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What is IoT? – Emerging Applications

Global network infrastructure composed by a variety of devices
interacting with each other through the Internet [1].

Fit to customer demands.

IoT applications [1–3]:

Transportation and smart vehicles.
Smart buildings.
Industry.
Healthcare.
Environmental sensing.

By 2020: 212 billion IoT devices.

By 2025: 2.7–6.2 trillion $.

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer networks, 2010.
[2] L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,” IEEE Trans. Ind. Informat., 2014.
[3] A. Al-Fuqaha et al.“Internet of things: A survey on enabling technologies, protocols, and applications,” IEEE

Commun. Surveys Tuts., 2015.
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Precision Agriculture
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80-85% of total water is consumed for agriculture purposes.
Intelligent plant irrigation:

Save 30% of water =⇒ socioeconomic impact.
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Dissertation Objectives

Enhance ultra-low-power IoT technology exploiting novel
concepts in wireless communications and networking.

Objectives:

Accurate RF energy harvesting analysis.
Ultra-low complexity, increased range, small processing delay,
scatter radio receivers.
New, flexible, scatter radio network architecture with extended
coverage.
Resource allocation for multi-cell backscatter sensor networks
(BSNs).
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Problem Statement (1/2)
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Diodes in rectifier circuits:

Strong nonlinearities on power conversion.
Sensitivity and saturation effects.
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Problem Statement (2/2)
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This work

Prior art in wireless communications uses linear model.

This work offers accurate nonlinear RF harvesting analysis.
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Wireless System Model

Baseband narrowband received signal:

y =
√

PT Ts L(d) h s + w . (1)

Block fading model.

Received power over n-th coherence block:

P
(n)
R

= E
[
|s|2
]
PT L(d)

∣∣∣h(n)
∣∣∣
2
= P(d)γ(n). (2)

PDF of γ(n) continuous over R+, e.g., γ
(n) ∼ Gamma

(
m, Ω

m

)
:

f
γ(n)(x) =

(
m

Ω

)
m xm−1

Γ(m)
e−

m

Ω
x , x ≥ 0. (3)
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Harvesting Efficiency Models (1/2)
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[4] S. D. Assimonis, S.-N. Daskalakis, and A. Bletsas, “Sensitive and efficient RF harvesting supply for batteryless
backscatter sensor networks,” IEEE Trans. Microw. Theory Techn., 2016.
[5] PowerCast Module, http://www.mouser.com/ds/2/329/P2110B-Datasheet-Rev-3-1091766.pdf.

Panos N. Alevizos Ph.D Defense 9 / 47



Introduction
Nonlinear Far Field RF Energy Harvesting Analysis

Backscatter Radios
Concluding Remarks

Harvesting Efficiency Models (2/2)

Real model harvested power:

P
(n)
har ≡ P

(n)
har

(
P

(n)
R

)
= p
(
P

(n)
R

)
,





0, P
(n)
R ∈ [0, Psenin ],

η

(
P

(n)
R

)
· P

(n)
R , P

(n)
R ∈ [Psenin , Psatin ],

η(Psatin ) · Psatin P
(n)
R ∈ [Psatin ,∞).

(4)

Prior art:

p̃L

(
P

(n)
R

)
= ηL · P

(n)
R , ∀P

(n)
R ∈ R+, ηL ∈ [0, 1). (5)
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Proposed Approximation (1/2)

...

..
.

Panos N. Alevizos Ph.D Defense 11 / 47



Introduction
Nonlinear Far Field RF Energy Harvesting Analysis

Backscatter Radios
Concluding Remarks

Proposed Approximation (2/2)

...

..
.

Theorem

The PDF of the proposed approximation model is

f
P̃
(n)
har

(x) =






ξ0 ∆(x), x = v0 = 0,

1
lm

f
P
(n)
R

(
x−vm−1+lmbm−1

lm

)
, x ∈ (vm−1, vm ]\{vM}, m ∈ [M],

(1 − ξM ) ∆(x − vM ), x = vM ,

0, x ∈ R\[0, vM ],

(6)

with ξm = F
P
(n)
R

(bm), m = 0, 1, . . . ,M, lm ,
vm−vm−1
bm−bm−1

, m = 1, 2, . . . ,M.
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Evaluation (1/2)
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Evaluation (2/2)
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Successful reception at interrogator: P(S) , P(A ∩B).

Panos N. Alevizos Ph.D Defense 14 / 47



Introduction
Nonlinear Far Field RF Energy Harvesting Analysis

Backscatter Radios
Concluding Remarks

Fundamentals, Detection, and Channel Coding.
Network Architecture: Extended Scatter Radio Coverage.
Resource Allocation in Multi-Cell Backscatter Sensor Networks.

Problem Statement (1/2)

        CW
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Mixer

Scatter Radios: Communication via means of reflection [6].

Ultra-low power
Low monetary cost.

[6] G. Vannucci, A. Bletsas, and D. Leigh, A software-defined radio system for backscatter sensor networks, IEEE
Trans. Wireless Commun., 2008.
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Problem Statement (2/2)
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Inherent problems:

Large path-loss attenuation =⇒ Limited range.
Passive tags =⇒ Powering issues =⇒ Limited range.
High bitrate =⇒ Reduced energy per bit =⇒ Limited range.

This work:

Short-packet communication.
Optimal receiver design for scatter radio signals.
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Wireless and Signal Model

Carrier

Emitter

Tag

  SDR Reader

hCT(t)

hTR(t)

hCR(t)

Flat Rician fading: hm(t) = hm ∼ CN
(√

κm

κm+1σm,
σ2
m

κm+1

)
,

m ∈ {CR,CT,TR} [7].

Baseband signal for scatter radio FSK modulation [Theorem 1, 8]:

r = [r+0 r−0 r+1 r−1 ]⊤ = h

√
E

2
[e+jΦ0 e−jΦ0 e+jΦ1 e−jΦ1 ]⊤⊙ si +n. (7)

[7] A. Goldsmith, Wireless Communications, 2005.
[8] N. Fasarakis-Hilliard, P. N. Alevizos, and A. Bletsas, “Coherent detection and channel coding for bistatic scatter
radio sensor networking,” IEEE Trans. Commun., 2015.
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Noncoherent Symbol-by-Symbol Detectors (1/2)

Statistics: f(r|i , h,Φ) ≡ CN (h xi(Φ),N0 I4) , with

xi(Φ) =
√

E

2

[
e+jΦ0 , e−jΦ0 , e+jΦ1 , e−jΦ1

]⊤
⊙ si , i ∈ B.

Lemma

Noncoherent Hybrid Composite Hypothesis-Testing (NC-HCHT)
Symbol-By-Symbol FSK Detection:

argmax
i∈B

{
E
Φ

[
max
h∈C

ln[f(r|i , h,Φ)]

]}
⇐⇒ |r+0 |2 + |r−0 |2

i=0
≷
i=1

|r+1 |2 + |r−1 |2.

(8)
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Noncoherent Symbol-by-Symbol Detectors (2/2)

Statistics: f(r|i , h,Φ) ≡ CN (h xi(Φ),N0 I4) , with

xi(Φ) =
√

E

2

[
e+jΦ0 , e−jΦ0 , e+jΦ1 , e−jΦ1

]⊤
⊙ si , i ∈ B.

Theorem

Noncoherent Generalized Likelihood-Ratio Test (NC-GLRT)
Symbol-By-Symbol FSK Detection:

argmax
i∈B

{
max

Φ∈[0,2π)2
max
h∈C

ln[f(r|i , h,Φ)]

}
⇐⇒ |r+0 |+ |r−0 |

i=0

≷
i=1

|r+1 |+ |r−1 |.

(9)

Panos N. Alevizos Ph.D Defense 19 / 47



Introduction
Nonlinear Far Field RF Energy Harvesting Analysis

Backscatter Radios
Concluding Remarks

Fundamentals, Detection, and Channel Coding.
Network Architecture: Extended Scatter Radio Coverage.
Resource Allocation in Multi-Cell Backscatter Sensor Networks.

Noncoherent GLRT Sequence Detector

Static environments: Coherence time ≥ Packet duration.

Transmitted sequence: i = [i1 i2 . . . iNs
]⊤ ∈ B

Ns .

Received sequence: r1:Ns
with statistics

f(r1:Ns
|i, h,Φ) ≡ CN (h xi(Φ),N0 I4Ns

) . (10)

GLRT sequence detector:

iGLRT = arg max
i∈BNs

max
Φ∈[0,2π)2

max
h∈C

ln[f(r1:Ns
|i, h,Φ)] . (11)

Theorem

There exists algorithm that finds iGLRT with complexity O(NslogNs),
based on [9].

[9] P. N. Alevizos, Y. Fountzoulas, G. N. Karystinos, and A. Bletsas, “Log-linear complexity GLRT-optimal
noncoherent sequence detection for orthogonal and RFID-oriented modulations,” IEEE Trans. Commun., 2016.
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Noncoherent HCHT Soft-decision Decoding

Diminsish long-bursts of fading: interleaving of depth D.

Baseband coded signal using interleaving:

r1:Nc
=




r1
r2
...

rNc


=




h1xc1(Φ)
h2xc2(Φ)

...
hNc

xcNc(Φ)


+




n1

n2

...
nNc


 . (12)

Theorem

For DT ≥ Tcoh, noncoherent HCHT soft-decision decoding

argmax
c∈C

{
E
Φ

[
max
h∈CNc

ln[f(r1:Nc
|c, h,Φ)]

]}
⇐⇒ argmax

c∈C

Nc∑

n=1

wncn, (13)

where wn , |r+1 (n)|2 + |r−1 (n)|2 −
(
|r+0 (n)|2 + |r−0 (n)|2

)
, n = 1, 2, . . . ,Nc.
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Numerical Results (1/2)
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Wireless and signal parameters: T = 1 msec, Tcoh = 100 msec, 30
training bits.
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Numerical Results (2/2)
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Wireless and signal parameters: T = 1 msec, Tcoh = 100 msec, 30
training bits.

Panos N. Alevizos Ph.D Defense 23 / 47



Introduction
Nonlinear Far Field RF Energy Harvesting Analysis

Backscatter Radios
Concluding Remarks

Fundamentals, Detection, and Channel Coding.
Network Architecture: Extended Scatter Radio Coverage.
Resource Allocation in Multi-Cell Backscatter Sensor Networks.

Experimental Results (1/2)

Parameters: dCT = 8 m, T = 1 msec, F1 = 2F0 = 250 kHz, 16
training + 31 data coded bits.
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Experimental Results (2/2)
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Reception algorithms: Energy-based synchronization,
Periodogram-based CFO estimation.
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Problem Statement (1/2)

Carrier

Emitter

Tag

SDR Reader
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dCT= x m x
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Asymmetric scatter radio architecture can reduce path-loss:

PL ∝ y(x) =
(
1
x

)2 ( 1
100−x

)2
.

y(x) is minimized at x = d/2 = 50 m.
y(x) increases as x −→ 0 or x −→ 100.
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Problem Statement (2/2)

Monostatic Multistatic 

This work proposes multistatic architecture.

Outperforms globally state-of-the-art monostatic architecture.
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BER Analysis (1/2)

Theorem

Under dyadic Nakagami fading, the BER of monostatic architecture with
ML coherent detection can be bounded as

P

(
e
[m]
l,n

)
≤

1

2

(
Mn + M

2
n

2 SNR
[m]
n

)Mn
2

U

(
Mn

2
,
1

2
,
Mn + M

2
n

2 SNR
[m]
n

)
, (14)

where Mn is the Nakagami parameter for link TR, and U(·, ·, ·) is given in

[Eq. (13.4.4), 10], and SNR
[m]
n is the average received SNR for monostatic

system. For dyadic Rayleigh fading (Mn = 1), the corresponding diversity
order is − 1

2 .

The above BER expression coincides with noncoherent envelope
monostatic scatter radio detection.

[10] F. W. J. Olver et. al, NIST handbook of mathematical functions, 2010.
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BER Analysis (2/2)

Theorem

Under dyadic Nakagami fading, the BER of bistatic architecture with ML
coherent detection can be bounded as

P

(
e
[b]
l,n

)
≤

1

2

(
2 MlnMn

SNR
[b]
l,n

)Mn
U

(
Mn, 1 + Mn − Mln,

2 MlnMn

SNR
[b]
l,n

)
, (15)

where Mn and Mln are the Nakagami parameters for links TR and CT,

respectively, while SNR
[b]
l,n is the average received SNR for bistatic system.

Under dyadic Rayleigh fading (Mn = Mln = 1), the diversity order is −1.

The above BER expression coincides with noncoherent envelope
bistatic scatter radio detection.
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Numerical Results (1/2)
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Wireless and signal parameters: Equal average received SNR,
Mn = 5.7619 and Mln = 5.2632.
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Numerical Results (2/2)
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Wireless and signal parameters: Mn = 5.7619 and Mln = 1.
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Problem Statement

    2

5

4

6

    1

3

1

2

Resource allocation in multi-cell BSNs:

Maximize coverage.
Reduce installation cost.
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System Model

Cores, tags, and frequency sub-channels: B, K, C.

Rician MIMO wireless downlink and uplink channels between core b

and tag k : hd
bk and hu

kb.

Orthogonal pilot sequences
{
x(1), x(2), . . . , x(Mtr)

}
⊂ {±1}Mtr .

C orthogonal frequency sub-channels.

Sets: KC(c), KB(b), KMtr
(m), Kbmc = KB(b)∩KMtr

(m)∩KC(c).

Theorem

The baseband signal at core b ∈ B over the i-th time instant, at the
output of c-th frequency filter is

r
(c)
b,i =

∑

k∈KC(c)

ξ
(c)
kb xk,i + n

(c)
b,i , i = 1, 2, . . . ,M . (16)
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Mult-Cell Training Signal

Training signal for tag k ∈ Kbmc , |Kbmc | = 1:

R̃
(c)
b,tr

x(m)

∥∥x(m)
∥∥2
2

, r
(c)
b,tr = ξ

(c)
kb +

∑

b′ 6=b

∑

k′∈Kb′mc

ξ
(c)
k′b + v

(c)
b,tr, (17)

Proposition

For vectors {ξ
(c)
kb }k∈KC(c), ∀c ∈ C, ∀b ∈ B, mean E[ξ

(c)
kb ] = 0NR

and
covariance C

ξ
(c)
kb

can be found in closed-form.
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Multi-Cell CSI Acquisition and Linear Detection

Theorem

For a tag k ∈ Kbmc the LMMSE estimate of ξ
(c)
kb based on training signal

r
(c)
b,tr is given by

ξ̂
(c)

kb = C
ξ
(c)
kb


∑

b′∈B

∑

k′∈Kb′mc

C
ξ
(c)

k′b

+
N0

M2
tr

INR




−1

r
(c)
b,tr. (18)

Vectors ξ̂
(c)

kb and error vector ǫ
(c)
kb = ξ̂

(c)

kb − ξ
(c)
kb are uncorrelated.

Linear detection sign(ℜ{zk,i}) for tag k ∈ Kbmc , zk,i = (a
(c)
kb )

H r
(c)
b,i .

Maximum-ratio combining (MRC).
Zero-forcing (ZF).
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SINR Calculation and Problem Formulation

Measure long-term SINR for pair (k , c) ∈ K × C: SINR
(c)
kb .

Assign frequency sub-channels to tags k ∈ KB(b) according to:

maximize
∑

k∈KB(b)

∑

c∈C

g
(
SINR

(c)
kb

)
· vkc (19a)

subject to
∑

k∈Kbm

vkc ≤ 1, ∀(m, c) ∈ Mtr × C, (19b)

∑

c∈C

vkc = 1, ∀k ∈ KB(b), (19c)

vkc ∈ B, ∀(k , c) ∈ KB(b)× C. (19d)
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Resource Allocation Algorithm (1/2)

Theorem

The FG message-passing update rules to solve optimally resource
allocation problem (19)

φ
(n)
kc = max

c′∈C\c

{
−ρ

(n−1)
kc′ + g

(
SINR

(c′)
kb

)}
, (20)

ρ
(n)
kc =

[
max

k′∈Kbm\k

{
−φ

(n)
k′c + g

(
SINR

(c)
k′b

)}]+
, k ∈ Kbm, (21)

where [x ]+ , max{x , 0}. Moreover, to infer the value for variable
vkc ∈ B at the n-th iteration,

v̂
(n)
kc = 1

{
φ
(n)
kc + ρ

(n)
kc ≤ g

(
SINR

(c)
kb

)}
. (22)
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Resource Allocation Algorithm

Amenable to distributed implementation.

If LP has integral and unique solution then message passing
converges to the exact solution after O(C |KB(b)|) iterations [11].

Per iteration computation cost: O(C |KB(b)|2 + C 2|KB(b)|).

5 to 15 iterations suffice for the algorithm to converge.

[11] M. Bayati, C. Borgs, J. Chayes, and R. Zecchina, “Belief propagation for weighted b-matchings on arbitrary
graphs and its relation to linear programs with integer solutions,” SIAM Journal on Discrete Mathematics, 2011.
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Numerical Results (1/3)
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x [m]

0
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0
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2

0

1

80

z 
[m

]

Wireless and signal parameters: B = 21, K = 500 , C = 15,

Mtr = 8, κu
kb = κd

bk = 10 dB, σ2
bk = σ2

kb =
(

d0
dbk

)νbk (
λ

4πd0

)2
, with

νbk = 2.1, Γk,0 = 0.92 and Γk,1 = −0.91, ηk = 0.2, f(c) = 2c
T
, with

T = 0.1 msec, σ2
b = −170 dBm/Hz.
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Numerical Results (2/3)
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Numerical Results (3/3)
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Contributions

Enhance ultra-low-power IoT technology exploiting novel
concepts in wireless communications and networking.

Objectives:

Accurate RF energy harvesting analysis.
Ultra-low complexity, increased range, small processing delay,
scatter radio receivers.
New, flexible, scatter radio network architecture with extended
coverage.
Resource allocation for multi-cell backscatter sensor networks
(BSNs).
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Future Work

Accurate resource allocation with nonlinear RF energy
harvesting.

Multistatic scatter radio cooperative localization.

Linear detection performance analysis in multi-cell BSNs and
comparison with existing WSN technology.
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Questions?

Thank You!!
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