −1 ≤ θ ≤ 0.

Fig. 5. The closed-loop response of system (82)–(84) with D1 = 0.5
and D2 = 1 under the nominal controller (85)–(88). The initial conditions
of the plant are X1(0) = X2(0) = X3(0) = 0.5 and for the actuator
states are U1(θ) = 0, for all −0.5 ≤ θ ≤ 0, and U2(θ) = 0, for all −1 ≤
θ ≤ 0.

VIII. CONCLUSION

We presented a predictor-feedback control design method-
ology for the stabilization of multi-input nonlinear systems
with distinct input delays. We proved global asymptotic sta-
bility of the closed-loop system using Lyapunov arguments
and arguments based on estimates of closed-loop solutions.
We also dealt with linear systems as a special case of our
methodology. We applied our approach to the stabilization of
the nonholonomic unicycle with delayed inputs.

In contrast to the single-input case, for which the predictor-
feedback controller is available explicitly for some classes of
nonlinear systems (see, for instance, [27]) with a specific open-
loop structure, in the multi-input case the class of nonlinear
systems for which the predictor-feedback control law can be
obtained explicitly seems to be more restrictive (although it
can be obtained explicitly in some trivial cases, such as, for
example, the case of linear systems). This is attributed to the

fact that the formulae of the predictors in the multi-input case
depends not only on the open-loop structure of the system but
also on the form of the feedback functions.

As a next step, it is of interest to study the problem of
stabilization of multi-input nonlinear systems with actuator
dynamics governed by wave or diffusion PDEs with different
wave propagation speeds or diffusion coefficients, respectively,
in each individual input channel. The starting point for such a
study is [12].

APPENDIX A

Proof of Lemma 1: Setting x = 0 into (47)–(49),
and (17) we get (50). Using (26) one can conclude
that ∂tp1(x, t)=∂xp1(x, t), for all x∈ [0,D1]. Hence,
using (14) and (47) we get that ∂tw1(x, t)−∂xw1(x, t)=
∂tu1(x, t)−∂xu1(x, t)+(∂κ1(p1(x, t))/∂p)(∂tp1(x, t)−∂xp1(x,
t)) = 0. Similarly, using the fact that pi(x, t) = X(t+ x),
for all x ∈ [Di−1, Di] and i = 2, . . . ,m, we get (51). Setting
x = D1 into (47)–(49) and using (15), (42) we arrive at (52).

Proof of Lemma 2: We prove this lemma by showing
that p1(x, t) = π1(x, t), for all x ∈ [0, D1], and pi(x, t) =
πi(x, t), for all x ∈ [Di−1, Di], i = 2, . . . ,m. Equivalently we
show that πi(x, t) = X(t+ x), i = 1, . . . ,m and use the fact
that pi(x, t) = X(t+ x), i = 1, . . . ,m. We first observe that
π1(0, t) = X(t), and hence, π1 satisfies the following initial
value problem for all x ∈ [0, D1]:

∂xπ1(x, t)=f (π1(x, t), w1(x, t)+κ1(π1(x, t)) , . . . , wm(x, t)

+ κm (π1(x, t))) (A.1)

π1(0, t) =X(t). (A.2)

The solution to (A.1) and (A.2) is π1(x, t) = X(t+ x). This
solution satisfies the boundary condition (A.2). It also satisfies
the ODE (A.1) since by (50) and (51) it follows that the
following holds for all t ≥ 0 and 0 ≤ x ≤ D1 X ′(t+ x) =
f(X(t+ x),W1(t+ x−D1) + κ1(X(t+ x)), . . . ,Wm(t+
x−Dm) + κm(X(t+ x))), where the solutions to (51) and
(52) are given by wi(x, t) = W (t+ x−Di), for all x ∈
[0, Di] and i = 1, . . . ,m, where Wi, i = 1, . . . ,m, satisfy
Wi(t) = 0, for all t ≥ 0. Assume now that πj(x, t) = X(t+
x), for all x ∈ [Dj−1, Dj], and some j. Then we claim that
πj+1 = X(t+ x), for all x ∈ [Dj, Dj+1]. The function πj+1

satisfies the following initial value problem:

∂xπj+1(x, t) = f (πj+1(x, t), κ1 (πj+1(x, t)) , . . .

κj (πj+1(x, t)) , wj+1(x, t)

+ κj+1 (πj+1(x, t)) , . . . , wm(x, t)

+ κm(πj+1(x, t))) , x∈ [Dj ,Dj+1] (A.3)

πj+1(Dj , t) =πj(Dj , t). (A.4)

Since πj(x, t) = X(t+ x), for all x ∈ [Dj−1, Dj ], it fol-
lows that πj+1(x, t) = X(t+ x), x ∈ [Dj, Dj+1], satisfies the
boundary condition (A.4). Using (51) and (52) we get that
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wi(x, t) = Wi(t+ x−Di), for all x ∈ [0, Di], where Wi(t) =
0, for all t ≥ 0. Since from (50) it holds that

X ′(t+ x) = f (X(t+ x),W1(t+ x−D1) + κ1 (X(t+ x)) ,

. . . ,Wm(t+ x−Dm) + κm (X(t+ x))) (A.5)

for all t ≥ 0 and x ≥ 0, one can conclude that the following
hods for all t ≥ 0 and x ∈ [Dj, Dj+1]:

X ′(t+x)=f (X(t+ x), κ1 (X(t+ x)) , . . . , κj (X(t+ x))

Wj+1(t+ x−Dj+1) + κj+1 (X(t+ x)) , . . .

Wm(t+ x−Dm) + κm (X(t+ x))) (A.6)

and hence, πj+1 = X(t+ x), for all x ∈ [Dj , Dj+1]. Since this
holds for an arbitrary j one can conclude that πj = X(t+ x),
for all x ∈ [Dj−1, Dj ] and j = 1, . . . ,m, with D0 = 0, which
completes the proof.

Proof of Lemma 3: From Assumption 2 it follows from
[54] that there exist a smooth function S(Z) : Rn+1 → R+ and
class K∞ functions α1, α2, α3, and α4, such that:

α1 (|X |) ≤S(X) ≤ α2 (|X |) (A.7)

F (X,ω1, . . . , ωm) ≤ − α3 (|X |) + α4

(
m∑
i=1

|ωi|
)

(A.8)

F (X,ω1, . . . , ωm) =
∂S(X)

∂X
f (X,κ1(X) + ω1,

. . . , κm(X) + ωm) (A.9)

for all X ∈ R
n and ω1, . . . , ωm ∈ R. With similar calculations

as in [37] (Theorem 5) we get that

d ‖wi(·, t)‖c,∞
dt

≤ −c ‖wi(·, t)‖c,∞ , i = 1, . . . ,m (A.10)

along the solutions of (51) and (52). Consider the Lyapunov
functional

V (t) = S (X(t)) +
2

c

∫ ∑m
i=1‖wi(·,t)‖c,∞

0

α4(r)

r
dr. (A.11)

Using Lemma 1 [relation (50)] and relations (A.8), (A.10) we
get along the solutions of (50)–(52) that

V̇ (t) ≤ −α3 (|X(t)|) + α4

(
m∑
i=1

|wi(0, t)|
)

− 2α4

(
m∑
i=1

‖wi(·, t)‖c,∞

)
. (A.12)

Using the fact that |wi(0, t)| ≤ ‖wi(·, t)‖c,∞, i = 1, . . . ,m, we
get that

V̇ (t) ≤ −α3 (|X(t)|)− α4

(
m∑
i=1

‖wi(·, t)‖c,∞

)
. (A.13)

It follows with the help of (A.7) that there exists a class K
function γ1 such that:

V̇ (t) ≤ −γ1 (V (t)) (A.14)

and hence, with the comparison principle (see, for example,
[33]) one can conclude that there exists a class KL function
β2 such that

V (t) ≤ β2 (V (0), t) . (A.15)

Using (A.7), the fact that ‖wi(·, t)‖∞ ≤ ‖wi(·, t)‖c,∞ ≤
ecDi‖wi(·, t)‖∞, i = 1, . . . ,m, and the properties of class K
functions we get estimate (59).

Proof of Lemma 4: We prove the lemma by induction. For
clarity we present two initial steps. We prove first bound (61).
Using the fact that p1 satisfies (20) we get under Assumption 1
that there exists a smooth function R : Rn → R+ and class K∞
functions α5, α6, and α7 such that

α5 (|X |) ≤R(X) ≤ α6 (|X |) (A.16)

∂R(X)

∂X
f(X,ω1, . . . , ωm) ≤R(X) + α7

(
m∑
i=1

|ωi|
)

(A.17)

for all X ∈ R
n and ωi ∈ R, i = 1, . . . ,m. Therefore

dR(p1(x, t))

dx
=
∂R(p1(x, t))

∂p1
f(p1(x, t), u1(x, t), . . . , um(x, t))

≤R (p1(x, t)) + α7

(
m∑
i=1

|ui(x, t)|
)

x ∈ [0, D1]. (A.18)

Hence, using (23) we get that

R (p1(x, t)) ≤ eD1R (X(t))

+ eD1

∫ D1

0

α7

(
m∑
i=1

|ui(x, t)|
)
dx (A.19)

and hence

R (p1(x, t)) ≤ eD1R (X(t))

+D1e
D1α7

(
m∑
i=1

‖ui(·, t)‖∞

)
. (A.20)

With the help of (A.16) and the properties of class K functions
we get estimate (61). We prove next (62). Under Assumption 3
one can conclude that there exists a smooth function R1 :
R

n → R+ and class K∞ functions α8, α9, and α10 such that

α8 (|X |) ≤R1(X) ≤ α9 (|X |) (A.21)

∂R1(X)

∂X
g1(X,ω2, . . . , ωm) ≤R1(X) + α10

(
m∑
i=2

|ωi|
)

(A.22)
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for all X ∈ R
n and ωi ∈ R, i = 2, . . . ,m, where g1 is defined

in Assumption 3. Using the fact that p2 satisfies (21) we get
from (A.22) that

dR1 (p2(x, t))

dx
=
∂R1 (p2(x, t))

∂p
g1 (p2(x, t), u2(x, t)

. . . , um(x, t))

≤R1 (p2(x, t)) + α10

(
m∑
i=2

|ui(x, t)|
)

x ∈ [D1, D2]. (A.23)

Thus, using (24) we get that

R1 (p2(x, t)) ≤ eD2R1 (p1(D1, t)) + eD2

×
∫ D2

0

α10

(
m∑
i=2

|ui(x, t)|
)
dx (A.24)

and hence, from (A.21) that

R1 (p2(x, t)) ≤ eD2α9 (‖p1(t)‖∞) +D2e
D2

× α10

(
m∑
i=2

‖ui(·, t)‖∞

)
. (A.25)

Using (A.21) and (61) we get from (A.25) estimate (62). As-
sume now that for some j it holds that

‖pj(·, t)‖∞ ≤ ρj (Ξ(t)) . (A.26)

Under Assumption 3 there exist a smooth function Rj :
R

n → R+ and class K∞ functions α8+3(j−1), α9+3(j−1), and
α10+3(j−1) such that

α8+3(j−1) (|X |) ≤Rj(X) ≤ α9+3(j−1) (|X |) (A.27)

Gj(X,ωj+1, . . . , ωm) ≤Rj(X) + α10+3(j−1)

⎛
⎝ m∑

i=j+1

|ωi|

⎞
⎠

(A.28)

Gj(X,ωj+1, . . . , ωm) =
∂Rj(X)

∂X
gj(X,ωj+1, . . . , ωm)

(A.29)

for all X ∈ R
n and ωi ∈ R, i = j + 1, . . . ,m. Using the fact

that pj+1 satisfies (37) and definition gj(X,ωj+1, . . . , ωm) =

f(X,κ1(X), . . . , κj(X), ωj+1, . . . , ωm) we get from (A.28)
that

dRj (pj+1(x, t))

dx
=
∂Rj (pj+1(x, t))

∂p
gj (pj+1(x, t)

uj+1(x, t), . . . , um(x, t))

≤Rj (pj+1(x, t))

+ α10+3(j−1)

⎛
⎝ m∑

i=j+1

|ui(x, t)|

⎞
⎠

x ∈ [Dj , Dj+1]. (A.30)

Therefore, employing (A.27) we get that

Rj (pj+1(x, t))≤eDj+1α9+3(j−1)

(
‖pj(t)‖∞

)
+Dj+1e

Dj+1

× α10+3(j−1)

⎛
⎝ m∑

i=j+1

‖ui(·, t)‖∞

⎞
⎠ . (A.31)

Using (A.27), (A.26), and the properties of class K functions
the proof is completed.

Proof of Lemma 5: The proof of this lemma employs
similar arguments to the proof of Lemma 4 with the difference
that one uses the ODEs in x for πi, i = 1, . . . ,m together
with Assumption 2. We again prove this lemma by induction.
We first prove (64). Using the fact that π1 satisfies the initial
value problem (A.1), (A.2), we get under Assumption 2 and the
definition of input-to-state stability (see, for example, [54]) that
there exist a class KL function β3 and a class K∞ function γ2
such that

|π1(x, t)| ≤β3 (|X(t)|, x) + γ2

(
sup

0≤y≤x

(
m∑
i=1

|wi(x, t)|
))

x ∈ [0, D1] (A.32)

and hence, we arrive at (64) with ρ̄1(s) = β3(s, 0) + γ2(s).
Assume next that for some j it holds that

‖πj(·, t)‖∞ ≤ ρ̄j
(
Ξ̄(t)

)
. (A.33)

Using the fact that πj+1 satisfies the initial value problem (A.3),
(A.4) we get under Assumption 2 that

|πj+1(x, t)| ≤ β3 (|πj(Dj)| , x−Dj)

+ γ2

⎛
⎝ sup

Dj≤y≤x

⎛
⎝ m∑

i=j+1

|wi(x, t)|

⎞
⎠
⎞
⎠

x ∈ [Dj , Dj+1] (A.34)

and hence, with (A.33) we arrive at ‖πj+1(·, t)‖∞ ≤
ρ̄j+1(Ξ̄(t)), with ρ̄j+1(s) = β3(ρ̄j , 0) + γ2(s).

Proof of Lemma 6: We prove first (67). Using the fact
that κi, i = 1, . . . ,m, are locally Lipschitz with κi(0) = 0,
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i = 1, . . . ,m, there exist class K∞ functions α∗
i , i = 1, . . . ,m,

such that

|κi(X)| ≤ α∗
i (|X |) , i = 1, . . . ,m (A.35)

for all X ∈ R
n. Hence, using (47)–(49) and relations (61)–(63)

from Lemma 4 we get estimate (67) with ρ(s) = s+∑m
i=1 α

∗
i (
∑m

j=1 ρj(s)). Similarly, using (53)–(55) we get
estimate (68) by employing Lemma 5 with ρ̄(s) = s+∑m

i=1 α
∗
i (
∑m

j=1 ρ̄j(s)).

APPENDIX B
VERIFICATION OF ASSUMPTIONS 1 AND 3 FOR THE

SYSTEM CONSIDERED IN SECTION V

The fact that system Ẋ = f(X,ω1, ω2), where

f(X,ω1, ω2) =

⎡
⎣ω2 cos(X3)
ω2 sin(X3)

ω1

⎤
⎦ (B.1)

satisfies Assumption 1 follows immediately by defining:

R(X) =
1

2

3∑
i=1

X2
i (B.2)

and readily verifying by employing Young’s inequality that

∂R(X)

∂X
f(X,ω1, ω2) =X1ω2 cos(X3) +X2ω2 sin(X3)

+X3ω1

≤R(X) +
1

2

(
ω2
1 + ω2

2

)
. (B.3)

Moreover, under (85) the dynamics of the nominal, delay-free
system are described by Ẋ = f(X,κ1(t,X), ω2), where

f (X,κ1(t,X), ω2) =

⎡
⎣ω2 cos(X3)
ω2 sin(X3)
g(X, t)

⎤
⎦ (B.4)

g(X, t) = −X3 −M(X)2 cos(t)

−M(X)Q(X)
(
1 + cos2(t)

)
. (B.5)

Therefore, by defining S2(X3) = (1/2)X2
3 we have that

∂S2(X3)

∂X3
g(X, t) ≤ 4

(
X4

1 +X4
2

)
(B.6)

where we employed Young’s inequality and the fact that
M2 +Q2 = X2

1 +X2
2 which follows from (87) and (88).

WithS1(X1, X2)=(1/4)(X4
1+X4

2)we get that (∂S1(X1, X2)/
∂X1)ω2 cos(X3) + (∂S1(X1, X2)/∂X2) ω2 sin(X3) ≤ 3S1+

(1/2)ω4
2. Hence, defining S = S1 + S2 for system Ẋ = f(X, ]

κ1(t,X), ω2) with (B.4) it follows that:

∂S(X)

∂X
f(X,κ1(t,X), ω2) ≤ 19S1 +

1

2
ω4
2

≤ 19S +
1

2
ω4
2 (B.7)

and hence, it follows that system Ẋ = f(X,κ1(t,X), ω2) with
(B.4) satisfies Assumption 3.
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