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a b s t r a c t

The problem of compensation of arbitrary large input delay for nonlinear systems was solved recently
with the introduction of the nonlinear predictor feedback. In this paper we solve the problem of
compensation of input delay for nonlinear systems with simultaneous input and state delays of arbitrary
length. The key challenge, in contrast to the case of only input delay, is that the input delay-free
system (on which the design and stability proof of the closed-loop system under predictor feedback are
based) is infinite-dimensional. We resolve this challenge and we design the predictor feedback law that
compensates the input delay. We prove global asymptotic stability of the closed-loop system using two
different techniques—one based on the construction of a Lyapunov functional, and one using estimates
on solutions. We present two examples, one of a nonlinear delay system in the feedforward form with
input delay, and one of a scalar, linear system with simultaneous input and state delays.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Nonlinear delay systems are ubiquitous in applications. A non-
exhaustive list includes traffic systems [1], additive manufactur-
ing [2], oil drilling [3], automotive engines [4] and catalysts [5,6],
energy systems, such as, for example, cooling systems [7], and net-
worked control systems [8].

Nonlinear systems with state delays represent an advanced re-
search area [9–15]. Numerous results also exist on the control and
analysis of nonlinear systems with input delays [16–27]. Few re-
sults exist on the compensation of input delay for systems with
simultaneous delay on the state, even for linear systems [28–30].
In [28] and [29] predictor feedback designs are developed, exploit-
ing the special structure of the linear systems under consideration
(systems in the feedback and feedforward form respectively), and
in [30] a predictor feedback design is presented for general linear
systems. Even fewer are the results dealing with the analysis and
control of nonlinear systems with simultaneous input and state
delays [31]. In [32] a predictor feedback law is developed for the
compensation of input delay for a special class of nonlinear delay
systems, namely, systems in the strict-feedback form with a state
delay on the virtual input.
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Weconsider nonlinear systemswith simultaneous longdiscrete
input delay and long (potentially distributed) state delay (the prob-
lem of the compensation of a distributed input delay is a different
problem that goes beyond the predictor feedback approach that
we present here, and therefore, we do not consider this problem in
the present paper). We design a nonlinear predictor feedback law
which employs, in a nominal feedback law that stabilizes the sys-
temwith only the state delay, the predictor of the state over a pre-
diction horizon equal to the length of the input delay, and hence,
it achieves compensation of the input delay (Section 2). (Predictor
feedback designs that also achieve compensation of the state de-
lay, by exploiting the special structure of the system under con-
sideration, are presented in [28] and in [32] for systems in the
strict-feedback formwith delays on the virtual inputs.) For nonlin-
ear delay systems that are forward complete in the absence of the
input delay we prove global asymptotic stability of the closed-loop
system with the aid of a Lyapunov functional that we construct,
based on the introduction of an infinite-dimensional backstepping
transformation of the actuator state (Section 3).

We also present an alternative proof of global asymptotic sta-
bility by constructing estimates on the solutions of the closed-loop
system and exploiting the facts that the input delay is compen-
sated after a finite time-interval and that the system in the ab-
sence of only the input delay is forward complete (Section 4). We
present a simulation example of a second-order nonlinear system
in the strict-feedforward form with both input and state delays
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(Section 5). We also illustrate the linear case through an example
of a scalar system with simultaneous input and state delays (Sec-
tion 5).
Notation. We use the common definition of class K , K∞ and KL
functions from [33]. For an n-vector, the norm |·| denotes the usual
Euclidean norm. We denote by C j(A;Ω) the class of functions,
taking values in Ω , that have continuous derivatives of order j in
A. We denote by L∞(A;Ω) the space of measurable and bounded
functions defined on A and taking values inΩ . For a given D1 ≥ 0
and a function φ ∈ L∞ ([−D1, 0]; Rn) we denote by ∥φ∥D1 its
supremum over [−D1, 0], i.e., ∥φ∥D1 = sups∈[−D1,0] |φ(s)|. For a
function X : [−D1,∞) → Rn, for all t ≥ 0, the function Xt is
defined by Xt(s) = X(t + s), for all s ∈ [−D1, 0]. For a function
U : [−D2,∞) → Rn, for all t ≥ 0, the function Ut is defined
by Ut(s) = U(t + s), for all s ∈ [−D2, 0]. For a function P :

[−D1 − D2,∞) → Rn, for all θ ≥ −D2, the function Pθ is defined
by Pθ (s) = P(θ + s), for all s ∈ [−D1, 0]. Any relation in which the
time t appears holds for all t ≥ 0, unless stated otherwise.

2. Problem formulation and controller design

We consider the following system

Ẋ(t) = f (Xt ,U(t − D2)) , (1)

for t ≥ 0, where f : C ([−D1, 0]; Rn) × R → Rn is a locally
Lipschitz mapping with f (0, 0) = 0, and D1,D2 ≥ 0. For designing
a stabilizing feedback law for (1) one needs two ingredients. First,
one needs a nominal feedback law that stabilizes system (1) when
there is no input delay, i.e., system

Ẋ(t) = f (Xt ,U(t)) . (2)

The second ingredient one needs is the D2-time units ahead pre-
dictor of X , that is, the signal P that satisfies P(s) = X(s + D2),
for all s ≥ −D1 − D2. The controller that stabilizes system (1) and
compensates the input delay is then given for t ≥ 0 by

U(t) = κ (Pt) , (3)

where

P(θ) = X(t)+

 θ

t−D2

f (Ps,U(s)) ds, for all t − D2 ≤ θ ≤ t, (4)

with initial condition given by

P(s) = X (s + D2) , for all − D1 − D2 ≤ s ≤ −D2 (5)

P(θ) = X(0)+

 θ

−D2

f (Pσ ,U(σ )) dσ , for all − D2 ≤ θ ≤ 0. (6)

The fact that P is the D2-time units ahead predictor of X can be
seen as follows. Performing the change of variables t = θ +D2, for
all t − D2 ≤ θ ≤ t in (1) and integrating starting at θ = t − D2 we
get that

X (θ + D2) = X(t)+

 θ

t−D2

f

Xs+D2 ,U(s)


ds. (7)

Defining P(θ) = X(θ + D2), for all t − D2 ≤ θ ≤ t and using the
fact that P satisfies (5), we conclude that the signal P defined by
(4), with initial conditions (5), (6) satisfies P(s) = X(s+D2), for all
s ≥ −D1 − D2.

3. Lyapunov-based stability analysis

Assumption 1. System (2) is forward complete.
Assumption 1 guarantees that for every initial condition X0 ∈

C ([−D1, 0]; Rn) and for every locally bounded input signal U the
corresponding solution is defined for all t ≥ 0.

Assumption 2. There exist a locally Lipschitz feedback law κ :

C ([−D1, 0]; Rn) → R with κ(0) = 0 and a class K∞ function
α such that for all φ ∈ C ([−D1, 0]; Rn)

|κ (φ) | ≤ α

∥φ∥D1


, (8)

a locally Lipschitz functional S : C ([−D1, 0]; Rn) → R+, and class
K∞ functions α1, α2, α3, α4 such that for all φ ∈ C ([−D1, 0]; Rn)
it holds that

α1 (|φ(0)|) ≤ S(φ) ≤ α2

∥φ∥D1


, (9)

and along the trajectories of the closed-loop system Ẋ(t) = f
(Xt , κ (Xt)+ ω(t)), S is continuously differentiable and satisfies for
all ω ∈ C ([0,+∞); R)

Ṡ(t) ≤ −α3 (S (Xt))+ α4 (|ω(t)|) , (10)

for all t ≥ 0.

Theorem 1. Consider system (1) together with the control law
(3)–(6). Under Assumptions 1 and 2 there exists a class KL func-
tion β such that for all initial conditions X0 ∈ C ([−D1, 0]; Rn)
and U0 ∈ C ([−D2, 0]; R), that are compatible with the feedback
law, that is, they satisfy U0(0) = κ(P0), there exists a unique so-
lution to the closed-loop system with X ∈ C1 ([0,+∞); Rn), U ∈

C ([0,+∞); R), and the following holds

sup
t−D1≤τ≤t

|X(τ )| + sup
t−D2≤θ≤t

|U(θ)|

≤ β


sup

−D1≤τ≤0
|X(τ )| + sup

−D2≤θ≤0
|U(θ)|, t


, (11)

for all t ≥ 0.

The proof of Theorem 1 is based on a series of technical lemmas
that are presented next.

Lemma 1. The infinite-dimensional backstepping transformation of
the actuator state defined by

W (θ) = U(θ)− κ (Pθ ) , t − D2 ≤ θ ≤ t, (12)

together with the predictor feedback law (3)–(6) transform the
system (1) to the ‘‘target system’’ given by

Ẋ(t) = f (Xt , κ (Xt)+ W (t − D2)) (13)
W (t) = 0, ∀t ≥ 0. (14)

Proof. Using (1) and the fact that Pt−D2 = Xt we get (13). With (3)
we get (14).

Lemma 2. The inverse of the infinite-dimensional backstepping
transformation defined in (12) is given by

U(θ) = W (θ)+ κ (Πθ ) , t − D2 ≤ θ ≤ t, (15)

where

Π(θ) = X(t)+

 θ

t−D2

f (Πs, κ (Πs)+ W (s)) ds,

for all t − D2 ≤ θ ≤ t, (16)
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with initial condition given by

Π(s) = X (s + D2) , for all − D1 − D2 ≤ s ≤ −D2 (17)

Π(θ) = X(0)+

 θ

−D2

f (Πσ , κ (Πσ )+ W (σ )) dσ ,

for all − D2 ≤ θ ≤ 0. (18)

Proof. By direct verification, noting also that Πθ = Pθ for all t −

D2 ≤ θ ≤ t , whereΠ(θ) is driven by the transformed inputW (θ),
whereas P(θ) is driven by the input U(θ).

Lemma 3. There exists a class KL function β1 such that the follow-
ing holds

sup
t−D1≤τ≤t

|X(τ )| + sup
t−D2≤θ≤t

|W (θ)|

≤ β1


sup

−D1≤τ≤0
|X(τ )| + sup

−D2≤θ≤0
|W (θ)| , t


, (19)

for all t ≥ 0.

Proof. Consider the following Lyapunov functional for the ‘‘target
system’’ given in (13)–(14)

V (t) = S (t)+ k
 L(t)

0

α4 (r)
r

dr, (20)

where

L(t) = sup
t−D2≤θ≤t

ec(θ−t+D2)W (θ)


= lim
n→∞

 t

t−D2

e2nc(θ−t+D2)W (θ)2ndθ
 1

2n

, (21)

with an arbitrary c > 0, satisfies

L(t) ≤ ecD2 sup
t−D2≤θ≤t

|W (θ)| (22)

L(t) ≥ sup
t−D2≤θ≤t

|W (θ)| . (23)

Taking the time derivative of L(t) and using (14) we get

L̇(t) = lim
n→∞

1
2n

 t

t−D2

e2nc(θ−t+D2)W (θ)2ndθ
 1

2n −1

×


−W (t − D2)

2n
− 2nc

 t

t−D2

e2nc(θ−t+D2)W (θ)2ndθ


, (24)

and hence, L̇(t) ≤ −cL(t). With this inequality and (10), taking the
derivative of (20) we get

V̇ (t) ≤ −α3 (S (Xt))+ α4 (|W (t − D2)|)− kcα4 (L(t)) . (25)

With the help of (23) and choosing k =
2
c we get V̇ (t) ≤ −α3

(S (Xt)) − α4 (L(t)), and hence, with definition (20) we conclude
that there exists a classK function γ1 such that V̇ (t) ≤ −γ1 (V (t)).
Using the comparison principle and Lemma 4.4 in [33], there exists
a class KL function β1 such that

V (t) ≤ β1 (V (0), t) . (26)

Using (9), the definition of V (t) in (20) and the properties of class
K functions we arrive at

|X(t)| + L(t) ≤ β2


sup

−D1≤τ≤0
|X(τ )| + L(0), t


(27)
for some class KL function β2. Using relations (22) and (23) we
get that there exists a class KL function β3 such that

|X(t)| + sup
t−D2≤θ≤t

|W (θ)|

≤ β3


sup

−D1≤τ≤0
|X(τ )| + sup

−D2≤θ≤0
|W (θ)|, t


, (28)

for all t ≥ 0. Therefore,

sup
t−D1≤τ≤t

|X(τ )|

≤ β3


sup

−D1≤τ≤0
|X(τ )| + sup

−D2≤θ≤0
|W (θ)|, t − D1


,

for all t ≥ D1. (29)

With the fact that for all t ≤ D1, supt−D1≤τ≤t |X(τ )| ≤ sup−D1≤τ≤0
|X(τ )| + sup0≤τ≤D1

|X(τ )| and using (28) we get that

sup
t−D1≤τ≤t

|X(τ )| ≤ α5


sup

−D1≤τ≤0
|X(τ )| + sup

−D2≤θ≤0
|W (θ)|


,

for all t ≤ D1, (30)

where the class K∞ function α5 is defined as α5(s) = β3(s, 0)+ s.
Combining (29) and (30) we arrive at

sup
t−D1≤τ≤t

|X(τ )| ≤ β4


sup

−D1≤τ≤0
|X(τ )| + sup

−D2≤θ≤0
|W (θ)|, t


,

for all t ≥ 0, (31)

where β4(s, t) = α5(s)e−max{0,t−D1} + β3 (s,max{0, t − D1}) is of
class KL. Using (28) and (31) the lemma is proved.

Lemma 4. There exists a classK∞ functionα6 such that the following
holds for all t ≥ 0

sup
θ−D1≤τ≤θ

|P(τ )| ≤ α6


sup

t−D1≤τ≤t
|X(τ )| + sup

t−D2≤τ≤t
|U(τ )|


,

for all t − D2 ≤ θ ≤ t. (32)

Proof. Defining the state Y t(s) = X(t + s), for all t ≥ 0, which
is parametrized in t and viewing s as the running parameter we
get using (1) that Y t(s) satisfies the following delay differential
equation in s

Y t(s)′ = f

Y t

s, V t(s − D2)

, for all 0 ≤ s ≤ D2, (33)

with initial condition Y t(τ ) = X(t+τ), for all−D1 ≤ τ ≤ 0,where
V t(s − D2) = U(t + s − D2). Under Assumption 1 and [34] we get
that there exist a class K function ψ and a continuous positive-
valued monotonically increasing function ν such that

sup
s−D1≤τ≤s

|Y t(τ )|

≤ ν(D2)ψ


sup

−D1≤τ≤0
|Y t(τ )| + sup

−D2≤τ≤s−D2

|V t(τ )|


,

for all 0 ≤ s ≤ D2, (34)

and hence, with definitions Y t(s) = X(t + s) and V t(s − D2) =

U(t + s − D2), we arrive at

sup
t−D1+s≤τ≤t+s

|X(τ )|

≤ ν(D2)ψ


sup

t−D1≤τ≤t
|X(τ )| + sup

t−D2≤τ≤t+s−D2

|U(τ )|

,

for all 0 ≤ s ≤ D2. (35)
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With the fact that P(t + τ −D2) = X(t + τ), for all −D1 ≤ τ ≤ D2
we get from (35) that

sup
t−D1−D2+s≤τ≤t+s−D2

|P(τ )|

≤ ν(D2)ψ


sup

t−D1≤τ≤t
|X(τ )| + sup

t−D2≤τ≤t
|U(τ )|


,

for all 0 ≤ s ≤ D2. (36)

Therefore, by setting θ = s + t − D2, for all t − D2 ≤ θ ≤ t we get
estimate (32).

Lemma 5. There exists a classK∞ functionα7 such that the following
holds for all t ≥ 0

sup
θ−D1≤τ≤θ

|Π(τ )| ≤ α7


sup

t−D1≤τ≤t
|X(τ )| + sup

t−D2≤τ≤t
|W (τ )|


,

for all t − D2 ≤ θ ≤ t, (37)

whereΠ is defined in Lemma 2.

Proof. Similarly to the proof of Lemma 4 we get using (13) that
Y t(s) satisfies the following delay differential equation in s for all
t ≥ 0

Y t(s)′ = f

Y t

s, κ

Y t

s

+ V̂ t(s − D2)


, for all 0 ≤ s ≤ D2, (38)

where V̂ t(s − D2) = W (t + s − D2). Using (10) and Corollary IV.3
in [35] one can conclude that there exists a class KL function β5
such that

S

Y t

s


≤ β5

S

Y t

0

, s

+ 2

 s

0
α4

V̂ t(τ − D2)

 dτ ,
for all 0 ≤ s ≤ D2. (39)

Using (9) we obtain for all 0 ≤ s ≤ D2,

α1
Y t(s)

 ≤ β5


α2


sup

−D1≤τ≤0

Y t(τ )
 , 0

+ 2D2α4


sup

0≤τ≤D2

V̂ t(τ − D2)

 , (40)

and hence, we arrive atY t(s)
 ≤ α8


sup

−D1≤τ≤0
|Y t(τ )| + sup

−D2≤θ≤0
|V̂ t(θ)|


,

for all 0 ≤ s ≤ D2, (41)

for some class K∞ function α8. Using the fact that for all 0 ≤

s ≤ D2 it holds that sups−D1≤τ≤s

Y t(τ )
 ≤ sup−D1≤τ≤D2

Y t(τ )
 ≤

sup−D1≤τ≤0

Y t(τ )
+sup0≤τ≤D2

Y t(τ )
 and relation (41)weobtain

sup
s−D1≤τ≤s

Y t(τ )
 ≤ α9


sup

−D1≤τ≤0
|Y t(τ )| + sup

−D2≤θ≤0
|V̂ t(θ)|


,

for all 0 ≤ s ≤ D2, (42)

where α9(s) = α8(s) + s. Using definitions Y t(τ ) = X(t + τ) and
V̂ t(τ − D2) = W (t + τ − D2)we get

sup
t+s−D1≤τ≤t+s

|X(τ )|

≤ α9


sup

t−D1≤τ≤t
|X(τ )| + sup

t−D2≤θ≤t
|W (θ)|


,

for all 0 ≤ s ≤ D2. (43)
SinceΠ(τ − D2) = X(τ ), for all τ ≥ −D1 we get that

sup
t+s−D1−D2≤τ≤t+s−D2

|Π(τ )|

≤ α9


sup

t−D1≤τ≤t
|X(τ )| + sup

t−D2≤θ≤t
|W (θ)|


,

for all 0 ≤ s ≤ D2, (44)

and hence, by setting θ = s + t − D2, for all t − D2 ≤ θ ≤ t the
lemma is proved.

Lemma 6. There exist class K∞ functions α10, α11 such that the
following holds

sup
t−D1≤θ≤t

|X(θ)| + sup
t−D2≤θ≤t

|U(θ)|

≤ α10


sup

t−D1≤θ≤t
|X(θ)| + sup

t−D2≤θ≤t
|W (θ)|


(45)

sup
t−D1≤θ≤t

|X(θ)| + sup
t−D2≤θ≤t

|W (θ)|

≤ α11


sup

t−D1≤θ≤t
|X(θ)| + sup

t−D2≤θ≤t
|U(θ)|


, (46)

for all t ≥ 0, where W is defined in Lemma 1.

Proof. Under Assumption 2 (relation (8)) we get that

|κ (Pθ ) | ≤ α


sup

θ−D1≤τ≤θ
|P(τ )|


, for all t − D2 ≤ θ ≤ t. (47)

Using (8) in Assumption 2 and (15) we get

|U(θ)| ≤ |W (θ)| + α


sup

θ−D1≤τ≤θ
|Π(τ )|


,

for all t − D2 ≤ θ ≤ t, (48)

and hence, since the right-hand side of estimate (37) does not
depend on θ we get (45) with α10(s) = s+ α (α7(s)). Analogously,
combining (47), (12) and (32) we get (46) with α11(s) = s +

α (α6(s)).

Proof of Theorem 1. Using (19) we get (11) with β(s, t) = α10
(β1 (α11(s), t)).With Theorem3.2 in [36] and from (1), the fact that
U ∈ C ([−D2, 0]; R) guarantees the existence and uniqueness of
X ∈ C1

[0,D2), and the system (13), (14) guarantees the existence
and uniqueness of X ∈ C1(D2,∞). The compatibility condition of
the feedback law guarantees that X is continuously differentiable
also at t = D2. Since U(t) = κ(Pt) = κ


Xt+D2


, the facts that X ∈

C1
[0,∞) and Assumption 2 (Lipschitzness of κ), guarantee that U

is continuous on [0,∞) for D2 ≥ D1. When D2 ≤ D1, the facts that
X ∈ C1

[0,∞) and that X0 ∈ C ([−D1, 0]; R), and Assumption 2
(Lipschitzness of κ), guarantee thatU is continuous on [0,∞). �

4. Stability analysis using solutions’ estimates

Assumption 3. There exists a locally Lipschitz feedback law κ :

C ([−D1, 0]; Rn) → R with κ(0) = 0, that renders system (2)
globally asymptotically stable, in the sense that there exists a class
KL function β̂ such that for all X0 ∈ C ([−D1, 0]; Rn) the solution
X(t) of (2) with U(t) = κ (Xt) satisfies

|X(t)| ≤ β̂


sup

−D1≤θ≤0
|X(θ)|, t


, (49)

for all t ≥ 0.
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We are now ready to state the following result.

Theorem 2. Consider the plant (1) together with the control law
(3)–(6). Under Assumptions 1 and 3 there exists a class KL function
β∗ such that for all initial conditions X0 ∈ C ([−D1, 0]; Rn) and
U0 ∈ C ([−D2, 0]; R), that are compatible with the feedback law,
that is, they satisfy U0(0) = κ(P0), there exists a unique solution
to the closed-loop system with X ∈ C1 ([0,+∞); Rn), U ∈ C
([0,+∞); R), and the following holds

sup
t−D1≤θ≤t

|X(θ)| + sup
t−D2≤θ≤t

|U(θ)|

≤ β∗


sup

−D1≤θ≤0
|X(θ)| + sup

−D2≤θ≤0
|U(θ)|, t


, (50)

for all t ≥ 0.

Proof. Under Assumption 1 and [34] we get that there exist a class
K function ψ and a continuous positive-valued monotonically
increasing function ν such that

sup
t−D1≤θ≤t

|X(θ)|

≤ ν(t)ψ


sup
−D1≤θ≤0

|X(θ)| + sup
−D2≤τ≤t−D2

|U(τ )|

,

for all t ≥ 0, (51)

and hence,

sup
t−D1≤θ≤t

|X(θ)|

≤ ν(D2)ψ


sup

−D1≤θ≤0
|X(θ)| + sup

−D2≤θ≤0
|U(θ)|


,

for all t ≤ D2. (52)

Under Assumption 3 and using the fact that U(t) = κ (Pt) =

κ

Xt+D2


, for all t ≥ 0,we get that there exists a classKL function

β̂ such that

|X(t)| ≤ β̂


sup

D2−D1≤θ≤D2

|X(θ)|, t − D2


, for all t ≥ D2. (53)

Therefore,

sup
t−D1≤θ≤t

|X(θ)| ≤ β̂


sup

D2−D1≤θ≤D2

|X(θ)|, t − D2 − D1


,

for all t ≥ D2 + D1. (54)

We estimate next supt−D1≤θ≤t |X(θ)|, for all D2 ≤ t ≤ D1 + D2. It
holds that

sup
t−D1≤θ≤t

|X(θ)| ≤ sup
D2−D1≤θ≤D2

|X(θ)| + sup
D2≤θ≤D1+D2

|X(θ)|,

for all D2 ≤ t ≤ D1 + D2, (55)

and hence, using (52) and (53) we get that

sup
t−D1≤θ≤t

|X(θ)| ≤ α̂1


sup

−D1≤θ≤0
|X(θ)| + sup

−D2≤θ≤0
|U(θ)|


,

for all t ≤ D1 + D2, (56)

where the class K∞ function α̂1 is defined as α̂1(s) = s + ν(D2)

ψ(s) + β̂ (ν(D2)ψ(s), 0) and we also used the fact that α̂1(s)
≥ ν(D2)ψ(s). Combining (52) and (54) we get that

sup
t−D1≤θ≤t

|X(θ)|

≤ β̂1


sup

−D1≤θ≤0
|X(θ)| + sup

−D2≤θ≤0
|U(θ)|, t − D1 − D2


,

for all t ≥ D1 + D2, (57)

where the class KL function β̂1 is defined as β̂1(s, t) = β̂ (ν(D2)
ψ (s) , t). Therefore, using (56), (57) we get that

sup
t−D1≤θ≤t

|X(θ)| ≤ β̂2


sup

−D1≤θ≤0
|X(θ)| + sup

−D2≤θ≤0
|U(θ)|, t


,

for all t ≥ 0, (58)

where β̂2(s, t) = α̂1(s)e−max{0,t−D1−D2} + β̂1 (s,max{0, t − D1
−D2}) is a class KL function.

We estimate next supt−D2≤θ≤t |U(θ)|. Using (8), (56), (57), and
the fact that U(t) = κ (Pt) = κ


Xt+D2


we get that

|U(t)| ≤ α


β̂3


sup

−D1≤θ≤0
|X(θ)| + sup

−D2≤θ≤0
|U(θ)|, t


,

for all t ≥ 0, (59)

where β̂3(s, t) = α̂1(s)e−max{0,t−D1} + β̂1 (s,max{0, t − D1}) is a
class KL function. Therefore,

sup
t−D2≤θ≤t

|U(θ)|

≤ β̂4


sup

−D1≤θ≤0
|X(θ)| + sup

−D2≤θ≤0
|U(θ)|, t − D2


,

for all t ≥ D2, (60)

where β̂4(s, t) = α

β̂3 (s, t)


is a class KL function. Since for all

t ≤ D2

sup
t−D2≤θ≤t

|U(θ)| ≤ sup
−D2≤θ≤0

|U(θ)| + sup
0≤θ≤D2

|U(θ)|, (61)

we get from (59) that

sup
t−D2≤θ≤t

|U(θ)| ≤ α̂2


sup

−D1≤θ≤0
|X(θ)| + sup

−D2≤θ≤0
|U(θ)|


,

for all t ≤ D2, (62)

where the class K∞ function α̂2 is defined as α̂2(s) = s +

α

β̂3 (s, 0)


. Combining (60), (62) we arrive at

sup
t−D2≤θ≤t

|U(θ)| ≤ β̂5


sup

−D1≤θ≤0
|X(θ)| + sup

−D2≤θ≤0
|U(θ)|, t


,

for all t ≥ 0, (63)

where β̂5(s, t) = α̂2(s)e−max{0,t−D2} + β̂4 (s,max{0, t − D2}) is a
class KL function. Combining estimates (58) and (63) we get (50)
with

β∗(s, t) = β̂2(s, t)+ β̂5(s, t). (64)

The rest of the result follows as in the proof of Theorem 1.

5. Examples

Example 1. We consider the following system

Ẋ1(t) = X2(t − D1)+ X2(t)2 (65)

Ẋ2(t) = U(t − D2). (66)
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For the case D2 = 0 a control law that achieves global asymptotic
stabilization is constructed in [10] as

U(t) = −2X2(t)− (1 + X2(t))

×


X1(t)+ X2(t)+

1
2
X2(t)2 +

 t

t−D1

X2(θ)dθ

. (67)

Using Theorem 2.2 in [37] one can conclude that estimate (49)
holds, and hence, Theorem 2 can be applied to system (65), (66)
with the nominal control law (67). The predictor feedback law that
globally asymptotically stabilizes (65), (66) is given by

U(t) = −2P2(t)− (1 + P2(t))

×


P1(t)+ P2(t)+

1
2
P2(t)2 +

 t

t−D1

P2(θ)dθ

, (68)

where the predictors are given explicitly in terms of Xt and Ut as

P1(t) = X1(t)+

 t

t−D2


P2 (θ − D1)+ P2(θ)2


dθ (69)

P2(t) = X2(t)+

 t

t−D2

U(θ)dθ, (70)

with initial conditions

P1(θ) = X1(0)+

 θ

−D2


P2 (s − D1)+ P2(s)2


ds,

for all − D2 ≤ θ ≤ 0 (71)

P2(θ) = X2(0)+

 θ

−D2

U(s)ds, for all − D2 ≤ θ ≤ 0 (72)

P2(s) = X2(s + D2), for all − D1 − D2 ≤ s ≤ −D2. (73)

We choose D1 = 1 and D2 = 2. The initial conditions for the
system and the actuator are chosen as X1(0) = 1, X2(s) = 0.5,
for all −1 ≤ s ≤ 0, and U(θ) = 0, for all −2 ≤ θ ≤ 0,
respectively. In Fig. 1we show the response of the system (65)–(66)
with the predictor feedback law (68)–(73) (solid) and the nominal,
uncompensated controller (67) (dashed). In Fig. 2 we show the
control effort. One can observe that the predictor feedback law
globally asymptotically stabilizes system (65)–(66), whereas the
closed-loop system, under the nominal, uncompensated control
design is unstable.

Example 2. Consider the following scalar, linear system [38]

Ẋ(t) = X(t − 1)+ U(t − D2), (74)

where D2 > 0 can be arbitrary long. System (74) is a special case
of system (1) with f (Xt ,U(t − D2)) = X(t − 1) + U(t − D2). A
nominal control law that stabilizes system (74) when D2 = 0 is

U(t) = −X(t − 1)− X(t). (75)

For D2 > 0 the predictor feedback law is

U(t) = −P(t − 1)− P(t), (76)

where

P(t) = X(t)+

 t

t−D2

(P(s − 1)+ U(s)) ds, (77)

with initial condition

P(θ) = X(0)+

 θ

−D2

(P(s − 1)+ U(s)) ds,

for all − D2 ≤ θ ≤ 0 (78)
P(s) = X(s + D2), for all − 1 − D2 ≤ s ≤ −D2. (79)
Fig. 1. Solid line: The response of the system (65)–(66) with the predictor feedback
law (68)–(73) for initial conditions X1(0) = 1, X2(s) = 0.5, for all −1 ≤ s ≤ 0, and
U(θ) = 0, for all −2 ≤ θ ≤ 0. Dashed line: The response of the system (65)–(66)
with the nominal feedback law (67) for the same initial conditions.

Fig. 2. Solid line: The control effort (68) for initial conditions X1(0) = 1, X2(s) =

0.5, for all −1 ≤ s ≤ 0, and U(θ) = 0, for all −2 ≤ θ ≤ 0. Dashed line: The control
effort (67) for the same initial conditions.

Using the fact that P(s) = X(s + D2), for all s ≥ −1 − D2 (see
Section 2) one can conclude that the control law (76)–(79) is the
same with the one derived in [30] as an application of the general
methodology developed in [30] for the case of linear systems.
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6. Conclusions

We present a predictor feedback design for nonlinear systems
with simultaneous input and state delays. We prove global
asymptotic stability of the closed-loop system with the aid of a
Lyapunov functional that we construct, or by using estimates on
closed-loop solutions.We illustrate our designwith two examples.

This paper opens an opportunity to consider problems of
compensation of input delay in other, more complex nonlinear
infinite-dimensional systems than systems with internal delays.
For example, one can consider the problem of compensation of
input delay for a wave PDE with nonlinearities of superlinear
growth on the uncontrolled boundary that is considered in Section
IV in [39].
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