
                                                     PADECOT 
 

                     PArtial Differential Equation model-based COntrol of Traffic flow  
 
 

Tra�c flow control via PDEs:
Delay-compensating and

coordinated designs

Nikos Bekiaris-Liberis

Technical University of Crete, Greece

CDC Workshop, Miami Beach, 16/12/2018



                                                     PADECOT 
 

                     PArtial Differential Equation model-based COntrol of Traffic flow  
 
 

Acknowledgements

                                                     PADECOT 
 

                     PArtial Differential Equation model-based COntrol of Traffic flow  
 
 

Marie Sklodowska-Curie grant agreement No 747898



                                                     PADECOT 
 

                     PArtial Differential Equation model-based COntrol of Traffic flow  
 
 

Motivation
Real-time tra�c control reduces costs/improves quality of daily transport via

i. Tra�c congestion mitigation and travel times minimization
ii. Fuel consumption and emissions decrease
iii. Safety and comfort improvement

Tra�c evolves/may be described in continuous time and space.

Develop control/estimation designs for PDEs & PDEs-ODEs from tra�c:

• Explicit (e.g., appealing to implementation)

• Boundary actuation/sensing (e.g., minimum actuator/sensor requirements)

• E�cient use of available actuators/sensors (e.g., fault-tolerant)

• With stability guarantees (e.g., quantify performance)
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Outline

• Motivation

• ACC design

• Predictor feedback

• Tra�c flow control at distant bottlenecks
I Quasilinear transport PDE-ODE interconnection

• Coordinated tra�c flow control
I Viscous Hamilton-Jacobi PDEs

• Current & future steps
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ACC design
(w/ Claudio Roncoli & Markos Papageorgiou)
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Motivation

• Delays in tra�c with ACC/CACC vehicles
I Actuator delay (engine response, throttle actuator, brake actuator,

computational delay, ...)
I Sensor delay (radar or lidar filter, wireless communication, sampling, wheel

speed sensor, ...)
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Motivation

• Delays in tra�c with ACC/CACC vehicles
I Actuator delay (engine response, throttle actuator, brake actuator,

computational delay, ...)
I Sensor delay (radar or lidar filter, wireless communication, sampling, wheel

speed sensor, ...)

• Negative e↵ects
I Decrease in capacity
I String instability (comfort, safety, fuel consumption, tracking performance ...)
I Individual vehicle instability (comfort, safety, fuel consumption, tracking

performance ...)

• Goal: Compensate the delay to
I Improve throughput
I Improve string stability
I Improve vehicle’s stability
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Measurements & Parameters

• relative spacing si
vehicle’s speed vi
vehicle’s control variable Ui (e.g., desired acceleration).
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Measurements & Parameters

• relative spacing si
vehicle’s speed vi
vehicle’s control variable Ui (e.g., desired acceleration).

• Combined delay D.
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Vehicle Model

. . .. . .
Figure: Homogenous platoon of vehicles in a single lane.

Vehicle’s i dynamics

ṡi(t) = vi�1

(t)� vi(t)

v̇i(t) = Ui(t�D),

where

si = xi�1

� xi � l,

xj position
l length
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Simulation (Set-up)
D = 0.4, h = 2

⇡
Ui(t) =

↵
h si(t)� ↵vi(t) + b (vi�1

(t)� vi(t)), a = 1, b = 0.8.
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Figure: Acceleration maneuver of the leader with ÿL(t) = aL(t).
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Simulation (Uncompensated)
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Figure: Spacing of four vehicles following a leader under the uncompensated ACC
strategy.
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Simulation (Uncompensated)
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Figure: Speed (left) and acceleration (right) of four vehicles following a leader under the
uncompensated ACC strategy.
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Simulation (Predictor-Based)
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Figure: Spacing of four vehicles following a leader under the predictor-based ACC
strategy.
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Simulation (Predictor-Based)
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Figure: Speed (left) and acceleration (right) of four vehicles following a leader under the
predictor-based ACC strategy.



                                                     PADECOT 
 

                     PArtial Differential Equation model-based COntrol of Traffic flow  
 
 

Simulation (Comparison)

Table: Performance indices.

Performance index Percentage improvement

J
fuel

28
J
comfort,1 90

J
comfort,2 20

J
comfort,3 66
J
safety

53
J
tracking,1 83

J
tracking,2 51
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Predictor Feedback
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LTI Systems with Constant Delay

Ẋ(t) = AX(t) +BU (t�D)

A - possibly unstable; D - arbitrarily large
Assume: (A,B) controllable and matrix K found such that A+BK is Hurwitz.
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LTI Systems with Constant Delay

Ẋ(t) = AX(t) +BU (t�D)

Predictor feedback

U(t) = K


eADX(t) +

Z t

t�D

eA(t�✓)BU(✓)d✓

�

| {z }
X(t+D)=P (t)
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Predictor-Based ACC Design

Ui(t) = K

✓
e�DXi(t) +

Z t

t�D

e�(t�✓)BUi(✓)d✓

◆
,

with

� =

2

4
0 0 �1
1

h 0 �1
0 0 0

3

5

K =
⇥
k
1

k
2

k
3

⇤

Xi =

2

4
si
�i

vi

3

5

B =

2

4
0
0
1

3

5 ,

where

�̇i(t) =
1

h
si(t)� vi(t), i = 1, . . . , N
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Theorem & Implications
9 K s.t. each individual vehicle is stable 8 D > 0 , and the platoon is p 2 [1,1]
string stable 8 D < h .
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Theorem & Implications
9 K s.t. each individual vehicle is stable 8 D > 0 , and the platoon is p 2 [1,1]
string stable 8 D < h .

Implications:

• stability

• zero steady-state spacing error

• string stability

• non-negative impulse response
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Nonlinear Predictor Feedback
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Nonlinear Systems with Constant Delay

Ẋ(t) = f (X(t), U(t�D))

Assumptions:

Ẋ = f (X, (X)) , g.a.s.

Ẋ = f (X,U) , forward complete
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Nonlinear Systems with Constant Delay

Ẋ(t) = f (X(t), U(t�D))

Assumptions

Ẋ = f (X, (X)) , g.a.s.

Ẋ = f (X,U) , forward complete

Predictor-feedback controller (predictor given implicitly in general):

U(t) =  (P (t))

P (✓) = X(t) +

Z ✓

t�D

f (P (⌧), U(⌧)) d⌧, t�D  ✓  t
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Tra�c Flow Control at Distant Bottlenecks
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Tra�c Flow Control at Distant Bottlenecks

Figure: A highway stretch with one actuated on-ramp and a distant bottleneck.

U

d u
X

�

Challenge: Long distance (delay) until vehicles (control input) reach the
bottleneck area (plant)
Goal: Compensate delay and regulate the bottleneck flow
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Tra�c Flow Control at Distant Bottlenecks

u

0 0.2 0.4 0.6 0.8 1

q

0

0.05

0.1

0.15

0.2

0.25

Figure: Fundamental diagrams of mainstream (black) and bottleneck areas (blue).
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Tra�c Flow Control at Distant Bottlenecks
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Figure: Fundamental diagrams of mainstream (black) and bottleneck areas (blue).

Model

Ẋ(t) =
1

�

✓
u(0, t) (1� u(0, t))� 1

2
X(t) (1�X(t))

◆

ut(x, t) = (1� 2u(x, t))ux(x, t)

q (u(1, t)) = d(t) + r(t).
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Simulation of the Tra�c Flow Control Model
Goal: Regulate bottleneck density to an uncongested equilibrium, say X⇤.
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Figure: Uncompensated (dashed) and predictor-feedback law (solid) with P nominal law.
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Quasilinear Transport PDE-ODE Interconnection
(w/ Miroslav Krstic)



                                                     PADECOT 
 

                     PArtial Differential Equation model-based COntrol of Traffic flow  
 
 

Quasilinear Transport PDE-ODE Interconnection

Ẋ(t) = f (X(t), u(0, t))

ut(x, t) = v (u(x, t))ux(x, t)

u(1, t) = U(t).
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Quasilinear Transport PDE-ODE Interconnection

Ẋ(t) = f (X(t), u(0, t))

ut(x, t) = v (u(x, t))ux(x, t)

u(1, t) = U(t).

Assumptions:

Ẋ = f (X, (X) + !) , ISS

Ẋ = f (X,U) , forward complete

v 2 C2 (R;R
+

)
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Quasilinear Transport PDE-ODE Interconnection

Ẋ(t) = f (X(t), u(0, t))

ut(x, t) = v (u(x, t))ux(x, t)

u(1, t) = U(t).

Challenge:

p(1, t) = value of the state at the time when control applied at t reaches the plant

= X

 
t+

1

v (u(1, t))| {z }
prediction
horizon

!
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Quasilinear Transport PDE-ODE Interconnection

Ẋ(t) = f (X(t), u(0, t))

ut(x, t) = v (u(x, t))ux(x, t)

u(1, t) = U(t).

Challenge:

p(1, t) = value of the state at the time when control applied at t reaches the plant

= X

 
t+

1

v (u(1, t))| {z }
prediction
horizon

!

PDE predictor

p (x, t) = X(t) +

Z x

0

f (p(y, t), u(y, t))� (u(y, t), uy(y, t), y) dy,

x 2 [0, 1]

� (u(x, t), ux(x, t), x) =
1

v (u(x, t))
� xv0 (u(x, t))ux(x, t)

v (u(x, t))2
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PDE Predictor Feedback

U(t) =  (p (1, t))= 

✓
X

✓
t+

1

v (u(1, t))

◆◆

p (x, t) = X(t) +

Z x

0

f (p(y, t), u(y, t))� (u(y, t), uy(y, t), y) dy,

x 2 [0, 1]

� (u(x, t), ux(x, t), x) =
1

v (u(x, t))
� xv0 (u(x, t))ux(x, t)

v (u(x, t))2

Constant transport speed

U(t) =  (p (1, t))= 

✓
X

✓
t+

1

v

◆◆

p (x, t) = X(t) +
1

v

Z x

0

f (p(y, t), u(y, t)) dy, x 2 [0, 1]
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Theorem
9 � > 0 and � 2 KL s.t. 8 X

0

2 Rn and u
0

2 C1 [0, 1] satisfying compatibility
and

|X(0)|+ ku(0)kC1 < �,

then

|X(t)|+ ku(t)kC1  � (|X(0)|+ ku(0)kC1 , t) , t � 0
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Coordinated Tra�c Flow Control
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Motivation
Coordinate available boundary actuators/sensors (e.g., via RM/VSL/VACS)
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Motivation
Coordinate available boundary actuators/sensors (e.g., via RM/VSL/VACS)

First-order and accounts of drivers’ look-ahead ability
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Motivation
Coordinate available boundary actuators/sensors (e.g., via RM/VSL/VACS)

First-order and accounts of drivers’ look-ahead ability.

Consider

⇢t(x, t) + (⇢(x, t)V (⇢(x, t))� ✏⇢x(x, t))x = 0

⇢(0, t) = �U
0

(t)

⇢ (1, t) = �U
1

(t),

with Greenshield’s FD

V (⇢) = a (b� ⇢)
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Motivation
Coordinate available boundary actuators/sensors (e.g., via RM/VSL/VACS)

First-order and accounts of drivers’ look-ahead ability.

Consider

⇢t(x, t) + (⇢(x, t)V (⇢(x, t))� ✏⇢x(x, t))x = 0

⇢(0, t) = �U
0

(t)

⇢ (1, t) = �U
1

(t),

with Greenshield’s FD

V (⇢) = a (b� ⇢)

Figure: Left: LWR model. Middle: LWR with look ahead. Right: PW model.

Kontorinaki et al., “First-order tra�c flow models incorporating capacity drop: Overview and real-data validation,” TR-B, 106: 52–75, 2017.
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Motivation
Coordinate available boundary actuators/sensors (e.g., via RM/VSL/VACS)

First-order and accounts of drivers’ look-ahead ability.

Consider

⇢t(x, t) + (⇢(x, t)V (⇢(x, t))� ✏⇢x(x, t))x = 0

⇢(0, t) = �U
0

(t)

⇢ (1, t) = �U
1

(t),

with Greenshield’s FD

V (⇢) = a (b� ⇢)

Use alternative representation of “label” variable cumulative number of vehicles

u(x, t) =

Z
1

x

⇢(y, t)dy +

Z t

0

Q (⇢(1, s), ⇢x(1, s)) ds, Q (⇢, ⇢x)=⇢V (⇢)� ✏⇢x.
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Viscous Hamilton-Jacobi PDEs
(w/ Rafael Vazquez)
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Nonlinear Viscous Hamilton-Jacobi PDE

ut(x, t) = ✏uxx(x, t)� aux(x, t) (b+ ux(x, t))

ux(0, t) = U
0

(t)

ux (1, t) = U
1

(t),

✏ > 0, a, b 2 R (and a 6= 0), U
0

, U
1

control inputs
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Nonlinear Viscous Hamilton-Jacobi PDE

ut(x, t) = ✏uxx(x, t)� aux(x, t) (b+ ux(x, t))

ux(0, t) = U
0

(t)

ux (1, t) = U
1

(t),

✏ > 0, a, b 2 R (and a 6= 0), U
0

, U
1

control inputs

Solve the problems of bilateral

• Trajectory generation
Find U

r
0, U

r
1 generating u

r(x, t) s.t. ur(x0, t) = y

r
1(t), u

r
x

(x0, t) = y

r
2(t)
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Nonlinear Viscous Hamilton-Jacobi PDE

ut(x, t) = ✏uxx(x, t)� aux(x, t) (b+ ux(x, t))

ux(0, t) = U
0

(t)

ux (1, t) = U
1

(t),

✏ > 0, a, b 2 R (and a 6= 0), U
0

, U
1

control inputs

Solve the problems of bilateral

• Trajectory generation
Find U

r
0, U

r
1 generating u

r(x, t) s.t. ur(x0, t) = y

r
1(t), u

r
x

(x0, t) = y

r
2(t)

• Observer-based output-feedback trajectory tracking
Find U0, U1 to achieve tracking of ur(x, t), measuring u(0, t), u(1, t)
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Simulation
Set a = b = 1 (FD with q

cap

= 1

4

, ⇢
cr

= 1

2

)

Regulate outlet density at ⇢
cr

and outlet flow ut(1, t) at qcap

2
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Figure: Left: Highway density. Right: Cumulative number of vehicles at the outlet.
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Simulation

t

0 0.5 1 1.5 2
-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

U1(t)

U0(t)

Uuni
0 (t)

Uuni
1 (t)

Figure: Bilateral (solid) and unilateral (dashed) controllers.
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Trajectory Generation/Theorem
Let yr

1

, yr
2

2 GF,M,� , with 1  � < 2. 9 µ
1

> 0 s.t. if F  µ
1

ur(x, t) = � ✏

a
ln
⇣
e

ab
2✏ xvr(x, t) + 1

⌘

U r

0

(t) = � ✏

a

vrx(0, t) +
ab
2✏ v

r(0, t)

1 + vr(0, t)
, U r

1

(t) = �✏e
ab
2✏

a

vrx(1, t) +
ab
2✏ v

r(1, t)

1 + e
ab
2✏ vr(1, t)

,

where

vr(x, t) =
1X

k=0

1

✏k
(x� x

0

)2k

(2k)!

kX

m=0

✓
k

m

◆✓
a2b2

4✏

◆k�m

yr
1,v

(m)(t)

+
1X

k=0

1

✏k
(x� x

0

)2k+1

(2k + 1)!

kX

m=0

✓
k

m

◆✓
a2b2

4✏

◆k�m

yr
2,v

(m)(t)

yr
1,v(t) = e�

ab
2✏ x0

⇣
e�

a
✏ y

r
1(t) � 1

⌘

yr
2,v(t) = e�

ab
2✏ x0

✓
� a

✏
e�

a
✏ y

r
1(t)yr

2

(t)� ab

2✏

⇣
e�

a
✏ y

r
1(t) � 1

⌘◆
,

satisfy the HJ PDE and ur (x
0

, t) = yr
1

(t), ur

x (x0

, t) = yr
2

(t).
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Observer Design
Copy of linearized error plant + nonlinear output injection

ˆ̃vt(x, t) = ✏ˆ̃vxx(x, t)�
a2b2

4✏
ˆ̃v(x, t) + p

2

(x)

⇥
⇣⇣

e�
a
✏ ũ(0,t) � 1

⌘
e�

a
✏ u

r
(0,t) � ˆ̃v(0, t)

⌘

+p
1

(x)
⇣⇣

e�
a
✏ ũ(1,t) � 1

⌘
e�

ab
2✏�

a
✏ u

r
(1,t) � ˆ̃v(1, t)

⌘

ˆ̃vx(0, t) = Ṽ
0

(t) + p
00

⇣⇣
e�

a
✏ ũ(0,t) � 1

⌘
e�

a
✏ u

r
(0,t) � ˆ̃v(0, t)

⌘

ˆ̃vx(1, t) = Ṽ
1

(t) + p
11

⇣⇣
e�

a
✏ ũ(1,t) � 1

⌘
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Observer-Based Output-Feedback Laws
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Theorem
Under conditions for yr

1
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kũ (t

0

) kH1 + kˆ̃v (t
0

) kH1 , t� t
0

⌘
, for all t � t
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Current & Future Steps
Extensions to CACC, nonlinear, and nonconstant-delay predictor-based designs

2⇥ 2 quasilinear hyperbolic PDE/nonlinear ODE cascade

HJ PDE/ODE cascades or HJ PDEs with actuator/sensor PDE/ODE dynamics
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