
Contents lists available at ScienceDirect

Transportation Research Part C

journal homepage: www.elsevier.com/locate/trc

Microscopic simulation-based validation of a per-lane traffic state
estimation scheme for highways with connected vehicles

Sofia Papadopouloua,⁎, Claudio Roncolib, Nikolaos Bekiaris-Liberisa,
Ioannis Papamichaila, Markos Papageorgioua

aDynamic Systems and Simulation Laboratory, School of Production Engineering and Management, Technical University of Crete, Chania 73100
Greece
bDepartment of Built Environment, School of Engineering, Aalto University, Espoo 02150 Finland

A R T I C L E I N F O

Keywords:
Traffic state estimation
Connected vehicles
Kalman filter
Microscopic simulation testing

A B S T R A C T

This study presents a thorough microscopic simulation investigation of a recently developed
model-based approach for per-lane density estimation, as well as on-ramp and off-ramp flow
estimation, for highways in the presence of connected vehicles. The estimation methodology is
mainly based on the assumption that a certain percentage of vehicles is equipped with Vehicle
Automation and Communication Systems (VACS), which provide the necessary measurements
used by the estimator, namely vehicle speed and position measurements. In addition, a minimum
number of conventional flow detectors is needed. In the investigation, a calibrated and validated,
with real data, microscopic multi-lane model is employed, which concerns a stretch of motorway
A20 from Rotterdam to Gouda in the Netherlands. It is demonstrated that the proposed metho-
dology provides satisfactory estimation performance even for low penetration rates of connected
vehicles, while it is also shown that the method is little sensitive to the parameters (two in total)
of the model utilized by the estimator.

1. Introduction

Most cities around the world experience ever-growing traffic congestion in urban areas and motorway networks. Congestion may
be mitigated by optimizing the performance of the traffic infrastructure through traffic management and operational strategies. Real-
time traffic information is a prerequisite for traffic operations, such as freeway ramp metering control, dynamic route guidance,
incident detection, and variable message sign operations. In recent years, VACS are all the more receiving considerable attention
since they may create new principles in traffic management, as they are capable of communicating real-time information and execute
novel control tasks (Papageorgiou et al., 2015). Considering that density distribution may be highly heterogeneous among the
different lanes of a highway, real-time lane assignment strategies may have significant advantages in traffic management. Lane
policies and lane advice may be achieved if real-time traffic state information per lane is available (Roncoli et al., 2016b, 2017).

Recently, research on exploiting the innovative characteristics of VACS as a source of traffic data in traffic state estimation has
drawn some attention, primarily due to the low cost, wide coverage and high accuracy of the extracted data. In this work, we consider
that connected vehicles are vehicles capable of reporting information (i.e., position and speed) to an infrastructure-based system,
which may be achieved via different technologies and communication paradigms. A basic scenario may simply consist of vehicles
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equipped with a GPS (Global Positioning System) and a system for mobile communication. However, more complex scenarios, for
example, scenarios that incorporate communication among vehicles or between vehicles and roadside units, are also possible.
Connected vehicles use localization technologies that can provide these data such as Dedicated Short-Range Communications (DSRC),
as well as Global Positioning Systems (GPS), cellular and Bluetooth. Data stemming from connected vehicles may contain a variety of
essential dynamic transportation information, while the most commonly used are vehicle position (longitude, latitude, and altitude)
and vehicle speed. Global Positioning System (GPS) receivers are stated as the most popular communication system because they are
low-cost, efficient and are already commonplace in many vehicles, in use for navigation. GPS systems have stated accuracy ranging
from 5 to 15m in geographical positioning Zito et al. (1995), Turksma (2000), and Liu et al. (2006). But most modern methods adopt
a hybrid positioning system, combining differential GPS (DGPS) with map-matching and dead-reckoning, which improved vehicle
position data up to 1–5m accuracy Waterson and Box (2012), sufficient for lane-based applications. Speed measurements are mostly
reported to be quite accurate with a precision error lower than 1 km/h Chalko (2007) and Zito et al. (1995), while some studies claim
a tendency of underestimation in speed measurements and a reported error around 5 km/h Zhao et al. (2014).

Traffic state estimation utilizing floating car data has been investigated in numerous studies, such as, for example, Work et al.
(2008), Fabritiis et al. (2008), Herrera et al. (2010), Herrera and Bayen (2010), Rahmani et al. (2010), Qiu et al. (2010), Schreiter
et al. (2010), Treiber et al. (2011), Yuan et al. (2012), van Hinsbergen et al. (2012), Deng et al. (2013), Anand et al. (2014), Piccoli
et al. (2015), Seo et al. (2015), Seo and Kusakabe (2015), Rempe et al. (2016), Wang et al. (2016), Wright and Horowitz (2016),
Bekiaris-Liberis et al. (2016), Roncoli et al. (2016a), Seo et al. (2017), and Fountoulakis et al. (2017). While multi-lane traffic flow
modeling has been the subject of several works (Laval and Daganzo, 2006; Roncoli et al., 2015; Carey et al., 2015; Du et al., 2016),
the existing studies that deal with lane-based traffic state estimation are rare in the traffic literature, while they mainly assume data
obtained from conventional detectors (Chang and Gazis, 1975; Coifman, 2003; Singh and Li, 2012; Yılan, 2016) with the exception of
Zhou and Mirchandani (2015).

This paper presents several novelties with respect to our previous works and to other approaches published in the last decade.
Existing works in literature dealing with the problem of lane-based traffic state estimation mainly assume data obtained from
conventional detectors. Thus, the available measurement information as well as the measurement configurations employed in the
present paper are different from those required in almost all other lane-based estimation approaches. Previous works (Bekiaris-Liberis
et al., 2016; Roncoli et al., 2016a; Fountoulakis et al., 2017) employed connected vehicle data to estimate only cross-lane densities
and on-ramp flows. In contrast, in the present paper, we implement a different model and we use a different measurement config-
uration to enable per-lane density estimation. Nevertheless, the distinguishing feature of our previous works, namely the lack of the
need for any empirical modeling approach, such as fundamental diagrams, that would call for tedious calibration procedures, is
present here as well.

The main contribution of this paper is the thorough evaluation of a per-lane density and ramp flow estimation methodology via
microscopic simulation, including different penetration rates of connected vehicles. The estimation scheme uses a data-driven
macroscopic model for per-lane traffic density and employs real-time measurements obtained from connected vehicles, namely
vehicles which transmit information about their position and speed. A minimum number of spot flow measurements from detectors is
also needed to guarantee the observability property of the underlying model, see Bekiaris-Liberis et al. (2017) for details. Density
estimation is performed via the employment of a Kalman filter. The performance of the estimation scheme is examined under various
penetration rates of connected vehicles, using data retrieved from a microscopic multi-lane model, which has been calibrated and
validated by Perraki et al. (2017) with real data from a stretch of motorway A20 from Rotterdam to Gouda in The Netherlands. The
case-study highway stretch includes several on-ramps, off-ramps, and a lane-drop, while the employed simulation scenario is
characterized by both congested and free-flow traffic conditions. Thus, the effectiveness of the proposed methodology is examined in
carefully designed experiments for a real highway stretch with real demand scenarios. It is worth mentioning that, in the in-
vestigation, simple algorithms are employed in case of inconsistencies in the probe vehicle data (such as, for instance, in case there
are temporarily no measurements available from connected vehicles). The performance of the tested estimation scheme is shown to
be satisfactory even for low penetration rates. Finally, it is demonstrated that estimation performance is little sensitive to the choice
of the model parameters (two in total).

The remainder of the paper is organized as follows. The model for the per-lane density dynamics and the proposed estimation
scheme are presented in Section 2. The description of the microscopic simulation configuration as well as the highway network under
study and the traffic conditions are presented in Section 3, which includes also the details of the computation of the data employed by
the estimator. Subsequently, the results of the estimation and a sensitivity analysis of the estimation performance with regard to the
model parameters are presented in Section 4. Finally, in Section 5 the main findings of this study are summarized.

2. Per-lane traffic state estimation using a data-driven model

2.1. General set-up

We consider a highway stretch consisting of M lanes, indexed by = …j M1, , , subdivided into N segments, indexed by = …i N1, , .
We define a cell i j( , ) to be the highway part that corresponds to lane j of segment i. The length of each segment is denoted by

= …i NΔ , 1, ,i .
The following variables are extensively used in the paper:

S. Papadopoulou et al. Transportation Research Part C 86 (2018) 441–452

442



• Space mean speed ⎡⎣ ⎤⎦
km
h of vehicles in cell i j( , ), denoted by vi j, , for = …i N1, , and = …j M1, , .

• Total traffic density ⎡⎣ ⎤⎦
veh
km at cell i j( , ), denoted by ρi j, , for = …i N1, , and = …j M1, , .

• Total longitudinal inflow ⎡⎣ ⎤⎦
veh
h of cell +i j( 1, ), denoted by qi j, , for = … −i N0, , 1 and = …j M1, , .

• Total on-ramp flow ⎡⎣ ⎤⎦
veh
h entering at cell i j( , ), denoted by ri j, , for = …i N1, , and = …j M1, , .

• Total off-ramp flow ⎡⎣ ⎤⎦
veh
h exiting from cell i j( , ), denoted by si j, , for = …i N1, , and = …j M1, , .

• Total lateral flow⎡⎣ ⎤⎦
veh
h at segment i that enters lane j2 from lane j1, denoted by →Li j j, 1 2, for = … = …i N j M1, , , 1, ,1 , and = ±j j 12 1 .

Note that, the attribute “total” refers to the total population of both connected and conventional vehicles.

2.2. Available information from connected vehicle reports

The data-driven model presented in the next subsection, requires the availability of the following measurements:

• Space mean speed of connected vehicles at cell i j( , ), denoted by vi j,
c , for = …i N1, , and = …j M1, , .

• Density of connected vehicles at cell i j( , ), denoted by ρi j,
c , for = …i N1, , and = …j M1, , .

• Lateral flow of connected vehicles at segment i that enters lane j2 from lane j1, denoted by →Li j j,
c

1 2
, for = … = …i N j M1, , , 1, ,1 , and

= ±j j 12 1 .

Average speeds, densities, and lateral flows of connected vehicles may be readily obtained from position and speed reports.

2.3. Model description for the density and ramp flow dynamics

The conservation equation yields the following model for the density dynamics in each cell i j( , )

+ = + − + + − − + −− − → + → → − → +ρ k ρ k T q k q k L k L k L k L k r k s k( 1) ( )
Δ

( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )),i j i j
i

i j i j i j j i j j i j j i j j i j i j, , 1, , , 1 , 1 , 1 , 1 , , (1)

where T is the time discretization step. For convenience, we assume ≡ ≡r s 0i j i j, , , ∀ i and ≤ ≤ −j M1 1, where M denotes the right-
most lane (assuming right-hand traffic); we have ≡→L 0i j j, 1 2 if either j1 or j2 equals zero or +M 1. Moreover, in case there is a lane-
drop at cell i j( , ), then we define ≡q k( ) 0i j, . We note that the per-lane inflows at the highway entry, namely, q j0, , = …j M1, , , are treated
as measured inputs to system (1).

The following relation is employed for total flows (Fig. 1)

= + + +− → − → + → + →q k v k ρ k p L k p L k p r k( ) ( ) ( ) ( ) ( ) ( ),i j i j i j i j j i j j i j j i j j i j i j, , , , 1 , 1 , 1 , 1 , , (2)

for = … = …i N j M1, , , 1, , , where ∈ ∀ = …→p p i j j M, [0,1] , ( , ), 1, ,i j j i j, , 11 2
, and = ±j j 12 1 , indicate the percentages of “diagonal” lateral

movements, including lateral flows from an on-ramp acceleration lane, for each specific cell. While the first term in (2) is well-known
(see, e.g., Papageorgiou and Messmer, 1999), the motivation for the rest of the terms may be less obvious. Their choice is guided from
the fact that, at locations featuring strong lateral flows (e.g., at cells where an on-ramp is located or at segments that feature lane-
drops), a significant amount of the lateral flow may appear close to the cell end (e.g., in the former case, at the acceleration lane end).
As a result, the flow modeling may be more accurately described considering that a percentage of lateral or on-ramp flows actually
acts as additional exiting longitudinal flow. This formulation is also employed in other works, e.g., Laval and Daganzo (2006).

For the lateral flows, we employ the following relation

=→
→L k

L k
ρ k

ρ k( )
( )

( )
( ),i j j

i j j

i j
i j,

,
c

,
c ,1 2

1 2

1
1

(3)

for = … = …i N j M1, , , 1, ,1 , and = ±j j 12 1 . Eq. (3) is based on the reasonable assumption that the average behavior of the population of

Fig. 1. Model of the exiting longitudinal flow from cell i j( , ) as described in (2).
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connected vehicles in a given cell, with respect to lateral movements, is representative for the total vehicle population in that cell.
This assumption relies on the fact that, since we consider as connected vehicle any vehicle that incorporates a communication system
and thus, is capable of providing traffic information to an infrastructure-based system, there is no reason for connected vehicles to
feature a systematically different behavior than manual vehicles. Moreover, also in case connected vehicles feature some degree of
automation, we expect a proper operation of our estimations scheme. More specifically, in case there is no strict infrastructure-based
need for lane changing, lane-changing flows are very low, hence we could even utterly ignore lane changing and still obtain rea-
sonable estimation results. On the other hand, in case there is a strict infrastructure-based need for lane changing (such as, for
example, near ramps or a lane drop), strong lateral flows occur and need to be measured. However, in such cases, automated vehicles,
like manually driven vehicles, have not much of other choice than to change lane. These lane-changes may happen slightly earlier or
later than manual vehicles, but roughly in proportions that are similar to what manual vehicles also need to perform, and this is in
fact what (3) reflects.

This assumption allows one to quantify the total lateral movements from a cell using (3), namely, by scaling the lateral move-
ments of connected vehicles with the inverse of the percentage of connected vehicles in that cell.

Plugging (2) and (3) into (1), we get for all i j( , )

+ = ⎛

⎝
⎜ − − − ⎞

⎠
⎟ + ×

+ ⎛

⎝
⎜ − + − × ⎞

⎠
⎟

+ ⎛

⎝
⎜ + ⎞

⎠
⎟ + −

+ −

→ − → +
− −

− →
− →

−
− + →

+ →

+
+

− − →
− − →

− −
− − − + →

− + →

− +
− +

− −

ρ k T v k T L k
ρ k

T L k
ρ k

ρ k T v k ρ k

T p
L k

ρ k
ρ k p

L k
ρ k

ρ k

T p
L k

ρ k
ρ k p

L k
ρ k

ρ k p T r k

T p r k s k

( 1) 1
Δ

( )
Δ

( )
( ) Δ

( )
( )

( )
Δ

( ) ( )

Δ
(1 )

( )
( )

( ) (1 )
( )

( )
( )

Δ
( )

( )
( )

( )
( )

( ) (1 )
Δ

( )

Δ
( ( ) ( )).

i j
i

i j
i

i j j

i j i

i j j

i j
i j

i
i j i j

i
i j j

i j j

i j
i j i j j

i j j

i j
i j

i
i j j

i j j

i j
i j i j j

i j j

i j
i j i j

i
i j

i
i j i j i j

, ,
, 1
c

,
c

, 1
c

,
c , 1, 1,

, 1
, 1
c

, 1
c , 1 , 1

, 1
c

, 1
c , 1

1, 1
1, 1

c

1, 1
c 1, 1 1, 1

1, 1
c

1, 1
c 1, 1 , ,

1, 1, , (4)

We adopt, as usual in absence of a descriptive dynamic model (see Wang and Papageorgiou, 2005), a random walk to describe the
dynamics of on-ramp and off-ramp flows. The deterministic parts of such models read

+ =r k r k( 1) ( )i M i M, , (5)

+ =s k s k( 1) ( ).i M i M, , (6)

We write next compactly the overall system (4)–(6). For this, we define first the state vector x as follows

= … … … … …x ρ ρ ρ ρ r r s s( , , , , , , , , , , , ) .N M N M M N M M N M1,1 ,1 1, , 1, , 1, ,
T (7)

The average speed of connected vehicles is representative of the average cell speed, as motivated in Bekiaris-Liberis et al. (2016)
and justified with real data and in microscopic simulation in Roncoli et al. (2016a) and Fountoulakis et al. (2017), respectively, even
for connected-vehicle penetrations as low as 2%. Thus, the unmeasured cell speeds vi j, may be replaced by the corresponding mea-
sured speeds vi j,

c ; and, using (7), we re-write (4)–(6) in a compact form as

+ = +x k A v k L k ρ k x k Bu k( 1) ( ( ), ( ), ( )) ( ) ( ),c c c (8)

where vc, Lc, and ρc denote vectors that incorporate all average cell speeds of connected vehicles vi j,
c , lateral flows of connected

vehicles →Li j j,
c

1 2
, and densities of connected vehicles ρi j,

c , respectively; while u denotes the vector of inflows at the highway entrance,
namely = …u q q( , , )M0,1 0,

T, ∈ × + × × +A N M N N M N( 2 ) ( 2 ), and ∈ × + ×B N M N M( 2 ) .
Together with (8), we associate an output vector y, which holds all mainstream total flows that are measured by corresponding

mainstream fixed detectors and, as follows from (2) and (3), is given by

=y k C v k L k ρ k x k( ) ( ( ), ( ), ( )) ( ),c c c (9)

where ∈ + + − × × +C M l l N M N( 1) ( 2 )r s , with lr and ls being the number of on-ramps and off-ramps, respectively. The minimum number of
rows of C equals + + −M l l 1r s in order for system (8), (9) to be observable (see Bekiaris-Liberis et al. (2016, 2017) for details). Note
that we assume N2 ramp flows. In the case where there are less on-ramp or off-ramp flows, the dimensions of the matrices A B, , and C
are reduced accordingly.

2.4. Per-lane total density and ramp flow estimation utilizing a Kalman filter

We employ a standard Kalman filter utilizing model (8), (9) for per lane total density estimation. Defining the vector ̂x as the
system state to be estimated,

̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂ ̂= … … … … …x ρ ρ ρ ρ r r s s( , , , , , , , , , , , , ) ,N M N M M N M M N M1,1 ,1 1, , 1, , 1, ,
T (10)

the filter equations are

̂ ̂ ̂+ = + + −x k A υ k L k ρ k x k Bu k A υ k L k ρ k K k z k C υ k L k ρ k x k( 1) ( ( ), ( ), ( )) ( ) ( ) ( ( ), ( ), ( )) ( )( ( ) ( ( ), ( ), ( )) ( ))c c c c c c c c c (11)
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= × + −K k P k C υ k L k ρ k C υ k L k ρ k P k C υ k L k ρ k R( ) ( ) ( ( ), ( ), ( )) ( ( ( ), ( ), ( )) ( ) ( ( ), ( ), ( )) )c c c T c c c c c c T 1 (12)

+ = − × +P k A υ k L k ρ k I K k C υ k L k ρ k P k A υ k L k ρ k Q( 1) ( ( ), ( ), ( ))( ( ) ( ( ), ( ), ( ))) ( ) ( ( ), ( ), ( )) ,c c c c c c c c c T (13)

where z is a noisy version of the measurement y defined in (9), = ≻Q Q 0T and = ≻R R 0T are tuning parameters which, in the ideal
case in which there is additive, zero-mean Gaussian white noise in the state (8) and output (9) equations, represent the covariance
matrices of the process and measurement noise, respectively. The initial conditions of the filter described by Eqs. (11)–(13) are

̂ =x k μ( )0 (14)

=P k H( ) ,0 (15)

where μ and = ≻H H 0T , represent, in the ideal case in which x k( )0 is a Gaussian random variable, represent the mean and auto
covariance matrix of x k( )0 , respectively.

3. Microscopic simulation set-up

The behavior of the proposed estimation scheme is examined and evaluated through microscopic simulation using AIMSUN
(Transport Simulation Systems, 2014). Traffic measurements are extracted from a specific subset of the whole population of vehicles
in the network that are considered to be connected. Vehicles entering the network are all of the same vehicle type, featuring a
probabilistic distribution of movement behaviors, and are randomly marked as connected according to an assumed penetration rate,
based on a uniform distribution.

3.1. Network and experimental configuration

The case-study network (see Fig. 2) is a stretch of motorway A20 from Rotterdam to Gouda, in the Netherlands. The multi-lane
microscopic model employed in AIMSUN was designed and calibrated by Perraki et al. (2017) with real, lane-specific traffic data
obtained from detectors (Schakel and Van Arem, 2014), thus providing a realistic ground truth scenario.

The considered highway stretch, shown in Fig. 2, constitutes a challenging test-bed for the proposed estimation scheme, as it
incorporates a non-trivial combination of a lane-drop, on-ramps and off-ramps, which trigger a variety of corresponding lane-
changing behaviors. The considered stretch is about 9.33 km in length, comprises 3 homo-directional lanes until 3.53 km, where there
is a lane-drop. For the purpose of estimation, the stretch is space-discretised in =N 21 segments. Two on-ramps and two off-ramps are
located at 3.08 km, 5.48 km and 4.17 km, 7.24 km, respectively.

The ground truth in our experiments, used to evaluate the performance of the developed estimation scheme, is represented by the
total density in each cell and the total ramp flows. The cell densities ρi j, are computed by counting the number of all vehicles that are
present within cell i j( , ) at a time instant kT, divided by the segment length Δi; whereas all ramp flows are computed by counting the
number of vehicles that cross the corresponding location within the time interval +kT k T( ,( 1) ]. However, since lane-based densities
and ramp flows are very noisy, a moving average of the 6 latest available measurements is considered as ground truth. Average
segment speeds υi j, that represent ground truth are computed by averaging arithmetically at time step kT the instant speeds of all
vehicles present in a segment.

3.2. Employed scenario

The employed scenario utilizes available real demand measurements and replicates traffic conditions, whereby a strong con-
gestion is created at 4 km at around 6:30 AM because of the increased flow entering from on-ramp Nieuwerkerk a/d IJssel. The
congestion spills back, strengthens at the lane-drop at 3.6 km, and covers the stretch up to 1.2 km. From 7:00 AM until 7:30 AM, the
congestion persists downstream of the lane-drop, while congestion upstream thereof dissolves. Fig. 3-(left column), illustrates the
densities along each lane from 5:00 AM to 9:00 AM. This congestion pattern allows to test and evaluate the proposed estimator under
varying traffic conditions, which include the formation and dissipation of a stretch-internal congestion, which is not visible at the
stretch boundaries.

Fig. 2. Schematic representation of the case study network. Field detector positions are indicated as the distance (in km) from the network entrance. The detectors
used by the estimator for obtaining flow measurements within the case study are colored in red. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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3.3. Computation of data employed by the estimator

Prior to the performance evaluation of the proposed estimation scheme, we detail the information provided to the estimator. The
estimation performance depends critically on the quality of this information, thus we employ simple algorithms to ensure that this
information is reliable and as representative as possible.

We consider a time discretization step =T 10 s. During a time interval −k T kT(( 1) , ], especially at light traffic and low penetrations
rates, only few or even no connected vehicles may be present in a cell. Therefore, appropriate procedures must be applied to ensure
that the estimation scheme will nevertheless be fed with appropriate real-time information.

To start with, speed reports from connected vehicles are collected every 2 s and are averaged arithmetically over every 10 s time
period −k T kT(( 1) , ] to produce ν k( )i j,

c , denoted the average speed of connected vehicles at cell (i j, ). This average speed corresponds to
the space mean speed, since the connected vehicles are distributed within the respective cell; therefore, the average speed verifies (3).
In cases where there are no connected vehicle reports available at cell (i j, ) during a time interval −k T kT(( 1) , ], we set the missing
value equal to the speed reported at the previous time step, i.e., we set = −ν k ν k( ) ( 1)i j i j,

c
,
c . However, at low penetration rates or light

traffic, a cell may feature complete absence of connected vehicle reports, for more than one minute. For achieving better estimation
results, especially for low penetration rates, we consider a larger time window over which we average the n past values of the average
cell speeds from connected vehicle reports. In our experiments, we have tried different values for n. A complete absence of connected
vehicle reports over 12 time intervals is very rare in our experiments, and thus, the moving average of speeds calculated with =n 12
is adequate. A moving average of the last =n 12 speed measurements is finally introduced as follows

∑=
−

=

−

υ k
ν k l

n
( )

( )
,i j

l

n
i j

,
c

0

1
,
c

(16)

Fig. 3. Contour plot for the ground truth (left column) and estimated (right column) densities.
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to calculate the final cell speed υ k( )i j,
c fed into the Kalman Filter.

Lateral flows of connected vehicles →Li j j,
c

1 2
are computed based on position reports of connected vehicles. Specifically, we count

first the number of connected vehicles moved from lane j1 to lane j2 within a time interval of 2 s; then, every time instant kT, these
lateral flow measurements are accumulated for the time interval −k T kT(( 1) , ] to produce an intermediate lane-changing measurement

→L k( )i j j,
c

1 2
. This lateral flow vector of connected vehicles, L c, may exhibit spiky behavior, due to the rare appearance of connected

vehicle lateral movements; and therefore, this value may not be representative for the occurring lane-changing flow of the total
vehicle population. To account for this fact and obtain representative, though averaged lateral flows, we feed the estimation scheme
with an exponentially smoothed version of the lateral flows of connected vehicles, rather than the original measured lateral flows.
Thus, for each lateral flow measurement, we have for all = … = …i N j M1, , , 1, ,1 , and = ±j j 12 1

+ = − +→ → →L k a L k aL k s( 1) (1 ) ( ) ( ),i j j i j j i j j,
c

,
c

,
c

1 2 1 2 1 2 (17)

where the smoothing factor ∈a [0,1] is chosen based on statistical analysis (see Section 4.5.2) and =→L (0) 0i j j,
c

1 2
.

Also for the density measurements ρ k( )i j,
c , that are fed to the Kalman Filter every time step k, we employ, for similar reasons as

above, a moving average of the =m 6 (time window of 1min) latest available measurements as

∑=
−∼

=

−

ρ k
ρ k l

m
( )

( )
,i j

l

m
i j

,
c

0

1
,
c

(18)

where ∼ρ k( )i j,
c is the instant density at cell i j( , ) for every time step k. In cases where there are no connected vehicle reports available at

cell i j( , ) at a time instant kT, we replace the corresponding ∼ρ k( )i j,
c with the density reported at the previous time step, i.e., we set

= −∼ ∼ρ k ρ k( ) ( 1)i j i j,
c

,
c .

Assuming that the (smoothed) lateral flow of connected vehicles exiting from the lane-drop cell, namely, →L8,1 2
c , is always non-

zero, it can be shown that the utilized flow measurement configuration, shown in Fig. 2, guarantees observability of the underlying
model (8), (9), see Bekiaris-Liberis et al. (2017) for details. Specifically, sets of detectors (one in each lane) located at the highway
entrance (0 km) and exit (9.33 km) are used to obtain the input and output of system (8), (9), respectively. All ramp flows are
assumed unmeasured; therefore, to establish observability, an additional flow measurement on the right-most lane of a (arbitrarily
chosen) segment between every pair of consecutive unmeasured ramps is needed. In the present evaluation, we exceed these
minimum measurement requirements for observability by assuming the presence of fixed flow detectors at all lanes (cross-section),
rather than only the right-most lane, of the aforementioned segments; this is deemed reasonable, since detectors are usually installed
for a cross-section. In conclusion, we employ a set of additional flow detectors (one per lane) located at 3.83 km (segment =i 9),
4.52 km (segment =i 11), and 6.82 km (segment =i 15).

4. Performance evaluation for varying penetration rates of connected vehicles

Based on the microscopic environment configuration described in Section 3, we simulate traffic conditions featuring various
penetration rates of connected vehicles. To account for a variety of possible current and future traffic scenarios, the performance of
the estimation scheme is evaluated for a wide range of penetration rates of connected vehicles, more specifically, for 2%, 5%, 10%,
20%, and 50%.

4.1. Selection of the estimation scheme parameters

The sensitivity of the estimation performance to the Kalman filter parameters (Q R, ) is thoroughly examined in Bekiaris-Liberis
et al. (2016), Roncoli et al. (2016a), and Fountoulakis et al. (2017), for the aggregated-lane approach, where it is demonstrated that
density estimation is barely sensitive to these parameters, whereas ramp flow estimation is moderately sensitive. Additionally, it has
been observed that the choice of the initial values μ and H affects only the warm-up phase of the estimation. Table 1 summarizes the
filter parameters used in our experiments, which were chosen based on a sensitivity analysis (see Papadopoulou, 2017).

It should be noted that, since we expect strong diagonal flows mainly at the lane-drop cell (in comparison with the rest of the
cells), we set all percentages →pi j j, 1 2

, pi j, equal to zero except for the percentage

≡ →p p ,8,1 2 (19)

which corresponds to the diagonal lateral flow of cell (8,2).

Table 1
Filter parameters used in the simulation investigation. The total number of on-ramps and off-ramps are
indicated with lr and ls, respectively.

Q σρ σr s,

σ σdiag( , )ρ r s, × ×I10 N M( ) × +I0.01 lr ls( )

R μ H

× +I10 lr ls
4 ( ) … …(5, ,5,2, ,2)T × + +I N M lr ls( )
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4.2. Quantitative performance measure

To assess the overall performance of the suggested estimation scheme, a performance index formulated as the Coefficient of
Variation (CV) of the root mean square error of the 60-s moving averages of estimated densities ̂ρi j, and ramp flows ̂θi with respect to
the corresponding ground truth, is adopted as

̂
=

∑ ∑ ∑ −

∑ ∑ ∑
= = =

= = =
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where =θ r1 10, =θ r2 16, =θ s3 18, =θ s4 14, and =M 3, =N 21, = =l l 2r s , =K 1440.

4.3. Performance evaluation for a baseline case

For the sake of brevity, only specific results of the cell densities and ramp flow estimation for 20% penetration rate of connected
vehicles are presented, as illustrated in Figs. 3 and 4, respectively. The results are obtained with =p 0.3 and =a 0.05, chosen after a
sensitivity analysis (see Section 4.5).

It is evident from the plots that the proposed scheme successfully estimates and tracks the dynamics of both segment densities and
ramp flows under various traffic conditions, including congestion and free-flow, as well as for (short-lived) time intervals where no
information from connected vehicle reports is available. Density estimation is characterized by a performance index =CV 34.4%ρ ,
whereas ramp flow estimation is characterized by a performance index =CV 78.0%r s, .

4.4. Performance evaluation for various penetration rates

Fig. 5 illustrates the performance for density and ramp flow estimation with regard to different penetration rates of connected
vehicles. A moderate sensitivity is observed in the performance of the estimation scheme, which is seen to deteriorate with decreasing
penetration rates of connected vehicles present at the highway. This is mainly due to the accordingly reduced adequacy of the
available traffic information feeding the estimation scheme. In fact, the proportion of time intervals without any connected vehicle in
a cell increases with decreasing penetration rate, reaching up to 70% for a penetration rate of 2% (see also Papadopoulou, 2017).

4.5. Sensitivity of the estimation performance to the model parameters

In order to evaluate the sensitivity of the estimation performance to the variations of the model parameters p and a, we perform a
series of experiments considering different possible combinations of ∈p [0,1] and ∈a [0,1], for our basic scenario of 20% penetration
rate of connected vehicles.

Fig. 4. Comparison between ground truth (black line) and estimated (blue line) ramp flows for all on-ramps and off-ramps in the network. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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From Fig. 6, one can observe that the most accurate density estimation is achieved for a value for =p 0.3, irrespectively of the
values of a; similarly, for ramp flow estimation, as long as there is sufficient smoothing effect. Good estimates are produced with

<a 0.5. Since for a value of ≈a 0.05 we get the minimal CVρ and CVr s, in our experiments (although the differences for values of a
smaller than about 0.5 are minor), and this fact was confirmed by further simulations with other penetration rates, we choose the
default values of the model parameters to be =p 0.3 and =a 0.05.

Next, we keep one of the two parameters constant in order to examine the sensitivity of the estimation performance to the
variations of the other for different penetrations rates.

Fig. 5. Performance comparison of density (left) and ramp flow (right) estimations for various penetration rates of connected vehicles.

Fig. 6. Performance comparison of the density (left) and ramp flow (right) estimations for different values of the parameters p and a for 20% penetration rate.

Fig. 7. Performance comparison of the density (left) and ramp flow (right) estimations for different values of the parameter p and for various penetration rates of
connected vehicles.
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4.5.1. Sensitivity analysis for the percentage of lane-drop diagonal flow
We performed experimental analysis to obtain the optimal value of parameter p, prior to be employed in (4), so as to achieve an

overall estimation improvement under various penetration rates. Fig. 7 shows the comparison of the performance of the estimation
scheme for different values of parameter ∈p [0,1], for various penetration rates, while Fig. 8 illustrates the impact of various values
of p on the performance index that corresponds specifically to cell (8,2), again for various penetration rates of connected vehicles.
During these experiments, we set =a 0.05. From Fig. 7 it is evident that, for any given penetration rate, the overall estimation
performance is quite insensitive to the different values of parameter p, whereas ramp flow estimation is slightly more sensitive.
Density estimation at cell (8,2), is more sensitive to changes of parameter p, as shown in Fig. 8. With regard to the density estimation,
a value =p 0.3 may well depict the diagonal flows in the model of longitudinal flows (2) for almost all penetration rates, though for
very low penetration rates the optimal value shifts towards to =p 0.5.

4.5.2. Sensitivity analysis for the smoothing factor
Sensitivity of the estimation performance to the variations of the smoothing factor a is shown in Fig. 9, for =p 0.3 and for various

penetration rates of connected vehicles. From Fig. 9, one can observe that: (i) the quality of estimates features low sensitivity with
regard to a at higher penetration rates; while (ii) at low penetration rates, the density estimation is sensitive to different values of
smoothing factor a. This is consistent with the expectation that at lower penetration rates a stronger smoothing effect is beneficial,
since the density and lateral flow information from connected vehicles are less accurate. In conclusion, a value of a, which leads to
good performance, for all penetration rates, is about 0.05.

Fig. 8. Performance comparison of density of cell (8,2), adjacent to the lane-drop location, for different values of the parameter p and for various penetration rates of
connected vehicles.

Fig. 9. Performance comparison of density (left) and ramp flow (right) estimations for different values of the smoothing factor a and for various penetration rates of
connected vehicles.
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5. Conclusions

The validity of a per-lane traffic density and ramp flow estimation scheme, which is based on an appropriate multi-lane traffic
flow model and a standard Kalman filter, has been thoroughly tested using the microscopic traffic simulator AIMSUN. The proposed
scheme is mainly based on speed and position information obtained from connected vehicle reports. The effectiveness of the proposed
methodology was examined in carefully designed experiments for a real highway stretch and real demand scenarios. The obtained
results demonstrate that the estimation scheme captures the onset of congestion with accurate timing and more generally, reproduces
reliably the challenging traffic conditions in space and time, even for low penetration rates. Density estimation is satisfactory even for
penetration rates as low as 2%. An analysis of the sensitivity of the estimation scheme to the model parameters was also presented. In
general, the scheme was shown to be little sensitive to the model parameters. The presented approach has several advantages for
possible future real-world applications, including:

• the use of a macroscopic model that has now calibration requirements (e.g. no fundamental diagram);

• the extensive use of low-cost connected vehicle data that are already available and are expected to increase in the near future;

• the use of only a limited amount of fixed flow sensors.

It should be emphasized that the availability of real-time traffic density per lane estimates is a prerequisite for the application of
lane-based traffic control algorithms.
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