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Network Localization Cramér–Rao Bounds for General Measurement Models

Panos N. Alevizos, Student Member, IEEE, and Aggelos Bletsas, Senior Member, IEEE.

Abstract—A closed-form Cramér-Rao bound (CRB) for gen-
eral multi-modal measurements is derived for D-dimensional
network localization (D ∈ {2,3}). Links are asymmetric and
the measurements among neighboring nodes are non-reciprocal
depending on an arbitrary differentiable function of their position
difference, subject to additive Gaussian noise (with variance
that may depend on distance). The provided bound incorporates
network connectivity and could be applied for a wide range
of typical, unimodal ranging measurement methods (e.g., angle-
of-arrival or time-of-arrival or signal strength with directional
antennas) or multi-modal methods (e.g., simultaneous use of
unimodal ranging measurements). It was interesting to see that
for specific network connectivity, MSE performance of various
different ranging measurement methods coincide, while perfor-
mance of network localization algorithms is clearly sensitive on
network connectivity.

Index Terms—Estimation theory, Cramer-Rao bounds.

I. INTRODUCTION

In network localization [1], [2], agents with unknown lo-

cation exchange measurements with reference anchors (non-

cooperative localization) and other neighboring agents (coop-

erative localization). Measurements of relative location and

distance can be quantified by a variety of metrics, such as

received signal strength (RSS) or time-of-arrival (ToA) [1],

[3], angle-of-arrival (AoA) [4], [5] or combination [6].

Performance of any localization algorithm usually employs

the mean squared-error (MSE) metric, which for unbiased

deterministic estimators, is lower-bounded by the Cramér-

Rao bound (CRB) [7]. However, prior art has derived CRB

formulas for specific measurement setups. For instance, work

in [1] offered CRB for two-dimensional (2D) cooperative

localization with ToA [8] or RSS-based measurements. Re-

lated work [9] has offered 2D non-cooperative localization

CRB with hybrid ToA and RSS, while work in [10] offered

performance bounds for 2D noncooperative localization with

ToA and AoA. It is also worth mentioning that reciprocity

in distance-based measurements is typically assumed, which

may not hold in practice, given that measuring apparatus at

different nodes exhibit independent noise levels. CRB includ-

ing multi-modal measurements—where more than one type

of measurements may be simultaneously offered—is typically

not covered in the existing network localization prior art, apart

from special cases. Seminal work in [11] offered MSE lower

bound expressions, derived directly from exchanged signal
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waveforms and other physical layer-related information, such

as multi-path profile or parameters relevant to the channel

statistics; extension to cooperative case is given in [12].

Related applications can be found in [13] and references

therein.

This work offers closed-form CRB for D-dimensional net-

work (cooperative or not) localization (D ∈ {2,3}), covering

multi-modal ranging measurements, asymmetric links, non-

reciprocal measurements, and studies the impact of network

connectivity on localization. Distance dependence in the vari-

ance of ranging error measurements can be also modeled.

Differentiable functions, modeling a large class of ranging

methods are employed. Notation: 1A denotes the indicator

function of statement A, which is one if A is true and zero,

otherwise; tr(·) is the trace operator.

II. SYSTEM MODEL

The network consists of N agents with unknown locations,

indexed by set Ng , {1,2, . . . ,N } and L anchors with a

priori known coordinates (across the entire network), indexed

by set Nan , {N + 1,N + 2, . . . ,N + L}. The set of all

network nodes is denoted by H , Ng ∪ Nan and for D-

dimensional localization, the coordinates of node i ∈ H are

represented by vector xi =
[

xi,1 xi,2 . . . xi,D
]⊤
∈ R

D.

Connectivity matrix A is defined with elements Ai, j = 1

(Ai, j = 0) if node i can (cannot) receive measurements

from node j, ∀i, j ∈ H and Ai,i = 0, ∀i ∈ H . In other

words, the ith row of A indicates the nodes that can send

measurements to node i; the set of all these nodes can be

written as H (i) = { j ∈ H : Ai, j = 1}. For more flexible

modeling, Ai, j , Aj,i in general, i.e., connectivity between

terminals may be asymmetric; i may receive measurements

from j, while j may not receive measurements from i. The

set of directed (measurement connectivity) edges is defined

as G , {(i, j) : i ∈ H , j ∈ H (i)} =
{
(i, j) ∈ H 2 : Ai, j = 1

}
and notice that (i, j) ∈ G does not necessarily mean that

( j, i) ∈ G. Thus, any type of network connectivity can be

explicitly modeled. It is further assumed that all node positions

are distinct.

In network localization, agents exchange measurements

with other neighboring nodes (agents or anchors) for esti-

mation of the unknown (agent) coordinates {xn}n∈Ng
, using

set of measurements Y ,

{
y

(m)
i←j

: (i, j) ∈ G, m ∈ M
}
. Set

M = {1,2, . . . ,M} denotes the type of measurements for the

pair (i, j), e.g., ToA (m = 1), RSS (m = 2), AoA (m = 3) or

other. Specifically, node i ∈ H conducts measurement y
(m)
i←j

of

type m by receiving signal transmitted from neighboring node

j ∈ H (i), resulting to ranging measurement given by:

y
(m)
i←j
, p(m)

i←j

(

xi ,x j

)

+

√

h(m)
i j

(

di j

)

w
(m)
i←j
, (1)

with function p(m)
i←j

(

xi ,x j

)

, g(m)
i j

(

di j

)

+ v(m)
i←j

(

xi ,x j

)

and

di j , ‖xi − x j ‖; it is emphasized that y
(m)
i←j
, y

(m)
j←i

in general,
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even for symmetric connectivity, e.g., due to independent noise

levels at different receivers; thus,
{
w

(m)
i←j

: (i, j) ∈ G, m ∈ M
}

are independent, non-identically distributed (i.n.i.d.), zero-

mean Gaussian random variables of variance
(

σ
(m)
i←j

)2
. For

all (i, j) ∈ G, m ∈ M, functions g(m)
i j

: R+ −→ R and

h(m)
i j

: R+ −→ R+ are assumed differentiable over positive

reals and depend solely on di j , while v(m)
i←j

: R
2D −→ R

depends solely on xi − x j (i.e., v(m)
i←j

(xi ,x j ) = ṽ(m)
i←j

(xi − x j )

for some suitable function ṽ(m)
i←j

: R
D −→ R) and is also

assumed differentiable over a neighborhood of (xi ,x j ). It can

be shown that ∇xi v
(m)
i←j

(xi ,x j ) = −∇x j
v(m)
i←j

(xi ,x j ). For each

(directed) link (i, j) ∈ G and measurement type m ∈ M, one

available measurement is assumed. Specific examples from

practice follow.

Examples: For ToA ranging measurements, h(1)
i j

(·) = 1,

v(1)
i←j

(·) = 0, g(1)
i j

(di j ) =
di j

c
+ bi j , c denotes the signal

propagation velocity and bi j models a bias term accounting

for possible non-light-of-sight (NLOS) effects.

For RSS ranging measurements with omnidirectional an-

tennas, g(2)
i j

(di j ) = Pi j − 10νi j log10

(
di j

d0, i j

)

, where νi j is the

path-loss exponent (PLE) between nodes i and j and Pi j is

the known received power at a short reference distance d0,i j .

For RSS ranging measurements with directional anten-

nas, function v(2)
i←j

is also added in p(2)
i←j

, modeling the

gain GTx
j

of node’s j transmit antenna and gain GRx
i

of node’s i receive antenna (in dB). Specifically for 2D,

v(2)
i←j

(

xi ,x j

)

= 10log10

(

GTx
j

(φi←j ) GRx
i

(φ j←i )
)

, where phase

φi←j , tan−1
2

(
xi,2−x j,2

xi,1−x j,1

)

when φi←j ∈ [0, π), and φi←j ,

2π + tan−1
2

(
xi,2−x j,2

xi,1−x j,1

)

when φi←j ∈ [π,2π), with function

tan−1
2

(
y

x

)

, atan2(y, x), and atan2(y, x) ∈ [−π,π] as de-

fined in [14, Eq. (5.22)]; such definition offers φi←j ranging

in [0,2π) (as opposed to classic atan, which is limited

to [−π/2, π/2]) and offers a differentiable φi←j . For 3D,

v(2)
i←j

(

xi ,x j

)

= 10log10

(

GTx
j

(φi←j , θi←j ) GRx
i

(φ j←i , θ j←i )
)

,

where θi←j = cos−1
(
xi,3−x j,3

‖xi−x j ‖

)

∈ (0, π).

As a simple 2D example, consider dipole antennas placed

parallel to the x-axis [15]. Due to symmetry of the dipole

directivity pattern, v(2)
i←j

(

xi ,x j

)

is given by:


20log10

(

1.67cos3
(

φi←j

))

, φi←j ∈
[
0, π

2

)

∪
(

3π
2
,2π

)

20log10

(

−1.67cos3
(

φi←j

))

, φi←j ∈
(
π

2
, 3π

2

)

.
(2)

For a simple 3D example, consider the 3D directivity pattern

of dipoles vertical to x-y plane that depends solely on θi←j

[15]. Due to symmetry, function v(2)
i←j

(

xi ,x j

)

can be simplified

to:

v(2)
i←j

(

xi ,x j

)

= 20log10

(

1.67sin3
(

θi←j

))

, (3)

with θi←j ∈ (0, π).1 It is worth noting that in RSS ranging

measurements, standard deviation (in dB) may depend on

distance and thus, h(2)
i j

(·) , 1 could be also adopted.

1Notice that due to the antenna reciprocity theorem, v(2)
i← j

( ·) = v(2)
j←i

( ·);

the adopted notation assists clarity regarding which is the transmitting and
which is the receiving antenna and network node.

Finally, the 2D AoA measurement model is given by

h(3)
i j

(·) = 1 and p(3)
i←j

(·) = v(3)
i←j

(·) with v(3)
i←j

(

xi ,x j

)

= φi←j .

III. CRAMÉR-RAO BOUND

Vector x =
[
x⊤g x⊤an

]⊤
∈ R

D(N+L) is defined, where

xg = {xn }n∈Ng
and xan = {xl }l∈Nan

are associated with agent

and anchor positions, respectively. From Eq. (1), measurement

at node i (due to transmission from neighboring node j) is

distributed according to:

y
(m)
i←j

; xi ,x j ∼N

(

p(m)
i←j

(

xi ,x j

)

,h(m)
i j

(

di j

) (

σ
(m)
i←j

)2
)

, (4)

and is independent from the rest of the measurements

Y\
{
y

(m)
i←j

}
. Thus, the joint log-likelihood distribution of mea-

surements Y is expressed as:

ln
[

f (Y; x)
]

=

∑

i∈H

∑

j ∈H (i)

∑

m∈M

ln
[

f
(

y
(m)
i←j

; xi ,x j

)]
︸                  ︷︷                  ︸

λ
(m)
i← j

. (5)

The Fisher information matrix (FIM) depends on connectiv-

ity and location of all nodes (agents or anchors) and is denoted

as J(xg,xan,G); it is associated with f (Y; x) and unknown

parameters xg, and is given by:

J(xg,xan,G)= EY;x

[
∇xg

ln
[

f (Y; x)
]

∇⊤xg
ln

[

f (Y; x)
]]
. (6)

FIM in (6) can be equivalently written as [7]:

J ≡ J(xg,xan,G) =


J1,1 · · · J1,N

...
. . .

...

JN,1 · · · JN,N


, (7)

where for n, k ∈ Ng,

Jn,k = EY;x

[
∇xn ln

[

f (Y; x)
]

∇⊤xk ln
[

f (Y; x)
] ]

(8)

is a D × D matrix. The directed node ID pairs in the two

outermost summations of Eq. (5) involving an agent n ∈ Ng,

are given by the following set:

A(n) ,
⋃

j ∈H

{
(n, j) : An, j = 1

}
∪

{
( j,n) : Aj,n = 1

}
. (9)

The set above incorporates all (directed) links in the network

where agent n is involved either as transmitter or receiver,

during ranging measurements.

Regularity conditions of f
(

y
(m)
i←j

; xi ,x j

)

for each (i, j) ∈ G

will be utilized [7], i.e., for any n ∈ Ng and any (i, j) ∈ A(n),

EY;x

[
∇xn λ

(m)
i←j

]
= 0D, for a.e. xn ∈ R

D . (11)

Applying ∇xn in (5) and eliminating the terms λ
(m)
i←j

that do

not depend on xn offers:

∇xn ln
[

f (Y; x)
] (9)
=

∑

m∈M

∑

(i, j )∈A (n)

∇xnλ
(m)
i←j
. (12)

For any n ∈ Ng and any (i, j) ∈ A(n), (i′, j ′) ∈ A(n) and

m,m′ ∈ M, measurements y
(m)
i←j

and y
(m′)
i′←j′

are independent,

unless m = m′, i = i′, and j = j ′. Thus, by the regularity

conditions of Eq. (11), EY;x

[
∇xn λ

(m)
i←j
∇⊤xn λ

(m′ )
i′←j′

]
is non-zero

only if m = m′, i = i′ , j = j ′ for any (i, j) ∈ A(n). Using the
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Jn,k =



∑

m∈M

*..
,

∑

(i, j )∈A (n)

*..
,

[
ḣ(m)
i j

(‖xi − x j ‖)
]2

(xi − x j )(xi − x j )
⊤

2
[
h(m)
i j

(‖xi − x j ‖)
]2
‖xi − x j ‖2

+

( [
ġ(m)
i j

( ‖xi−x j ‖)
]
(xi−x j )

‖xi−x j ‖
+ ∇xn v(m)

i←j
(xi ,x j )

) ( [
ġ(m)
i j

( ‖xi−x j ‖)
]
(xi−x j )⊤

‖xi−x j ‖
+ ∇⊤xn v(m)

i←j
(xi ,x j )

)

(

σ
(m)
i←j

)2
h(m)
i j

(‖xi − x j ‖)

+////
-

+////
-
, n = k

−
∑

m∈M

*....
,

∑

(i, j )∈
(n,k)∪(k,n)

1(i, j )∈G

*..
,

[
ḣ(m)
i j

(‖xi − x j ‖)
]2

(xi − x j )(xi − x j )
⊤

2
[
h(m)
i j

(‖xi − x j ‖)
]2
‖xi − x j ‖2

+

( [
ġ(m)
i j

( ‖xi−x j ‖)
]
(xi−x j )

‖xi−x j ‖
+ ∇xn v(m)

i←j
(xi ,x j )

) ( [
ġ(m)
i j

( ‖xi−x j ‖)
]
(xi−x j )⊤

‖xi−x j ‖
+ ∇⊤xn v(m)

i←j
(xi ,x j )

)

(

σ
(m)
i←j

)2
h(m)
i j

(‖xi − x j ‖)

+////
-

+////
-
, n , k.

(16)

above and substituting Eq. (12) in (8) for k = n, the diagonal

blocks in (7) can be calculated as:

Jn,n =

∑

m∈M

∑

(i, j )∈A (n)

EY;x

[
∇xn λ

(m)
i←j
∇⊤xn λ

(m)
i←j

]
. (13)

Similarly, due to the regularity conditions, for any k,n ∈ Ng,

with k , n, EY;x

[
∇xn λ

(m)
i←j
∇⊤xk λ

(m′)
i′←j′

]
is a nonzero matrix only

if k ∈ H (n), m = m′, i = i′ = n, j = j ′ = k, or only if

n ∈ H (k), m = m′, i = i′ = k, j = j ′ = n. Thus, after some

algebra, the non-diagonal blocks in Eq. (7) can be expressed

as:

Jn,k =

∑

m∈M

∑

(i, j )∈
(n,k)∪(k,n)

1(i, j )∈G EY;x

[
∇xn λ

(m)
i←j
∇⊤xk λ

(m)
i←j

]
. (14)

It is also noted that for any n ∈ Ng and k ∈ H (n),

EY;x

[
∇xn λ

(m)

n←k
∇⊤xn λ

(m)

n←k

] (a)
= −EY;x

[
∇xn λ

(m)

n←k
∇⊤xk λ

(m)

n←k

]
(b)
=

(

∇xn p(m)

n←k
(xn ,xk )

) (

∇⊤xn p(m)

n←k
(xn ,xk )

)

h(m)

nk
(dnk )

(

σ
(m)

n←k

)2
+

+

∇xn h(m)

nk
(dnk )∇⊤xn h(m)

nk
(dnk )

2
[
h(m)

nk
(dnk )

]2
. (15)

Equality (a) holds due to ∇xn λ
(m)

n←k
= −∇xk λ

(m)

n←k
; the lat-

ter holds because λ
(m)

n←k
is a function that depends on the

difference xn − xk , stemming directly from Eq. (1) and the

assumptions of Sec. II. Equality (b) stems from the fact that

all functions are differentiable near (xn ,xk ) and [7, Eq. (3.31)].

Substituting Eq. (15) in (13) and (14), we obtain the

expression in (16) at the top of the page. In (16), we also

employ the chain rule of differentiation and ∇xn dnk =
xn−xk
‖xn−xk ‖

,

which is properly defined due to the distinct node positions

assumption. Notation ġ(m)

nk
(dnk ) and ḣ(m)

nk
(dnk ) denotes the

first derivative of g(m)

nk
(·) and h(m)

nk
(·), respectively, evaluated

at point dnk = ‖xn − xk ‖.

The MSE of any unbiased deterministic estimator x̂n , of the

nth agent position is lower bounded by:

EY;x

[̂xn − xn
2

]
≥ tr

(

J−1
n,n

)

, (17)

where J−1
n,n is the nth diagonal D × D matrix block of J−1.

A. FIM Evaluation for Different Measurement Models

To see the utility of Eq. (16), some application examples

follow:

• ToA: ġ(1)
i j

(di j ) =
1
c

and ∇xi v
(1)
i←j

(

xi ,x j

)

= 0D .

• 2D RSS, according to Eq. (2): ġ(2)
i j

(di j ) =
−10νi j

ln(10)di j
and

∇xi v
(2)
i←j

(

xi ,x j

)

=


60(xi,2−x j,2)2

ln(10) d2
i j

(xi,1−x j,1)

−60(xi,2−x j,2 )

ln(10) d2
i j


. (18)

• 3D RSS, according to Eq. (3): ġ(2)
i j

(di j ) =
−10νi j

ln(10)di j
and

∇xi v
(2)
i←j

(

xi ,x j

)

=

60

ln(10) d2
i j



(xi,3−x j,3 )2 (xi,1−x j,1)
(

d2
i j
−(xi,3−x j,3)2

)

(xi,3−x j,3 )2 (xi,2−x j,2)
(

d2
i j
−(xi,3−x j,3)2

)

−(xi,3 − x j,3)


. (19)

• 2D AoA: ġ(3)
i j

(di j ) = 0 and

∇xi v
(3)
i←j

(

xi ,x j

)

=


−(xi,2−x j,2)

d2
i j

(xi,1−x j,1)

d2
i j


. (20)

With the help of the above and ∇xi v
(m)
i←j

(xi ,x j ) =

−∇x j
v(m)
i←j

(xi ,x j ), matrix J is directly calculated.

IV. NUMERICAL RESULTS

Numerical results for 2D and 3D localization are presented,

as a function of measurement noise variance, type of ranging

measurements (or combination of methods) and connectivity

radius (assuming—for conciseness—common connectivity ra-

dius r among all terminals). A common measurement noise

variance is assumed, i.e., σ
(m)
i←j

= σ(m) , ∀(i, j) ∈ G and

the values for σ(m) are taken from real experimental testbeds

[1], [2]. In addition, PLE is assumed known i.e., νi j = ν =
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Fig. 1. Left: N = 117 agents and L = 4 anchors. Middle and right: N = 40
agents and L = 4 anchors for r = 7 and r = 12, respectively. Connectivity
for two nodes is also depicted in middle and right, for illustration purposes.

2.3, ∀(i, j) ∈ G in RSS measurements [2]. The final CRB

averaged across all agents is given by CRB = 1
N

tr
(

J−1
)

.

Fig. 2 illustrates the CRB performance for the 2D topology

of Fig. 1-left, as a function of communication radius r, across

different ranging measurement methods. The RSS measure-

ment model without directionality (line with crosses) has the

worst MSE performance. When network nodes are equipped

with dipole antennas parallel to the x-axis, the MSE (line with

circles) can be further reduced. AoA measurement model (line

with x’s) further reduces MSE compared to classic RSS for

the specific topology, while ToA (diamonds) offers the best

MSE across all measurement methods above. Interestingly,

exploitation of 2 types of measurements significantly improves

MSE performance, as shown in Fig. 2; AoA and RSS could

outperform ToA for specific network connectivity, while joint

ToA and RSS with dipole antennas can significantly reduce

MSE. It is also interesting to see that for specific network

connectivity, MSE performance of various different ranging

measurement methods coincide. Closed-form FIM calculation

of this framework allows simple performance comparisons

across different ranging methods and network topologies.

Fig. 3 offers results for the 3D topology of Fig. 1-middle

and right. RSS offers similar MSE compared to ToA mea-

surements, while RSS with directivity outperforms ToA. That

is due to the small distances involved, and thus, the terms

not depending on distances dominate in FIM. The proposed

CRB was also used to benchmark state-of-the-art network

localization algorithms, e.g., MDS-MAP [16], which is a

refined version of classic multi-dimensional scaling (MDS),

originally designed for full connectivity scenarios, i.e., for

large values of r. Fig. 3 shows that for r ≥ 18, MDS-MAP

with ToA reaches CRB. Additionally, it is shown that perfor-

mance comparison clearly depends on network connectivity.

Hopefully, the proposed bound will be used for benchmarking

in network localization research.
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